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GREEN'S FUNCTIONS, HARMONIC FUNCTIONS,
AND VOLUME COMPARISON

PETER LI & LUEN-FAI TAM

0. Introduction

Let Mn be a complete, noncompact, A2-dimensional manifold without
boundary, and let p e M be a fixed point. In this paper we will study
some problems in function theory on a class of manifolds M with Ricci
curvature satisfying RicM(x) > -(n - l)K (1 + r(x))~ , for some constant
K > 0, where r(x) is the distance from x to the fixed point p . Our first
aim is to give some sufficient conditions for a manifold M in this class
to admit a positive Green's function. The problem has a long history. In
1975, Cheng-Yau [10] first provided a necessary condition involving only
the volume growth for a complete manifold to admit a positive Green's
function. A sharp necessary condition was later proved by Varopoulos in
[34], which states that if a complete manifold M has a positive Green's
function, then
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-dt < oo,

where Vp(t) is the volume of the geodesic ball of radius t with center at p .
However, condition (0.1) is far from sufficient and a counterexample was
given in [34]. This sharp necessary condition of Varopoulos was also later
proved in [22] and [13] by using different arguments. The first major result
for the sufficiency was due to Varopoulos [31] and Li and Yau [25]. Using
the estimates for the heat kernel, they proved that if M has nonnegative
Ricci curvature everywhere, and (0.1) is satisfied, then M will have a
positive Green's function. Furthermore, Li and Yau [25] proved that if
this is the case, then for all x Φ y in M, the minimal positive Green's
function must satisfy
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for some constant C > 0 depending only on the dimension of M. A few
years later, it was proved in [20] that if the sectional curvature of M is
nonnegative outside a compact set, then condition (0.1) is also sufficient
for the existence of a positive Green's function. Moreover, the estimate
(0.2) is still valid at each end of large volume growth with some obvi-
ous modifications. The constant C depends on the manifold and also
on x. The results in [20] in one sense are generalizations of the results
in [31] and [25], because there is no curvature restriction on a compact
set. In another sense the results are more restrictive since the assump-
tion is on the sectional curvature rather than the Ricci curvature. The
results in [20] were generalized by Kasue [16] to manifolds with asymptot-
ically nonnegative sectional curvature. Recall that a complete noncompact
manifold M is said to have asymptotically nonnegative sectional curva-
ture if there is a point p e M and a continuous nonincreasing function
λ: [0, oo) —> [0, oo) such that /0°° rλ{r) dr < oo and the sectional curva-
ture of M at x satisfies KM(x) > -λ(r(x)), where r(x) is the distance
from the point x t o p . We would like to point out that the method in [20]
is quite different from the method in [25]. Up to this point, there is not
much progress in the problem of finding sufficient conditions for existence
of positive Green's function if we only assume that the Ricci curvature
of the manifold is nonnegative outside a compact set, or more generally,
that the Ricci curvature satisfies RicM(x) > —{n — 1)AΓ (1 -h r(x))~~ . In
§1, we will prove that under this curvature assumption, and if in addition
the manifold satisfies a volume comparison condition (VC) (see the defi-
nition in §1), then condition (0.1) is sufficient to guarantee the existence
of a positive Green's function. We should remark that condition (VC) is
satisfied by a manifold with nonnegative Ricci curvature everywhere and
by each end of a manifold with asymptotically nonnegative sectional cur-
vature; see §3. Therefore this result can be considered as a generalization
and a unified treatment of those in [25], [31], [20], and [16].

In §2, we will give some basic estimates for the positive Green's func-
tion for the class of the manifolds which we consider. They include the
estimates for the positive Green's function on a complete noncompact
manifold with nonnegative Ricci curvature obtained in [25], and on a
complete noncompact manifold with nonnegative sectional curvature out-
side a compact set in [20] and the generalization in [16]. These estimates
will be useful in the study of various spaces of harmonic functions. It was
discovered by the authors in [20] and [24], that in order to study the inter-
play between the geometry and the harmonic functions on a manifold, it is
important to study symmetric Green's functions which may be unbounded
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at infinity. Note that in [21] the authors constructed a symmetric Green's
function (which might not be positive) on any complete noncompact man-
ifold using compact exhaustion. This kind of Green's functions turn out
to be quite useful; see [24]. Therefore, in §2, we also give estimates for
the Green's function constructed in this manner for manifolds satisfying
the curvature and the volume comparison assumptions mentioned above.

In §3, we will apply the results in §1 and §2 to give new proofs of the
existing estimates for the Green's function given by [25], [31], [20], and
[16]. We will also derive some new estimates for complete noncompact
manifolds with nonnegative Ricci curvature and small volume growth.

In §4, we will apply the results in § 1 and §2 to study spaces of harmonic
functions on complete noncompact manifolds with nonnegative Ricci cur-
vature outside a compact set. Using the terminology of [24], we say that
a complete noncompact manifold is nonparabolic if it supports a positive
Green's function, otherwise, we say the manifold is parabolic. On the other
hand, if M is a complete noncompact manifold, and D is a compact set,
then an unbounded component of M \ D is called an end of M with
respect of D. If the number of ends of M with respect to any compact
set is uniformly bounded above by an integer, then we say that M has
finitely many ends. In this case, there is an R > 0 and an interger k > 1,
such that if Ω is any bounded domain containing Bp(R), then M\Ω has
exactly k unbounded components, and we will also denote an unbounded
component of M \ Ω for a fixed but sufficiently large bounded domain Ω
to be an end. Given an end E of M with respect to some compact set, we
say that it is a nonparabolic end if it supports a positive Green's function
which satisfies the Neumann boundary condition on dE. Otherwise, E
is said to be a parabolic end. This definition of parabolicity for an end is
equivalent to those given in [24]. This fact will be discussed in more detail
in §1. Now let p be a point in M, let s(r) be the number of parabolic
ends, and let l(r) be the number of nonparabolic ends of M with respect
to B (r), the geodesic ball of radius r with center at p . It is easy to see
that s(r) and l(r) are nondecreasing in r. Let s(r) —> s and l(r) —• / as
r —• oo, where s and / may be infinity. It was proved in [24] that

(0.3) s + / <

If we further assume that / > 1, then

(0.4) s +

and

(0.5) /
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where &°(M) is the vector space generated by those harmonic functions
which are bounded on one side at each end with respect to some compact
set, β^+{M) is the vector space generated by positive harmonic func-
tions, and βf£°(M) is the space of bounded harmonic functions with
finite Dirichlet integral. We should remark that one does not need any
curvature assumption in proving these results. On the other hand, if M
has nonnegative Ricci curvature, and / > 1, then (0.4) and (0.5) become
equalities. In fact, by the splitting theorem of Cheeger and Gromoll, if
/ > 1, then / = 1, and by a theorem of Yau [35], J^+(M) = ^ ° ° (M) =
{constant functions} . In general, if M is a connected sum of complete
noncompact manifolds with nonnegative Ricci curvature, then (0.3)-(0.5)
also become equalities; see [11] and [30]. If the sectional curvature is
nonnegative outside a compact set, or more generally, if the manifold has
asymptotically nonnegative sectional curvature, then by [20] and [16], we
have equalities for (0.3)-(0.5) again. Using the estimates of the Green's
function in §2, we give a partial result for the case where the Ricci curva-
ture is nonnegative outside a compact set under the additional assumption
that the manifold also satisfies the volume comparison condition (VC) in
§1. We will show in §4 that the inequality (0.5) is actually an equality in
this case.

In §5, we will discuss the volume comparison condition (VC). As we
mentioned before, the condition is satisfied by a complete noncompact
manifold with nonnegative Ricci curvature, or by each end of a mani-
fold with asymptotically nonnegative sectional curvature. We will prove
that in a certain sense, the volume comparison condition (VC) will also
be satisfied by a manifold whose Ricci curvature is almost nonnegative
everywhere. The results in this section are purely Riemannian geometric
and are interesting in their own rights.

In §6, we will consider complete noncompact manifolds with nonnega-
tive Ricci curvature outside a compact set and have finite first Betti num-
ber. We will prove that (VC) is essentially satisfied by each end of such a
manifold. Furthermore, the results in § 1 are still true, and the results in
[20] concerning positive harmonic functions can be extended to this kind
of manifolds.

Many results can be generalized easily to manifolds which are quasi-
isometric to the manifolds we discussed, especially, the results in §§1, 2,
3, and 6. We will point that out in due course.

The authors would like to thank Kwok-keung Au for some useful discus-
sion. Part of the research was done while the second author was visiting
the Chinese University of Hong Kong.
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1. Existence of positive Green's function

Let Mn be a complete, noncompact, connected manifold of dimension
n. Let D be a compact subset of M, and E be an end of M with
respect to D.

Definition 1.1. £ is a nonparabolic end if there exists a positive
Green's function on E which satisfies the Neumann boundary condition
on dE. Otherwise, E is said to be a parabolic end.

More precisely, E is a nonparabolic end if l i m ^ ^ Gχ{x, y) exists

for all x φ y where GR is the positive Green's function on E π B (R)

for a fixed point p with mixed boundary conditions -£rGR(x, y) on dE

and G%(x, y) = 0 for y e dBp(R) Π E.
Proposition 1.2. The following statements are equivalent:

(1) E is a nonparabolic end.
(2) There exists a nonconstant positive superharmonic function defined

on E such that its infimum is achieved at infinity of E.
(3) Any complete manifold M without boundary which is obtained by

smoothly gluing two identical copies of E togther is nonparabolic.

Proof In [24], we used (2) to define nonparabolicity of an end. We
showed that this is equivalent to the fact that E is the only end of a
complete nonparabolic manifold with boundary. However, this descrip-
tion is misleading because such a manifold might not exist. It only exists
if dE bounds an ^-manifold. This prompts us to use (3) as a substitute
for an alternate description. The argument in [24] applies to this with-
out much modification. The fact that (1) is equivalent to (2) is new and
the argument is rather simple. To see that (1) implies (2), we observe
that the positive Neumann Green's function is a positive superharmonic
function. The Hopf boundary point lemma asserts that if the infimum is
achieved on dE, then the outward normal derivative must be negative.
This contradicts the Neumann boundary condition.

The fact that (2) implies (1) follows from the construction of Green's
function in [21] which can be modified for the construction of Neumann
Green's function. The positive superharmonic function from (2) simply
acts as a barrier as described in [21].

Let p be a fixed point in M. For the remaining part of this section, we
will assume that the Ricci curvature of M satisfies

R i c W > - ( " - " * ;

(1+Γ(ΛΓ))2

for some constant K > 0, where r(x) is the distance of x from p . We
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introduce the following volume comparison condition:
(VC) There exists a constant ζ > 0 such that for all r and all x €

dB
p(

r)> Vp(r) < ζVχ(r/2) ,where Vχ(r) denotes the volume of the geodesic
ball Bχ(r) of radius r with center at JC. In general, let M be a complete
noncompact manifold, and let E be an end of M with respect to some
compact set. Let us denote the volume of the set Bp(r) nE by VpE{r).
E is said to satisfy condition (VC) if there exists a constant ζ > 0 such
that for all r and all x e dBp{r) nE, VpE{r) < ζ VχE{\). Let us first
point out some facts concerning volume comparison.

Lemma 1.3. Let M be a complete noncompact manifold of dimension
n, and let p e M be a fixed point. Suppose the Ricci curvature of M
satisfies Ric( c) > ~^~ 1 ^ for some nonnegative constant K, where r(x)
is the distance of x from p. Given any 0 < a < 1 there is a constant
C = C(p, K, α, n) depending only on p, K, a, n such that

Vp(r)<C(K,a,n)Vp(ar),

and
Vχ(r/2)<C(K,a,n)Vχ(ar/2)

for all xedBp{r).

Proof Let λ = -J-^TT > f°Γ t>0. Let g be the solution of the linear

equation

with initial condition g(0) = 0 and g'(0) = 1. Then g > 0 and g > 1
for all t > 0, and

where βx = J ( 1 + > / 1 +4K) and β2 = ^ ( 1 - Λ / 1 + 4AΓ), for some constant
A and 2?. By a standard argument (see [8])

It is easy to see that the right side is bounded by a constant depending
only on K, α, and π . One can prove the second statement similarly.

Lemma 1.4. Lei M" be a complete noncompact manifold as in Lemma
1.3, such that M satisfies the volume comparison condition (VC) for some
ζ and some p e M. Then for all r > 0, and 0 < a < \, Bp(2r)\Bp(r) can
be covered by k geodesic balls of radius §r with centers in Bp(2r)\Bp(r),
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where k can be bounded by a constant depending only on n, ζ, K, and
a.

Proof. Let k be the maximal number of disjoint geodesic balls of ra-

dius §r with centers JC15 , xk in Bp(2r) \Bp(r). Then {Bχ(ar)}k^λ

will cover Bp(2r)\Bp(r). By the condition (VC) and Lemma 1.3,

for some constant C{ depending only on n , ζ, K, and α. This implies
that k < Cχ.

Note that, according to a theorem of Liu [26], the ball covering property
in Lemma 1.4 is true without the assumption that M satisfies condition
(VC), provided that the Ricci curvature of M is nonnegative outside a
compact set. It is still an open question whether each end with respect
to a large enough compact set of a complete noncompact manifold with
nonnegative Ricci curvature outside a compact set will satisfy (VC). We
will discuss this problem in §5.

We will use the following gradient estimate of Cheng and Yau [10] for
positive harmonic functions defined on a geodesic ball.

Lemma 1.5. Let Mn be a complete noncompact manifold, and let x0 e
M, and R > 0. Suppose the Ricci curvature on Bγ (R) is bounded below
by -(n - l)K, for some constant K > 0. If f is a positive harmonic
function on BΎ (R), then

Λ Q

sup {R-φ))\V\ogf\<C{\+y/KR)9

where ro(x) is the distance from x to x0, and C > 0 is a constant
depending only on n.

By integrating along a minimal geodesic from a point x e Bγ (§) to
0

x0 in the above inequality, we conclude that there exists a constant C > 0
depending only on n such that

exp (-C (l + Λ/ZR)) < ^ - < exp (c (l +

for all positive harmonic functions / on Bγ (R). The next lemma is due
Λ Q

to Li and Schoen [19, Theorem 1.2], and was generalized to the following
form in [23, Theorem 1.1]; see also [28].

Lemma 1.6. Let Mn be a complete noncompact manifold. Let x e M,
and let f be a nonnegative function satisfying
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in Bχ(2R) for some R > 0 and some constant β > 0. Suppose the Ricci
curvature of M in Bχ(2R) is bounded from below by -(n - \)K for some
K>0. Then

for some constant C2 > 0 depending only on n and β. The notation
V(K, 2R) denotes the volume of the geodesic ball of radius 2R in the
model space of constant curvature -K.

Lemma 1.7. Let M be a complete noncompact manifold of dimension
n and p e M be a fixed point. Suppose that the Ricci curvature of M
satisfies Ric( c) > "Γ^" 1^ for some nonnegative constant K, where r(x)

is the distance of x from p, and that M also satisfies condition (VC) for

some ζ. Let f be a harmonic function defined on M\B(j) for some

r > 0. Then for any x e Bp(2r) \ Bp(r) ,

osc f<cΛ Γ-z^rdt\ ( ί |V/|2 I

for some constant C3 depending only on n, ζ, and K. If in addition, x

is also in Erj2, with Er,2 being an unbounded component of M\B(%),

then

osc f<cΛ Γ -!— dt] f /

Proof Let x e Bp(2r) \ Bp(r). For any y e Bχ($), let γ(t) be a
minimal geodesic parametrized by the arclength from x to y with length
/. Then / < J and for all 0 < t < I,

and

By the assumption on the Ricci curvature and the Bochner formula, we
have

Δ|V/|2 > -βr~2\Vf\2

on Bγφ ί ^ ^ H for some constant β > 0 depending only on n and K.

Hence by Lemma 1.6,

r{y{t))l\2)

1 -l / 1 W

C4

 γ t \\2 ) JBm(r\
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for some constant C4 depending only on n, and K. Since M satisfies
(VC), by Lemma 1.3 we have

for all t and some C5 depending only on n, ζ, and K. Hence

for some constant C3 depending only on n, ζ, and K. If x e EL,

then Bγφ ί ^ j ^ ) is a subset of E,2 for all ί. Hence one can replace

Bp{3r)\Bp(r) by Er/2Π (Bp(3r) \ Bp(r)\ in the above argument and obtain

the second inequality. This completes the proof of the lemma.
In general, a complete noncompact manifold may not have a positive

Green's function. However, it was shown in [21] that a symmetric Green's
function for the Lapacian can always be constructed by compact exhaus-
tion. More precisely, it was proved that there exist Rt | oo and ct > 0
such that

exists for all x Φ y, where G^x.y) is the positive Green's function
of B^R^ with Dirichlet boundary value. G(x, y) is a symmetic Green's
function. The convergence of G.(x, y)—ci is uniform on a compact subset
of M\{x} as functions of y . If M has a positive Green's function, then
one can take c = 0 and G(x, y) will be the minimal positive Green's
function. Using this setup, let us denote g^x) = -G((p, x) + ct and

g(x) = -<?(/?, x). Note that g. = ct on dBp(Rt) and g.(x) < c. for all
x £ B (R.) \ {p} . In this notation, we have the following (also see [22]):

Lemma 1.8. Let M be a complete noncompact manifold. For r > 0
let Mr be the union of the unbounded components of M\B (r). Then for



286 PETER LI & LUEN-FAI TAM

all R>r,

ί
JBp
lBp{R)ΠMr

and

ί \Vg\2<4(S(R)-i(r)),
JB(R)\B(r)

where S{R) = s u p ^ ( Λ ) g, i\r) = vaSdMg and i(r) = infdBp(r)g

Proof. Since g.(p) = -oo and g.\dB {R) = ct > 0, by the maximum

principle,

inf g. = infg.
BWΠM1 dM ιdMr

for R( > r. Let us now consider the harmonic function gt - inf5Λ/ g.

which is nonnegative on B (Rt) Π Mr. For all a > 0,

Bp(Ri)ΠMr {gt -

J Bp{Rt)C\

JdBpiR^i

+ f
JdMr 8i ~

< ί

Δlog

1

1

( « •

]

<i + a

a)2

- inf gχr + a \

ί dgt

Mrgi + adr

dgj

i dr

dgi

where we have used the fact that gt = ct on ΘB^R^ and that ^ > 0
on dBp{Rt). By setting R > r, and taking / sufficiently large so that
Rj> R, we obtain

f ιvg, ι2 ^ r i dgj
JBp(R)nMr g. - in f a M r g. + α2 ~ JdMr gi ~ infβ A f f gt + α dr '

As / -> oo, we have

(1!) /" ^ f </"
JB,{K)nMr (g - i*(r) + α)2 ~ Jdr (g - i*(r) + α)2

Let Ω = {x G Λ/| g(x) - Γ(r) < 0}, where we assume that p e Ω by
convention. Obviously, Ω c Λf\Aζ and g(x)-i*(r) > 0 on Λ/\(Λζ\jΩ).
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Hence

-/" l dg i f l °*
JdMr g ~ i*(r) + a dr JdΩ g - Γ(r) + a dv

JM\(WUΩ)
I __
M\(MrUΩ)

where v is the unit outward normal of d Ω . Combining this with (1.1)
yields

2 1 dgf
<

r (g - Ϊ*(Γ) + a)2 "
Since g(x) is the negative of the Green's function, and g — Γ(r) = 0 on
dΩ, we have

I,
for all a > 0. Set a = S(R) - i*{r) > 0 and then the lemma follows from
the maximum principle and that

sup g < S(R).
Bp(R)ΠMr

The second inequality can be proved in a similar manner.
Theorem 1.9. Let Mn be a complete noncompact manifold of dimen-

sion n, and let p e M be a fixed point Suppose that the Ricci curvature of
M satisfies Ric(x) > -77-7^2 for some nonnegative constant K, where
r(x) is the distance of x from p. Let us also assume that M satisfies
condition (VC) for some ζ. If G{x, y) is a Green's function obtained by
compact exhaustion, then there is a constant C4 depending only on n, ζ,
and K such that for all r0 > 0 and all x e M with r(x) > 2r0 > 0,

-G(p,x)+ sup G(p,-)

-dt + sup (?(/?, •) - inf (?(/?, •) I •

Γ ) «^(r0) wp(2r0) y

Moreover, M has a positive Green's function if and only if

/

oo *

-ή-dt < oo.

Proof Let r0 > 0 and r > 2rQ. Then there exists A: > 1 so that

2 \ < r < 2 / c + 1r0. Let g(x) = -G(p,x), and for any r > 0, let

5(r) = sup a 5 ( r )g and i{r) = infa5 (r)g . Let y e dBp(2kr0) be such that
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g(y) = sup a 5 ( 2 * r ) £ and let γ(t) be a minimal geodesic from p to y

parametrized by arclength. Let y. = y(2'r0) for / > 1 so that y = yk . By
Lemma 1.5, there exists a constant C3 > 0 depending only on «, ( , and
K such that

a 2i+ιr \ 1/2 / \ 1/2

V

 O τ 4 θ r f 7 [L{3 2>r)\B{2<->rΓ~l2

for 1 < / < k. Hence
(1.2)

g(y)-g(y(2r0))

<12C3 / ° T 4 A ^ / t ,
V^r0 Vp{t) ) ^ ( 3 2*-'ro)\B,(rβ) /

By the second inequality of Lemma 1.8,

f \Vg\2<4(s(3.2k-ιro)-i(ro)).
JBp(3 2k-ιr0)\Bp(r0)

 V >

Combining with (1.2) and the fact that #(y) = S(2kr0), we have

S(2kr0) - g(γ(2r0))
( 1 3 ) /2

By the maximum principle and the fact that G is obtained by compact
exhaustion, g-i(r0) is a positive harmonic function on M\Bp(rQ). Hence
Lemma 1.5 and the curvature assumption imply that

(1.4) 5(3 2*Λ 0 ) - i(r0) < C5(S(2krQ) - i(r0))

for some constant C5 depending only on n and K. Using the Holder
inequality, (1.3) and (1.4), we conclude that
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5 ( 2 * Γ O ) - I ( Γ O )

= S(2kr0) - g(γ(2r0)) + g(γ(2rQ)) - /(r0)

(1.5)
+ *(y(2r o ))-i(r o )

+ S(2r o )- i ( r o )

for some constants C 6 , C7 > 0 depending only on n, f, and # . The first
part of the theorem follows from Lemma 1.3, the curvature assumption,
the facts that 2kr0 < r < 2k+ιr0 and S{2rQ) - i(rQ) > 0. As for the
second part of the theorem, it was proved in [34] (see also [22]), that
if M has a positive Green's function then ff° yj^dt < oo. Suppose

/i°° vΊΊ)dt < oo. Then letting r0 = 1 in (1.5), we see that G(p9 x) is

bounded from below near infinity, and hence M has a positive Green's

function. This completes the proof of the theorem.
Remark 1.10. The statement in Theorem 1.9 concerning the necessary

and sufficient condition for the existence of a positive Green's function
was proved in [31] for manifolds with nonnegative Ricci curvature every-
where (also see [25] and [18]). Their proofs are based on the estimates of
the heat kernel. In this case, the volume comparison condition (VC) is a
consequence of the Bishop comparison theorem [3]. The same result was
proved for manifolds with nonnegative sectional curvature outside a com-
pact set in [20], and was later generalized to manifolds with asymptotically
nonnegative sectional curvature in [16]. We will see in §3 that manifolds
of this kind also satisfy condition (VC). Hence the last part of Theorem
1.9 can be considered as a generalization of all these results.

Remark 1.11. It is well known that the property of existence of positive
Green's function is quasi-isometric invariant; see for example [13]. Hence
the last conclusion of Theorem 1.9 is still true for a complete noncompact
manifold which is quasi-isometric to a manifold satisfying the assumptions
of the theorem.

2. Estimates for Green's functions

In this section, we will give some upper and lower estimates for a sym-
metric Green's function obtained by compact exhaustion on a complete
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noncompact manifold M satisfying the assumptions in Lemma 1.5. Since
the behavior of the Green's function will be different on different ends with
respect to a compact set of a manifold, for the sake of convenience, we
will assume that the manifold has only one end. This is to say that for
all r > 0 there is only one unbounded component of M \ Bp{r), which
will be denoted by Mr. This assumption is not very restrictive because
of the following result. It was proved in [24] that if the Ricci curvature
of Mn satisfies RicM(x) > -λ(r(x)) where r(x) is the distance from x
to a fixed point p, and λ : [0, oo) —• [0, oo) is a nonincreasing func-
tion so that /0°°r

n~ιλ(r)dr < oo, then M has only finitely many ends.
There are two separate cases to be considered: the case where M admits a
positive Green's function, and the case where M does not admit any pos-
itive Green's function. Let us first study the case where M has a positive
Green's function. We begin with a simple lemma.

Lemma 2.1. Let X be a topological space and let f : X —• R be a
continuous function. Let γ : [0, 1] —• X be a continuous curve which is
covered by finitely many nonempty open sets Uχ, , Uk . Denote γ(0) =
JC, and γ(l) = y. Then

k

\f(x)-f(y)\<Σ™cf'

Proof. We will prove the lemma by induction on k. The lemma is
obviously true for k = 1. Suppose that the lemma is true for k, and
that γ is covered by a family of nonempty open sets Ux, , Uk, Uk+ι.
Without loss of generality, we may assume that x = γ(0) e Uk+{. Let tχ

to be the supremum of t in [0, 1] such that γ(t) e Uk+ι. Then γ(t{) is
in the closure of Uk+{. If tχ — 1, then

< o s c / = osc/,

and we are done. Suppose tχ < 1. Thus by the definition of tχ for any
e > 0 so that tχ + e < 1, γ\[t +e χ] can be covered by Uχ, , Uk . By
the induction hypothesis,

Since \f(x) - f(γ{tχ))\ < osc^ / , the lemma follows by letting e -• 0

in the above inequality.
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Lemma 2.2. Let M be a complete noncompact manifold of dimen-
sion n with only one end, and let p e M be a fixed point such that
that /j0 0 ψjηdt < oo. Suppose that the Ricci curvature of M satisfies

Ric(x) > -j~γ^ϊ for some nonnegative constant K, where r(x) is the

distance of x from p. Suppose M also satisfies condition (VC) for some

ζ. Let r>0 and let f be a harmonic function defined on Mrj2 with finite

Dirichlet integral where Mr is the unbounded component of M \ Bp(r).

If x and y are in ML such that x and y can be joined by a curve

γcM\Bp(r), then

for some constant Cx > 0 depending only on n, ζ, and K.
Proof Let x and y be two points in M.2, which can be joined by

a continuous curve γ(t), 0 < t < 1, in M\Bp(r) such that γ(0) = x

and γ(l) = y. In particular, x and y are both in M\Bp(r). Let us
point out that the points x and y may not be in Mr, the unbounded
component of M \ Bp(r). Let J > 1 be an integer such that γ c M.2 Π

(Bp(2Jr)\Bp(rj\. By the ball covering Lemma 1.4, for all j > 1, there

exist x[j), , *<Λ i n Bp(2jr)\Bp(2j-ιr) , such that Bp(2jr)\Bp{2j-χr)

can be covered by {B\j)}f^ , where B{p = Bχu)(^2J'ιr). Moreover, s{j)

is bounded by a constant depending only on n , ζ, and K. Note that if

B{p Π Mr/2 φ 0 , then βψ c Mr/2. Therefore if we select those β\j)

which have nonempty intersection with M,2, and still call them βψ,

then Mr/2 Π (jSp{2jr) \ Bp(2j~ιrγ) can be covered by balls B^ , 1 < i <

s(j), so that each of the balls is contained in ML. Moreover, B^ c
L

Bp(3-2j~ιr)\Bp(2j~2r). By Lemma 2.1, since γ is covered by
p

we have

(2.1) l / W Σ f ?
y = l , = 1 BiJ

If we denote
Mr/2n(Bp(3 2k-ιr)\Bp(2k-2r))

by Mr k , then by (2.1), Lemma 1.7, and the definition of the B(p , we
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have

oo /,2V t \ 1 / 2 / , , \ ' / 2

\f(χ) - f(y)\ < c2 Σ / , , jl^dt / Iv/i2

W / oo . \ 1/2

\k=lJ2 ' PK } J \k=lJMr,k
- C 2

for some constant C2 > 0 depending only on ζ, n, and K. Here we have
used the fact that s(j) is bounded from above by a constant depending
only on n, ( , and K. This completes the proof of the lemma.

The right side of the inequality in Lemma 2.2 involves the Dirichlet
integral of / over Mr,1 rather than over Mr . This is not enough to give
an estimate for the Green's function. However, if / is also positive, then
using Lemma 2.2, one can prove the following:

Lemma 2.3. Let M be as in Lemma 2.2. Let r > 0, and f be a
positive harmonic function on M,2 with finite Dirichlet integral. Then for
any x and y in Mr, we have

fix) < C

for some constants C3 and C4 depending only on n, ζ, and K.
Proof Let x and y be in Mr. Then there is a continuous curve γ(t),

0 < t < 1, in Mr such that γ(0) = x and y(l) = y. By Lemma 1.4, we

can find xχ, , xs in Bp{2r)\Bp{r) such that (Jj=1 Bt D Bp{2r)\Bp{r),

where B. = Bx(%)9 and s is bounded by a constant depending only on

n, ζ, and K. Since γ c Mr, if B{ n γ Φ 0 then B. c Λ/"3r/4. Suppose

γ Π (U^=1 B.) Φ 0, then there is a smallest ^ such that γ(t{) e (Js

i=ι Έ].

We may assume that γ(t{) e B{. Let t\ > tx be the largest number in

[0, 1] so that γ(t[) e Έ[. Then

(1) y{(0,tx))<zM\Bp{lr)\_

(2) γ(t{) and γ(t[) are in Bχ and

(3) e i t h e r ^ = 1 o r γ[t\ 9l]nBx=0.

If t\ = 1 or y([*ί, 1]) n (UJ=1 B.) = 0 , then we stop. If t\ < 1 and

y{[t\, l])n ( U = 1 5 J ^ 0 , then by (3), γ([t[, l])n (U = 2

 5 /) Φ 0
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as before and if necessary renaming the Bt 's for 2 < / < m, we can find

t\<t2<t'2<\, such that

(1) y((/p/2))c¥\^(2r)^

(2) γ(t2) and γ(t2) are in B2 and
(3) either t'2 = l or γ([t'2, 1]) Π (Bι UB2)=0.

If t2 = 1 or y{[t'2, 1])(Ί (U/=i ̂ , ) = 0 > then we stop. Otherwise we can
proceed as before and find t3 and t'3. Continuing in this manner, we can
find 0<tλ<t\<t1<ά' -tm<t'<l, with m < s such that

— 1 — 1 — 2 — 2 m — m — ' —

(1) y ( ( 0 , ί 1 ) U ( ί ; , ί 2 ) U . . . U ( C , l ) ) c ί / \ ί ί ( 2 r ) ;

(2) γ(t.) and y(^) are in ΪΓ, for 1 < / < m and
(3) either 4 = 1 or γ([t'm , 1]) n (B{ U ••• UBS) = 0 .

Since y(ίz) and y(^.) are in 5T which is a subset of Mlr, by the Harnack
inequality derived from the gradient estimate of Lemma 1.5, the curvature
assumption, and the fact that / is positive, there exists a constant C5 > 0
depending only on n and K such that
(2.2) /(y(ί.)) < C5/(y(*;.))

for 1 < i < m. Since γ({t\, ί/+1)) c M \ Bp(2r) for all 1 < i < m - 1,
and γ c Mr, Lemma 2.2 implies that

0
for 1 < / < m-1, where Cχ is the constant in Lemma 2.2, which depends
only on n, ζ, and K. Similarly, if 0 < tχ then

/ r t y/2ff 2y
/2

(2.4) f(x)<CΛ ^dt) / |V/|2 +/(y(ί,) ,
l\Jr Vp{t) ) \JMf )

and if t'm < 1 then

, , , //•- t \ι/2( r Λ 1 / 2

(2.5) f(y{tm))<cΛ 7777^0 / l v^l + ^ )
V » \Jr Vp{t) ) \JMΓ )

Combining (2.2)-(2.5) and using the fact that m is bounded by a constant
depending only on n , ζ, and K, we thus prove the lemma.
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Theorem 2.4. Let M be as in Lemma 2.2, so that f™ yj^dt < oo and
M has only one end. Let G(x, y) be the minimal positive Green's function
on M. Then there is a constant C6 > 0 depending only on n, ζ, and K
such that

for all x € Mr, where Mr is the unbounded component of M\ Bp(r).
Proof Denote G(p, JC) by f(x). Since /(/?) = +oc and G is the

limit of Green's functions with Dirichlet boundary value on a compact
exhaustion, the maximum principle implies that supM / = supaM / . It
is well known (see for example [24]) that / has finite Dirichlet integral
on M \ Bp(r) for all r > 0. Let x € dMr be such that f(x) = supaM / .
Since G is the minimal positive Green's function, there exists yk -> oo
such that f{yk) -> 0 as k -> oo. Without loss of generality, we may
assume yk e Mr for all k. By Lemma 2.3,

for all k, where C7 and C8 are the contants depending only on n,
ζ, and K. Letting k -* oo and using Lemma 1.8 and the fact that
infa5 (R) f —• 0 as R —> oo, we obtain

I, Kύdt) [J™f

The theorem then follows.
By Theorem 2.4, if we let 5*(r) = s\xpdM G(p, •), then

With some modifications in the proof of Corollary 2.4 in [22], we can
obtain a lower bound for S*(r). More precisely, we have
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Proposition 2.5. Let M be a complete noncompact manifold satisfying

the same assumptions as in Theorem 2.4. Let S*(r) = sup a Λ / G(py •),

where G is the minimal positive Green's function on M. Then

for some constant C9 > 0 depending only on n, ζ, and K.
Proof Let i(R) = infdB {R)G{p, •). Then i(R) < S*(r) for R > r,

and R is large enough so that dBp(R) c Mr. For t > r, let V*(t) be the
volume of (Bp(t) Π Mr) U Bp(r). As in the proof of Corollary 2.4 in [22],
using Lemma 1.3, by considering -G(p, •), we can prove that there exists
a constant C 1 0 > 0 depending only on n, ζ, and K such that for R > r
sufficiently large

By Lemma 1.3, V*(t) < Vp{t), and i{R) -» 0 as R — oo, the result
follows.

Next we will consider the case where f™ yj^dt = oo. In this case, M

does not support any positive Green's function. As mentioned in §1, it

was proved in [21] that there exist i?z T oo and c- > 0 such that

exists for all x Φ y, where G^x.y) is the positive Green's function
of Bp(Rt) with Dirichlet boundary value. By combining Theorem 1.9,
Corollary 2.4 in [22], and Lemma 1.3, we have:

Theorem 2.6. Let M be a complete noncompact manifold of dimension
n, and let p e M be a fixed point. Suppose that the Ricci curvature of M
satisfies Ric(x) > —( n -*) κ

2 for some nonnegative constant K, where r{x)
\\.-\-Γ\X))

is the distance of x from p. Let us also assume that M satisfies condition

(VC) for some ζ and that f™ ψjηdt = oo. If G(x,y) is a Green's

function obtained by compact exhaustion, then the following estimates hold:
(1) There is a constant Cn > 0 depending only on n, ζ, and K such

that if ro>O and r(x) > 2r0 > 0, then

- G(p, x) + sup G(p, •)

dt + sup G(p, •) - inf G(p, •)
dBp(r0) 9Bp(2ra)
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(2) There exists a constant C 1 2 > 0 depending only on n, ζ, and K,
such that for R > r > 0,

c i 2 / ψTfidt ^ df\ (~G(P > •)) + sup G(p, -).

Remark 2.7. Let E be an end of a complete manifold satisfying (VC).
Suppose M is the double of E such that M has exactly two ends and
satisfies the curvature assumption in Theorem 2.4. By the proofs of The-
orem 2.4 and Proposition 2.5, it is easy to see that the results are still true
for M. In this case, Mr is the union of the two unbounded components
of M \ B (r).

Remark 2.8. If M is a complete manifold quasi-isometric to a mani-
fold satisfying the assumptions in Theorem 2.4, then by the estimates of
Green's functions on compact domains in terms of capacity in [17] (see
also [29]), using the notation in Theorem 2.4, from Theorem 2.4 and the
proof of Proposition 2.5 we can deduce that

/

oo ^

vJΓ)dt-s*{r)'P

for some constant C, where

ι*(r) = inf G{p,x) and S*(r)= sup G(p9x).
x€dM xedM,

3. Applications
As an application of the results in previous sections, we will give new

proofs of the estimates for the minimal positive Green's function on a com-
plete noncompact manifold with nonnegative Ricci curvature obtained in
[25]. We will also give some new estimates for the Green's function ob-
tained by compact exhaustion, when the volume growth of M is small so
that M does not admit any positive Green's function. We will give new
proofs of the estimates, which were obtained in [20], [16], for Green's
function on a complete noncompact manifold with asymptotically non-
negative sectional curvature. First let us assume that Mn is a complete
noncompact manifold with nonnegative Ricci curvature everywhere. Then
by the Bishop comparison theorem [3], M satisfies condition (VC) for any
p e M with a constant ζ > 0 depending only on n . Using the results in
§§1 and 2, one can prove the following theorem by Li and Yau [25]:

Theorem 3.1. Let Mn be a complete noncompact manifold with non-
negative Ricci curvature. Suppose f™ y1^ < oo, for some point JC0. Then
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M admits a positive Green's function. Moreover, if G(x, y) is the minimal
positive Green's function, then

C(n)-{ Γ -L-dt<G(x9y)<C{n)Γ ψr^dt
Jr(x,y) Vχ\t) Jr(x,y) V

x\
t)

for some constant C{n) > 0 depending only on n .

Before we prove the theorem, we need the following lemma.

Lemma 3.2. Let Mn be as in Theorem 3.1. Let p e M, R > 0,

and GR(x,y) be the positive Green's function on B(R) with Dirichlet

boundary data. For all x, y in dBp(r) with xφy and 0 < r < | , we

have

(3.1) GR{p9x)<CxGR{p9y)9

for some constant C{ depending only on n.
Proof Let x, y, and r be as assumed. Let γ be a minimal geodesic

from x to y. By the triangle inequality, it is easy to see that the length
of γ is not greater than 2r and so y c Bp(3r) c B (R). In particular,

dist (γ, dBp(R)\ > r. Suppose γ Π Bp(%) = 0 . Then by the gradient

estimate in Lemma 1.5, we see that (3.1) is true. Suppose that γnB (%) Φ

0. Let γ{t)eBp($). Then

d(x,γ(t))>d(p,x)-d(p,γ(t))>γ.

Similarly, d(y, γ(ή) > \r. Therefore

d(x9y)>jr.

Let a(s) be a minimal geodesic from p to x. Then for all s

d(y,a(s)) >d(x,y)-d(x,a(s))

>d(x,y)-d(p,x)>-r-r>-r.

Hence applying Lemma 1.5 to the positive harmonic function GR(y, •),

we have

(3.2) GR(y,p)<C2GR(y,x),

where C2 is a constant depending only on n. Similarly, one can prove

that

(3.3) GR(x,y)<C2GR(x,p).

By (3.2), and (3.3) and the fact that GR(x,y) = GR(y, x) for all x and

y, (3.1) is still true in this case.
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Proof of the theorem. Let us first observe that the integral f™ ψjpjdt is
finite for some point x e M implies that the integral is finite for all points
x e M. Let p be a fixed point in M. Since G(x, y) = l i m ^ ^ GR(x, y),
from (3.1) we see that it is true for all xφy in dBp{r) if we replace GR

by G. (Note that (3.1) is obviously true if we assume the theorem is true.)
Since M has a positive Green's function, by Theorem 1.9, f™ ψjηdt <
oo. The splitting theorem of Cheeger and Gromoll implies that M has
only one end. Theorem 3.1 then follows from Lemma 3.2, Theorem 2.4,
and Proposition 2.5.

If M is a complete noncompact manifold which is quasi-isometric to
a manifold with nonnegative Ricci cuvature satisfying the volume growth
condition in Theorem 3.1, then the minimal positive Green's function also
satisfies the estimates in the theorem with constants depending on M.
First noting that Lemma 3.2 is still true by using the Harnack inequality
developed in [14] and [28]. The estimates then follows from Lemma 3.2
and Remark 2.8. By the estimate of heat kernels, these estimates for the
minimal positive Green's function have been obtained independently by
Grigor'yan [14] and Saloff-Coste [28].

The following theorem gives estimates for the Green's function when
the volume growth of the manifold is small.

Theorem 3.3. Let Mn be a complete noncompact manifold with non-
negative Ricci curvature. Suppose ff° y1^ = oo, for some point x0. Let

G(p, x) be a symmetric Green fs function obtained by compact exhaustion.

Then there exist positive constants C3 and C4 depending only on n such

that for all r0 > 0 and r>2r0, the following hold:

(1) For all xφp with x e dBp(r),

- G{p, x) + sup G(p, •)

where r(x) = r is the distance between x and p.
(2) For all x e dMr, where Mr is the union of the unbounded com-

ponents of M\ Bp(r),

rΛx) t

1F7-rdt < -G(p, x) + sup G(p, •).

Proof The first part is just Theorem 2.6(1), noting that in this case,
M satisfies condition (VC) with ζ depending only on n and has at most
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two ends by [6]. Moreover, by [2], the boundary of each component of
M\Bp(r) is connected. Applying Theorem 2.6(2), the maximum principle,
and the fact that G is a Green's function obtained by compact exhaustion,
we have

rr{χ) t

(3.4) C5 / -—dt < sup (-G(p, •)) + sup G(p, .),
Jr0

 V

p\}) dMr dBp(rQ)

for some constant C5 > 0 depending only on n. The maximum princi-

ple asserts that -G(p, •) + sup a 5 ( r } G(p, •) is positive on M \Bp(r0).

Suppose M has only one end. Since r > 2r0, by Lemmas 1.4 and 1.5, we

conclude that

sup(-(?(/?,.))+ sup G(p,.)<CΛ-G(p,x)+ sup

for some constant C6 > 0 depending only on n for all x e dMr. Hence
part two of the theorem is true if M has only one end. If M has two
ends, then by the splitting theorem of [6], M is isometric to RxMr where
M1 is a compact manifold with nonnegative Ricci curvature. By a similar
argument, the theorem is also true in this case.

Next, we will apply the results in §§1 and 2 to give new proofs of the
estimates for the Green's functions on certain kinds of manifolds which
have been studied by Li and Tarn [20] and later generalized by Kasue [16].

Definition 3.4. Let M be a complete noncompact manifold. M is
said to have asymtotically nonnegative sectional curvature if there is a
point p in M and a continuous, nonnegative, and nonincreasing func-
tion λ : [0, oo) -» [0, oo) with /0°° tλ(t)dt < oo, such that the sectional
curvature of M satisfies KM(x) > -λ(r(x)), where r(x) is the distance
from x to p.

Obviously, the definition does not depend on the choice of the point
p. We should remark that the function λ in the definition must satisfy
X(t) = o(l/12). Our aim is to prove that if a manifold with asymptotically
nonnegative sectional curvature has only one end, then M satisfies con-
dition (VC). Let us first recall some of the properties that these manifolds
possess. The following lemma follows from [15], and also from [7] and
[20] for the case that M has nonnegative sectional curvature outside a
compact set.

Lemma 3.5. Let M be a complete noncompact manifold with asymp-
totically nonnegative sectional curvature. Then M has only finitely many
ends. Furthermore dBp(r) Π E is connected for each end E, if r is suffi-
ciently large.
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Proof. See [15].
The next lemma was proved in [1].
Lemma 3.6. Let M be as in Lemma 3.5 and p e M. Then there is a

constant CΊ such that for all r > 0 and 0 < a < 1, Bp(2r) \ Bp(r) can
be covered by k geodesic balls of radius ar with centers in Bp{2r) \ Bp(r),
where k is a constant independent of r.

Proof This is Proposition 1 in §111 of [1].
Lemma 3.7. Let M be as in Lemma 3.5 and p e M. Then

V(2r)-V(r)
liminf pK ' / >0.

Vp(r)

Proof Let Ap(r) be the area of dBp(r). Then Lemma 1 of [16] asserts
that

rA (r)
liminf / > 1,

Γ_>oo vp(r)

so that there is an R > 0 such that if r>R, then

For r > R, we have

log Vp(2r) - log Vp(r) > \ (log(2r) - log(r)).

Hence

and
V(2r) - V(r)

for all r > R. The proof of the lemma is completed.
If M has asymptotically nonnegative sectional curvature, then M has

finitely many ends by Lemma 3.5. Let p e M. Then there is Ro > 0 such
that the number of unbounded components of M \ Bp{R) is the same for
all R> Ro. In the following, an end M is an unbounded component of
M\BJRd

Proposition 3.8. Let M be a complete noncompact manifold with
asymptotically nonnegative sectional curvature. Let E be an end of M,
and let ME be a complete manifold obtained by gluing two copies of E
together. Then M satisfies condition (VC) for some constant ζ.
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Proof. We may assume that M = ME . Let Eχ and E2 be the two ends
of M. Lemma 3.5 asserts that dBp(r)ί)Ei is connected for r sufficiently
large for / = 1, 2. Combining this with Lemma 3.6 and Lemma 3.7, we
see that there exists a constant C8 > 0 independent of r such that for all
r > 0 there is y e dBp(r) with

(3.5) Vp(r)<C,Vy(r/2).

We may assume that y e Eχ. By Lemma 3.5 and Lemma 3.6 again, for
any x e dBp(r) n E{ there is a piecewise smooth curve from x to y
in Bp(3r) \ Bp(%) with length not greater than some constant C9 > 0,
which is independent of x , y, and r. By the curvature assumption, the
Ricci curvature in Bp(3r)\Bp(j) is bounded below by -Cιor~2 for some
constant C 1 0 > 0 independent of r. Hence Lemma 1.3 implies that

(3.6) Vy(r/2)<CuVχ(r/2)

for all x e dBp(r) Γ\E{ and some constant C n > 0 independent of r,
which is sufficiently large. Hence the proposition follows from (3.5), (3.6),
and the definition of ME .

Combining Theorem 1.9, Theorem 2.4, Proposition 2.5, Theorem 2.6,
Lemma 3.5, Proposition 3.8, and the gradient estimate in Lemma 1.5, we
can derive the following results in [20] and [16].

Theorem 3.9. Let M be a complete noncompact manifold with asymp-
totically nonnegative sectional curvature and p e M. Then M admits a
positive Green's function if and only if f™ yjpjdt < oo. Furthermore, if E
is an end of M, and ME is obtained by gluing two copies of E together\
then we have the following estimates:

(1) If Jj00 yjfjdt < oo, and G(p, x) is the minimal positive Green's

function of M, then there is a constant C1 2 > 0 such that

dt - G{p'x) - C I 2 / Γ vmdt'vΊDdt - G{p'x) - C I 2 / Γ Ϊ vm
where r(x) is the distance from x to p

(2) If j?° jrπjdt = oo, and G{p, x) is a Green's function obtained by
P

compact exhaustion. Then for all rQ>0 and r>2r0, there exists
a constant C 1 3 > 0 which is independent of r and rQ such that

ϊ ίX dt ^ °(P*) + sup

9Bp(r0)

dt + sup G(p, ) - inf G(p,-)
9B{2r)
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The above estimates are still true for a manifold which is quasi-isometric
to a manifold satisfying the assumptions of Theorem 3.9. In fact, this was
proved by Sung [29].

4. Space of bounded harmonic functions

Definition 4.1. Let M be a complete noncompact manifold, and let
E be an end of M with respect to some compact set. Let us denote the
volume of the set Bp(r)ΠE by VpE{r).

(1) E is said to be large, if there exists a point p e M such that

/Γ ^ d t < °°
(2) E is said to be small, if f™ v

 (,t,dt = oo for some point p € M.

We say that M has finitely many ends if the number of unbounded
components of M\B (r) is equal to a fixed finite number for all sufficiently
large r. In this case, when we say an end of M we mean an end of M
with respect to B (r) for some large r.

Theorem 4.2. Let M be a complete noncompact manifold of dimen-
sion n, and let p e M. Suppose that the Ricci curvature of M satisfies
Ric(.x) > - ^~1)*2 for some nonnegative constant K, where r(x) is the

distance of x from p. If M has finitely many ends, so that each large
end satisfies condition (VC), then the number of nonparabolic ends is equal
to the number of large ends. In addition, if M has a large end, then the
number of large ends is also equal to the dimension of the space of bounded
harmonic functions with finite Dirichlet integral on M.

Proof Under the assumptions of the theorem, if we apply Theorem
1.9 to each end, then it is easy to see that the number of nonparabolic
ends is equal to the number of large ends. Let ^°{M) be the space of
bounded harmonic functions with finite Dirichlet integral, and / > 1 be
the number of large ends. Recall that Theorem 1.9 and Theorem 2.1 in
[24] imply that

(4.1) / < d i m ^ ° ° ( M ) .

More precisely, if E{, , Eι are the large ends of M, and p e M is a
fixed point, then for each 1 < / < /, there is a bounded harmonic function
yj with finite Dirichlet integral so that

(i) o < y; < l
(2) l i m ^ ^ S.(r, i) = I, where S.(r, i) = s u p ^ ( r ) ft and

(3) l im^^I . ( r 9 j ) = 0, for jφi, where /.(r,' j) = i n f ^ ( r ) f..
(
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On the other hand, Lemma 2.2 implies that if / is a bounded harmonic
function with finite Dirichlet integral, then / is asymptotically constant
at infinity on each large end. Hence there are constants aχ, , aι such
that g = / - Σ/=i ajt is asymptotically 0 at infinity of each large end. If
SUPΛ/ 8 > 0 ' t ^ i e n th e supremum must be attained at some small end. But
that would imply that the small end is nonparabolic, which is impossible.
Hence sup^g = 0. Similarly, we can conclude that infM g - 0 and
therefore g — 0. This shows that

and the theorem follows.
Remark 4.3. It was proved in [24] that if the Ricci curvature of Mn at

x is bounded from below by — λ {r(x)), where λ is a continuous, nonneg-
ative and nonincreasing function on [0, oo) so that /0°° tn~ιλ(t) dt < oo,
then M has finitely many ends.

It is easy to see that if M is a complete manifold, and / is a bounded
harmonic function which is asymptotically constant at infinity, then /
must have finite Dirichlet integral near infinity. Under some additional
assumptions on M, one may show that every bounded harmonic function
must have finite Dirichlet integral.

Lemma 4.4. Let Mn be a complete noncompact manifold with non-
negative Ricci curvature outside a compact set, and let E be an end of
M. Suppose that E satisfies condition (VC) and that there exists a point
p e M such that VpE(r) > Cra for some C > 0, a > 2 + *ff, and all
r > 1. Then every bounded smooth function which is harmonic on E will
be asymptotically constant at infinity of E. In particular, such a function
will have finite Dirichlet integral

Proof Without loss of generality, we may assume that M is obtained
by gluing smoothly of two copies of E together. Since E satisfies (VC),
M also does so. It is easy to see that if E and hence M satisfy the volume
growth and the curvature assumption in the lemma, then the dimension
of M must be at least 3 and that f™ yjηdt < oo. Hence by Theorem 1.9
and Theorem 2.4, M admits a positive Green's function. Let G(x, y) be
the minimal positive Green's function. Then

(4.2) G{p,x)<Cχj™ yjήdt

for some constant Cx and all x e Mr, where Mr is the union of the

unbounded components of M \ Bp(r). Let / be a bounded function so

that Δ/ = 0 on M\ Bp(R) for some R > 1. The gradient estimate
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(Lemma 1.5) implies that |V/|(JC) —• 0 as r(x) -» oo, where r(x) is the
distance of x from p . On the other hand, since M has nonnegative Ricci
curvature outside a compact set, which may be assumed to be Bp(R),

the Bochner formula [Y] asserts that |vy"|(Λ~2)/<Λ~1) is subharmonic on
M\Bp(R) in the sense of distribution. Therefore the maximum principle
yields that

(4.3) \Vf\{n-2)/{n-l)(x)<C2G(p,x)

on M \ Bp{r) for r > R and some constant C2 > 0. By the assumption
on the volume growth of M, (4.2) and (4.3), we conclude that

(4.4) |V/|(JC) < c/
2-aHn-ι)/{n-2) < c3r

β

< c3

for some constants C3 > 0 and β > 1, and for all x in an unbounded

component of M \ Bp{r). Hence for r > R, we have

|V/|2 < / |V/|2

J(M\Mr)\Bp(R)

f%+ί f%
a r JdMr

 ϋ r

/ | / | / |V/|2

Bp(r)\Bp(R) J(M\Mr)\Bp(R)

JdBp{R) u r JdMr

<C4(l+ΓβAp(r)),

for some constant C4 > 0, where A (r) is the area of dBp(r). By the
assumption that M has nonnegative Ricci curvature outside a compact set,
it is not hard to prove that rA(r) < C5Vp(r) for some constant C5 > 0.

Using Lemma 1.6, (4.5) and the fact that |V/| is subharmonic outside
B JR), we obtain

for some constant C6 > 0, all r > 2R and x e ΘBp(r), where we
have used Lemma 1.3 and the fact that M satisfies condition (VC). Since
Vp(r)>Cra,

for some constant C7 > 0. Since a > 2 and β > 1, using Lemma 2.1,
Lemma 1.4, and arguing as in the proof of Lemma 2.2, we conclude that
/ is asymptotically constant.

Theorem 4.5. Let M be a complete noncompact manifold with non-
negative Ricci curvature outside a compact set. Let us assume that M has
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a large end. Suppose that each large end of M satisfies condition (VC)
and the volume growth condition in Lemma 4.4. Then the number of large
ends is equal to the dimension of the space of bounded harmonic functions.
In particular, every bounded harmonic function will have finite Dirichlet
integral

Proof. Use Lemma 4.4, and proceed as in the proof of Theorem 4.2.
We will take this opportunity to point out that if M has small volume

growth, then any bounded function which is harmonic outside a compact
set must have finite Dirichlet integral without any curvature assumption.

Proposition 4.6. Let M be a complete noncompact manifold, such that

Ji°° vΎi) dt = oc, for some point p e M. If f is a bounded smooth function

so that f is harmonic outside Bp{R) for some R > 0, then f has finite

Dirichlet integral

Proof Without loss of generality, we may assume that / > 0. Since

/ is harmonic outside B (R), and f™ yrxdt = oo, we claim that for all

r{> R and for r2 > r{ sufficiently large, we have

(4.6) sup / > inf /.
dBp(r2) dBp{rχ)

If this is not true, then we can find a harmonic function on M \ Bp(R)
bounded between 0 and 1, which is equal to 1 on dBp(R) and has infimum
equal to 0. However, this will imply that M admits a positive Green's
function, which is impossible by Theorem 1.9. For rχ > R, observe that
f2 is subharmonic outside Bp(R). From (4.6) and Corollary 2.4 of [22]
it follows that

for some constant Cg > 0 independent of r2 . Letting r2 —• oo and using
the boundedness of / and f™ yjηdt = oo, we have

JdBίr,] dr

Hence
Δ(/2) < 0

and

fBp(rχ)\Bp(R)I. |v/|2<o,
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where we have used the fact that / is harmonic outside Bp(R). Hence

the proposition follows by letting r{ -> oo.

5. Volume comparison

In this section, we will discuss the validity of condition (VC). As men-
tioned in §3, if M has nonnegative Ricci curvature everywhere, then M
satisfies condition (VC). If M has asymptotically nonnegative sectional
curvature, then each end of M satisfies condition (VC). If we only as-
sume that M has nonnegative Ricci curvature outside a compact set, then
we know M has only finitely many ends; see [24], for example. In that
case, it is still an open question as of whether an end of M will satisfy
condition (VC), even if we assume that M has only one end. However,
using the method in [26], we can prove the following weaker version of
the volume comparison.

Proposition 5.1. Let Mn be a complete Riemannian manifold with
nonnegative Ricci curvature outside Bp{\). Then there exists a constant
Cj > 1 depending only on M such that for all R> 0, there exists a point
x e dBp(R) satisfying

Vp(R)<CχVχ(R/5).

Proof It is sufficient to prove the theorem for R large. Following the
argument in [26], let us divide dB (2) into m subsets {U{, ••• , Um}
such that diam(C/z) < 2. Let K. be the set of points x outside Bp(2)
such that x lies on some minimal geodesic emanating from p that in-
tersects Ui. For x and y in K., the triangle inequality implies that
any minimal geodesic from x to y will not meet Bp{\) . Let us assume
that Kχ, , K{ are unbounded and that Kι+χ, , Km are bounded.
There exists Ro > 2 such that for any R> Ro, there is / + 1 < iR < m

such that the volume of (κiR ΠBp(R)\ is larger than j^Vp(R). Since

K. is unbounded, there exists x e Ki n dBp{R). Moreover, because ev-

ery minimal geodesic from x to any point in Ki n Bp(R) does not meet

Bp(l), and M has nonnegative Ricci curvature outside B (I), the Bishop

comparison theorem (see [8]) implies that

( f ) > C2Yol(KiRΠBp(R)) > ^

where C2 > 0 is a constant depending only on n. This completes the
proof of the proposition.

The following theorem was proved by Cai, Colding, and Yang [5].
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Theorem (Cai-Colding-Yang). For any integer n>2, there exists e(n)
> 0 depending only on n such that if M is a complete noncompact mani-
fold of dimension n with Ricci curvature bounded from below by -(n-l)A2

for some A > 0, and with nonnegative Ricci curvature outside B (a) for
some point p e M. If Aa < e(n), then M has at most two ends.

In the rest of this section, we would like to study the volume comparison
property on this category of manifolds. First, let us recall a lemma in [5]
and a lemma in [4].

Lemma 5.2. Let Mn be a complete noncompact Riemannian manifold
with Ricci curvature bounded from below by -{n - 1). Then there exists
two constants e = e(n) > 0 and 1 > δ = δ(n) > 0 depending only on n,
such that if u is a function on M with the following properties:

(1) u(p) = 0;
(2) u>-2e;
(3) \Vu\<2;and
(4) Au < 2(n — 1) in the barrier sense,

then u(x) < 2(1 - δ) - 4e for all x e dBp{{\ - δ)).

Proof This is Lemma 2.3 in [5].
Lemma 5.3. Let Mn be a complete manifold with nonnegative Ricci

curvature outside Bp(a) for some point p and a > 0. Then M cannot
admit a line γ parametized by arclength so that

d(y{t),Bp(a))>\t\

Proof This is Lemma 3.3 in [4].
Using the method of proof as in Proposition 2.2 of [4] and the theorem

in [5], one can prove the following lemma.
Lemma 5.4. Let Mn be a complete manifold with Ricci curvature

bounded from below by -(n - 1) and has nonnegative Ricci curvature on
M\B (f) for some point p. Suppose that a< \e, where e(n) is the con-
stant in Lemma 5.2. Let 0 < η < ^ be a fixed constant and let K be any
compact set. Then there exists t0 > 0 such that for all t > t0 and any three
points xy y, and z in Bp((l + η)t)\Bp((l -η)t), ifotχy, oιyz,andazχ

are minimal geodesies from x to y, y to z, and z to x, respectively,
then at least one of the minimal geodesies will NOT intersect K.

Proof. We may assume that K = B (R) for some R > 0, and will
prove the lemma by contradiction. Suppose that there exist tk —> oo, xk ,
yk , zk in Bp((l + η)tk) \ Bp{(l - η)tk), and minimal geodesies aχ^ ,
α , and aZΛ from xk to yk, yk to zk, and zk to xk respectively,
such that each of them intersects Bp(R). Let γ ι k , γ2k, and y3 k be
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minimal geodesies from p to xk, yk, and zk respectively. Passing to
subsequences, we may assume that yx k —> yx, y2k -> y2, and yik —» y3

for some rays γt, 1 < / < 3, emanating from p. The convergence is
uniform on compact subsets of M. We claim that

(5.1) , , , 2 , 2

for all s,, 52 > 0, and 1 < i < j < 3. Let us prove that

for all ί j , s2 > 0, and the remaining cases are similar. Let us denote aχ y

by ak , and let lk be its length. Let r(x) to be the distance from a point
x t o p . Suppose

d(γι(sι),γ2{s2))<sι+s2-6a,

for some sx, s2 > 0. Then for all k sufficiently large,

Hence

lk = d(xk,yk)

(5.2) ~ (xk>yι,k(si>r
< r(xk) - j , + ί, + s2 - 6a + r{yk) - s2

= r(xk) + r(yk) - 6a.

Let mk be a point on ak such that

(5-3) r{xk)d{mk, yk) = r{yk) d(mk , xk).

Let pk e ak Π βp(/?) which is nonempty by assumption. Without loss of
generality, we may assume that d(pk, yk) < d{mk, yk). Then

dip, mk) < dip, pk) + dipk , mk)

<R + dimk,yk)-dipk,yk)

<R + dimk,yk)-riyk) + R

(*A \ = i ryk\ A-r(yk) + 2R

( 5 4 ) riχ.) + riy.) k x'k>

= 2R- 6 a ; r ^
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where we have used the fact that d(pk, yk) < d(mk, yk), (5.2), and (5.3).
Since xk and yk are in Bp((l + η)tk) \ Bp((l - η)tk) and 0 < η < \ , we
have

( 5 5) r{yk) > l ~ η > l-
K ' ' r ( x k ) + r(yk) - 2 ( 1 + η)~3
Combining this with (5.4) and (5.5), we conclude

dip, mk) <2R- 6 ^ ~ ^ <2R- 2a.

In particular, mk e Bp(2R). We may reparametrized ak with arclength,
so that ak(0) = mk, a(-d(mk, xk)) = ak(xk), and a(d(mk,yk)) =
θίk{yk). Note that d(mk, xk) -* CXD and d(mk, yk) —• oc . Without loss
of generality, we may assume that ak converges to a line γ in M. For
any s > 0, and for k sufficiently large

d{p, ak(s)) > d{p, yk) - d(yk, ak{s))

= r(yk)-d(mk,yk)+s

where we have used (5.2) and (5.5). Hence by letting k -> oo , we have

(5.6)

for 5 > 0. Similarly, one can prove that (5.6) is true for s < 0. Since
γ is a line, and M has nonnegative Ricci curvature outside 2? (§), (5.6)
contradicts Lemma 5.3. Hence (5.1) is true.

Let us now consider the Busemann functions

bi(x)=lim(d(γi(t),x)-t),

for i = 1, 2 and X G M . Let w = ̂  + &2 . Then

(1) u(p) = 0;
(2) u>-2e\
(3) |Vw|<2;
(4) Δw < 2(n - 1), in the barrier sense.
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Properties (1) and (3) are obvious. Property (4) is derived from the fact
that the Ricci curvature is bounded from below by -{n - 1) (see [12]),
and property (2) is derived from (5.1) and the assumption that a < § .
Lemma 5.2 now implies that

u(x) < 2{l - δ) - 4e

for all x G dBMl - δ))9 where δ is the constant in Lemma 5.2 that
depends only on n . In particular,

(5.7) u(γ3(l-δ))<2(l-δ)-4e.

However, by (5.1) again,

>2t + 2{l-δ)-l2a-2t>2(l-δ)-4e,

where we have used the assumption that a <\e. So

U(γ3(l-δ))>2(l-δ)-4e,

which contradicts (5.7). Hence the lemma is true.
Proposition 5.5. Let Mn be a complete manifold with Ricci curvature

bounded from below by —{n - 1) and has nonnegative Ricci curvature on
M\Bp(a) for some point p. Suppose that a < ^c(w), where e(n) is the
constant in Lemma 5.2. If M has two ends, then each end of M satisfies
condition (VC).

Proof Let RQ > 0 so that M \B (RQ) has exactly two unbounded
components E{ and E2 . We would like to prove that there exists R{, such
that for all x, y e E.\B (Rχ), any minimal geodesic from x to y will
not intersect B (a) for each i = 1, 2. Let us assume the contrary. Then
there exist xk, yk e Eχ, and a minimal geodesic ak from xk to yk so
that l i m ^ ^ d(p, xk) = oo , l i m ^ ^ d(p ,yk) = oo, and ak ΠBp(a)^0.
We may assume that ak converges to a line γ so that γ n B (a) Φ 0 .
Let q be a point in γ n B (a). We may assume that y(0) = q and γ is
parametrized by arclength. Let γχ(t) = y{t) for t > 0 and γ2(t) — γ{-t)
for t < 0. Then yt and y2 are rays from q. Let y3 be a ray from #
which will be in E2 for sufficiently large t. By construction, it is easy to
see that if t is large, then there are minimal geodesies from y.(t) to y .(ί)
for any 1 < i < j < 3, so that they all intersect Bp(RQ). Since B (a) c
Bq(2a) and a < -^e , this contradicts Lemma 5.4. The proposition then
follows from the volume comparison theory in [8], the fact that M has
nonnegative Ricci curvature outside B (a) and Proposition 5.1.
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In case M has only one end, we have a weaker result. Let us first prove
a simple lemma.

Lemma 5.6. Let Mn be a complete manifold with Ricci curvature
bounded from below by -{n-\) and has nonnegative Ricci curvature out-
side Bp(a) for some point p. Suppose a < \t{ή), where e(n) is the con-
stant in Lemma 5.2. Then there exists a constant C3 > 1 depending only
on n, and there exists t0 such that for all t > tQ and x, y, z edBp(t),
we have either

/

(2) C;ι<Vyφ/vzφ<C3; or

0) c;ι<vzφ/vxφ<c3.
Proof Let t0 be the number in Lemma 5.4 with η = ^, and K =

Bp(a). Let t > t0, and x, y, z e dBp(t). Without loss of generality,

we may assume that Vz{%) > Vy{{) > Vχ(±). Suppose for all y e By(±),

there exists a minimal geodesic from i to / , which does not intersect

Bp(a). Then by the Bishop comparison theorem, we have

: (i)"
and hence

11".

Suppose there exist yx e By(±) and a minimal geodesic from x to y{ so

that it intersects Bp(a). Then by Lemma 5.4, for all Z ' G 5 Z ( | ) , there is

a minimal geodesic from x to z or a minimal geodesic from yχ to z ,

which does not intersect Bp(a). Again the Bishop comparison theorem

implies that

(5.9) < , , . 2

<2 22V,(0,

where we have used the facts that Vχ(±) < Vy(±) and yχ e By(±). Since

Vz{{) > K(i) 9 combining it with (5.8) shows that the lemma is valid for

C3 = 2 22" .
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Proposition 5.7. Let Mn be a complete manifold with Ricci curvature
bounded from below by -(n - 1) and has nonnegative Ricci curvature on
M\Bp(a) for some point p. Suppose a < \e{n), where e(n) is the
constant in Lemma 5.2. If M has only one end, then there exist a constant
C4 > 0 and a sequence rk —• oo such that for all x GdBp(rk), we have

Proof Let C3 and t0 be the constants in Lemma 5.6, and let C{ be
the constant in Proposition 5.1 for M. Suppose for all t sufficiently large
and for x e dBp(t) we have

C~x C~XV (tλ < V

Then we are done. Otherwise, there is a sequence tk -> oo and xk e
dBp(tk) such that

for all k . By Proposition 5.1, there exists yk e dBp(tk) such that

for all k. Since M has only one end, passing to a subsequence if nec-

essary, we may assume that xk and yk are both in the unbounded com-

ponent of M\Έp{Rk) for some Rk < tk and Rk —• oo. For each k

there is a continuous curve σk(s), for 0 < s < /, such that σfc(0) = xk ,

<7fc(/) = yk, and σjs) G M\Bp(Rk) for all 5. Let φ ) = d(p, σk{s))

and let Vs be the volume of Bσ ,Λr-ψ). It is easy to see that Vs is a

continuous function of 5 . Let us define

which is an open set in the interval [0, /] since Vs and Vp(r(s)) are
continuous in s. Inequality (5.10) asserts that 0 e A. Let s* be the
supremum of s such that [0, s) c A . Then 0 < s* < I by (5.11) and the
fact that C3 > 1. Clearly, from the definition of A, we have

(5.12) ^ = 5CΓ1C3"Vp(r(O)-
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Let us set rk = r(s*). Proposition 5.1 implies that there is a point y €
dBp{rk) such that

(5-13)

By (5.12) and (5.13), we have

Hence from Lemma 5.6 and (5.11) it follows that, for all x e dBp(rk),

which completes the proof of the proposition.
We would like to mention that it is still unclear that whether Proposi-

tion 5.7 is true for all r rather than for a sequence of rk -> oo . It is also
not known that whether a complete noncompact manifold with nonnega-
tive Ricci curvature outside a compact set with only one end will satisfy
condition (VC).

6. Nonnegatively curved manifolds with finite first Betti number

In this section, we will consider complete noncompact manifolds with
nonnegative Ricci curvature outside a compact set which has finite first
Betti number. We will show that for this kind of manifolds, condition
(VC) is satisfied by each end, and that Theorem 1.9 is valid and the results
in [20] can be carried over to this case. Let us first begin with a lemma.

Lemma 6.1. Let M be a complete manifold with k ends. Suppose that
the first Betti number bx(M) of M is finite. For R > 0 sufficiently large,
and for r > 0, let Ap{R, R + r) denote the annulus Bp(R + r) \Bp(R)9

and let MR be the union of all the unbounded components of M\ Bp(R).
Then Ap(R, R + r)n MR has exactly k connected components.

Proof Let {[y{], ••• , [γb]} be a set of basis for Hχ(M), where b =
bχ(M). By finiteness, there exists i?0 sufficiently large such that γ. c
Bp(R0) for all 1 < i < b. In particular, any element [γ] e HX(M) can be

represented in the form Y^ aiyi c B (RQ). Since k is the number of ends
of M, there exists R{ such that for R> R{, M\Bp(R) has exactly k
unbounded components. We claim that if we choose R > max{i?0, Rχ} ,
then Ap(R, R + r)Γ\MR has exactly k components. Let U be the union
of B (R + r) and the bounded components of M \ B (R). Then U is
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connected and MR has exactly k components. Moreover, M = MR U U
Let us consider the Mayer-Vietoris sequence

Hχ{U)®Hχ{MR) ± Hχ(M) Λ HO(UΠMR)

Since all the reprsentatives of Hχ (M) lie inside U, the map j \ is surjec-
tive. The map j'l is obviously also surjective. Since U is connected and
MR has exactly k components, we have the exact sequence

k+\

0 -> H0(U Π MR) -> Z θ θ Z -> Z -> 0.

Hence HQ(U Π MR) is isomorphic to the kernel of the surjective map

Z φ " φ Z y —> Z , which is easily seen to be Z θ θ Z . Hence

k+l k

Ap(R, R + r) = U Π MR has exactly k components.
Corollary 6.2, L ^ M be a complete noncompact manifold with non-

negative Ricci curvature outside a compact set and let p be a fixed point.
Suppose bχ (M) is finite. Given an end E, there exists a constant C > 0
such that for any R sufficiently large, we have

VpE(R)<CVχ(R/5),

for all x e dBp(R)nΈ^, where VpE(R) is the volume of Bp(R)nE, and

ER is the unbounded component of E n (M \ B (R)).
Proof Let us first observe that Theorem 3.1 of [24] asserts that M has

finitely many ends. Hence the statement of the corollary is meaningful.
Since the statement of the corollary is localized at an end E, we may
assume that M is obtained by gluing two copies of E together. Let us
also assume that M \ Bp(a) has nonnegative Ricci curvature for some
point p e M and some a > 0. By the proof of Proposition 5.1, it is easy
to see that there is a constant C such that for all R > 0 there exists a
point x e dBp(R) n MR/2 , so that

Vp(R)<CVχ{R/5),

where MR/2 is the union of the unbounded components of M\Bp(*).
Since the ends are symmetric, the existence of such a point occurs at both
ends. For the sake of convenience, let us just denote a fixed end by E. To
prove the corollary, it suffices to show that there exists a constant C > 0
such that for all y e Bp(R) n MR,2 we have

Vχ(R/5) < CVy(R/5).
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The ball covering theorem of [26] asserts that the set B (R) Π MR,2 and

hence dB (R) Π Έ^ can be covered by N number of balls B'(*) with

centers y. € B (R) Π MR , where N depends only on the lower bound

of the Ricci curvature of Bp(a) and a. The fact that {By(%)} covers

dBp{R)KEΓR implies that y. £ Bp(f). '

Let us first consider two balls By (f) and B (f) such that By (f) n

B (£) φ 0 . Clearly, any geodesic joining y. to a point in B (f) must

have length at most ψ , and therefore will not intersect Bp(a) for i? >
5a, Thus the Bishop comparison theorem implies that

Vyj{R/5)<CVyι(R/5).

By Lemma 6.1, the set dBp(R)nΈ^ is connected. Therefore \J.By\j) is

connected. Since the volume of any two adjacent balls can be compared,

this shows that

Vyj(R/5)<CNVyt{R/5)

for all y • and yk , and hence the corollary is proved.
We are now ready to prove some estimates on the Green's function

which are similar to those in Theorem 1.9. Since the condition (VC) is
valid only for those x e E n {M \ Bp(R)), the estimate is only valid for
those points also.

Theorem 6.3. Let M be a complete noncompact manifold with non-
negative Ricci curvature outside a compact set. Suppose that the first Betti
number b{(M) of M is finite. Then the following hold:

(1) Let E be an end of M and let ME be a manifold obtained by
gluing two copies of E together. If GE(x, y) is a Green's function
obtained by compact exhaustion, then there is a constant C such
that for all r> ro>O and x GEΠ(M\ Bp(R)) we have

-GE{p, x) + sup GE(p, •)

< C I τ . , .dt+ sup GF(p, •) - inf GF(p, •) .
" \Jr0 Vp(t) dBp{ro)

 EK

 dBp(2r0)
 E^ J)

(2) M has a positive Green's function if and only if

—dt < oo.ί'1

In particular, E is nonparabolic if and only if E is large.
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The following theorem can be considered as a generalization of the
results in [20].

Theorem 6.4. Let M be a complete noncompact manifold with non-
negative Ricci curvature outside a compact set. Suppose bχ (M) is finite.
Let I be the number of large ends, and s be the number of small ends.
Then

and

If we further assume that l>\, then

s + l = dim JF°(M).

and
I =

Here we let <%*°(M) be the vector space spanned by those harmonic func-
tions which are bounded on one side at each end with respect to some com-
pact set, %?* (M) be the vector space spanned by the positive harmonic func-
tions, ^°°{M) be the space of bounded harmonic functions, and %£°(M)
be the space of bounded harmonic functions with finite Dirichlet integral.

Proof Theorem 6.3 asserts that an end is large if and only if it is
nonparabolic. Using Lemma 6.1 and the fact that M has nonnegative
Ricci curvature outside a compact set, one can prove as in [20] that if /
is a positive harmonic function defined on an end Er, then

sup/<Cinf/.
dE2r dE2r

From this Harnack-type inequality it follows that if / is a positive har-
monic function defined on E, then for any sequence x. —> oo such that
xt e dEriχ), we have

(6.1) lim/(*.) = α
/-•oo '

for some 0 < a < oo . We claim that this is sufficient for showing that

lim f(x) = a.
xEE

In fact, let x. -*> oo be a sequence of points such that x. φ dEr{χ.y

The fact that E is a single end implies that there exists Rt —• oo such

that xi e ER . Without loss of generality, we may assume that R. be the

largest value such that xi e ER . Clearly, x. is contained in a bounded

component of ER \ dER . By the maximum principle, we obtain
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inf/</(*,)< sup/.
Ri ERt

On the other hand, (6.1) asserts that both the upper bound and the lower
bound tend to a. This confirms the claim. For R > 0, let us de-
fine B (R) to be the union of B (R) and the bounded components of
M \ Bp(R). Let us also denote an unbounded components of
M \ Bp{R) by ER . Suppose / is a bounded harmonic function on M.
Then (see [20] and [24]) there exist R. -> oo and harmonic functions f.
on Bp(Rt) with f. being constant on ER πdBp(R.) for each ER , and
/ = lim.^^ fr It is easy to see [24] that fi has bounded Dirichlet integral.
Hence the first equality of the theorem is true. Using the same argument
as in [20] and [30], one can prove that if E is an end, and / and g are
positive harmonic functions on E so that /' = g = 0 on dE, then / is
a multiple of g. Together with the results in [24], one can now proceed
as in [20] and [30], and the theorem follows.

By the Harnack inequality in [14] and [28], it is easy to see that for a
complete manifold which is quasi-isometric to a manifold satisfying the
assumptions of Theorem 6.4, the results of the theorem are still true.
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