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ETA INVARIANTS AND MANIFOLDS
WITH BOUNDARY

WERNER MULLER

0. Introduction

Let M be a compact oriented Riemannian manifold of dimension n,
and let S be a Hermitian vector bundle over M. Let D: C°°(M, S) ->
C°°(M, 5) be a first-order elliptic differential operator on M which is
formally selfadjoint with respect to the natural inner product defined by
the fibre metric of S and the metric of M. For the moment suppose that
M has no boundary. Then D is essentially selfadjoint in L2(M, S),
and the eta invariant is a nonlocal spectral invariant of D, which was
introduced by Atiyah, Patodi, and Singer [1]. Let us recall the definition
of the invariant. Let λ run over the eigenvalues of D. Then the eta
function of D is defined as

„ , signΛ
(0.1) η(S9D) = \2J?-L9 Rφ)>n.

The series is absolutely convergent in the half-plane Re(s) > n and admits
a meromorphic continuation to the whole complex plane. The analytic
continuation is based on the following alternative expression for the eta
function

It is a nontrivial result that η(s, D) is regular at s = 0 [3], [13]. Then the
eta invariant is defined to be η(0, D). The eta invariant is a measure of
the spectral asymmetry of D. It arises naturally as the boundary correction
term in the index theorem for manifolds with boundary proved by Atiyah,
Patodi, and Singer [1]. We note that this index theorem can be recovered
in many different ways. For example, one may glue a half-cylinder or a
cone to the boundary of the manifold in question and work in the In-
setting [7], [22], [23]. This means that the spectral boundary conditions
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used in [1] are replaced by the L2-conditions. It turns out that the L2-
index of the naturally extended operator is closely related to the index of
the original boundary value problem.

In this paper we shall study eta invariants for manifolds with boundary.
Thus, we assume that M has a nonempty boundary Y. There are various
possibilities to define eta invariants for manifolds with boundary. One way
is to introduce boundary conditions. In [14], Gilkey and Smith have stud-
ied eta invariants for a certain restricted class of elliptic boundary value
problems. Ttie associated closed extensions are, in general, nonselfadjoint.
For first order operators, however, there exists a natural choice of bound-
ary conditions which gives rise to a selfadjoint extension. These are the
spectral boundary conditions of [1]. For compatible Dirac-type operators
this approach was used [11].

Instead of imposing boundary conditions one may, for example, glue
a cone or a half-cylinder to the boundary of M, and consider the cor-
responding eta invariant in the iΛsetting. This may be also viewed as
a global boundary condition. Eta invariants for manifolds with conical
singularities were studied by Cheeger [7], [8] for the operator associated to
the signature operator and by Bismut and Cheeger [5] for Dirac operators.
In this paper, we shall consider the case where a half-cylinder is attached
to the boundary.

We suppose that the Riemannian metric of M is a product in a neigh-
borhood / x Y of the boundary. Furthermore, we assume that, in this
neighborhood, D takes the form

(0.3) D = γ(d/du + A),

where γ and A satisfy conditions (1.2), (1.3). In particular, A is sym-
metric. Then we introduce spectral boundary conditions as in [1], and use
the negative spectral projection Π_ of A. If Ker.4 Φ {0}, the corre-
sponding extension of D is not selfadjoint. In this case we proceed as in
[11, p. 162] and pick a unitary involution σ: KQTA -» Ker̂ 4 such that
σγ = -γσ . Under the given assumptions, such an involution always exists.
Let P_ denote the orthogonal projection onto Ker(σ + Id). The bound-
ary conditions are then defined by (Π_ + P_){φ\Y) = 0, φ e C°°(M, S).
The associated closed extension Dσ is selfadjoint and has pure point spec-
trum. A similar phenomena occurs also in the case of conical singularities
[7], [8]. One has to impose ideal boundary conditions which correspond
exactly to the choice of a Lagrangian subspace of Ker^ί. In this context,
Cheeger was the first to consider these types of boundary conditions.
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In § 1 we study more closely the spectrum of Dσ , which has essentially
the same formal properties as the spectrum of D on a closed manifold. In
particular, WeyΓs law holds for the counting function of the eigenvalues
λj of Dσ , that is,

MI 2 in i ^ n yol(M) n
1 ; J (4π)Λ / 2Γ(w/2+l)

as λ —> 00 (Corollary 1.22). This enables us to introduce the eta func-
tion η(s, Dσ) by the same formula (0.1). The study of the heat equation
implies in the same way as in the closed case that η(s, Dσ) has a meromor-
phic continuation to the whole complex plane. The case of a compatible
Dirac type operator (cf. §1 for the definition) was treated in [11]. In this
case η(s, Dσ) is regular in the half-plane Re(s) > - 1 . In particular, the
eta invariant of Dσ is given by

η(0, Dσ) = -L

The question of regularity of η(s, Dσ) at s = 0 is not completely an-
swered in this paper. In §2 we study the behavior of the eta invariant
under variations which stay constant near the boundary. It follows that,
for such variations, the residue is a homotopy invariant. This implies, in
particular, that η(s, Dσ) is regular at s = 0 for all Dirac-type operators.
We also investigate the dependence of the eta invariant on the choice of
the unitary involution σ. If σ0, σχ are two unitary involutions of Ker ̂ 4
anticommuting with γ, then we show in Theorem 2.21 that

ι/(0, Dσι) - ι/(0, DσQ) = - ^ l o g d e t ^ σ J K e r ^ - /)) modZ.

This result was proved independently by Lesch and Wojciechowski [21].
In analogy with the closed case one may expect that eta invariants for

manifolds with boundary shall arise as boundary correction terms in an
index theorem for manifolds with corners. We do not know yet if there
exists an appropriate boundary value problem for a manifold with corners
generalizing the APS (i.e., Atiyah-Patodi-Singer) boundary conditions in
the case of a smooth boundary. One may, however, use the L2 approach
to derive such an index formula. For this purpose we need to study eta
invariants within the L2-framework. This means that we enlarge M by
gluing the half-cylinder R+ x Y to the boundary Y of M. If we equip
R + x 7 with the product metric, then the resulting manifold Z becomes a
complete Riemannian manifold. The operator D has a natural extension
to Z, and its closure in L2 will be denoted by 3 . It is easy to see that
3 is selfadjoint. Since 3 has a nontrivial continuous spectrum, the eta
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invariant of 3 cannot be defined in the same way as for Dσ. Instead
we consider the kernel E(x, y,t) of 3exp-t&2 . In §3 we study this
kernel and prove that trE(x, x9 t) is absolutely integrable on Z. The

integral fz tτE(x 9x,t)dx will be the substitute for Ίv(De~tDl) in (0.2).
It has also an interpretation as relative trace. Namely, consider Do =
γ(d/du+A) as operator in C°°(R+ x Y, S). We impose spectral boundary
conditions at the bottom of the cylinder. The corresponding closure 30

is selfadjoint. Moreover, for t > 0, 3 exp -t2J2 - &0 exp -t3% is of the
trace class and the following relative trace formula holds:

(0.4) Ίτ(3e'^2 -30e'^) = ί trE(x,x,t)dx.

In order to be able to define the eta function of 3 using (0.4), we have to
study the asymptotic behavior of (0.4) as t -» 0 and t —• oo. The small
time asymptotic behavior follows essentially from the corresponding local
heat expansion on a closed manifold and the explicit description of the
heat kernel of the cylinder. To obtain the large time asymptotic we need
some results about the spectral decomposition of 3 which we recall in
§4. To study the continuous spectrum we may regard 3 as a perturbation
of 30 and apply standard techniques of scattering theory. It follows that
the wave operators W±(3, 3Q) (cf. (4.8) for their definition) exist and
are complete. Thus, the absolutely continuous part of 3 is unitarily
equivalent to &0. Moreover, the scattering operator C = JV* o W_ is
well defined. Let C(λ), λ e R, be the corresponding scattering matrix
determined by the spectral decomposition of C with respect to the spectral
measure of &Q. Let μ. run over the eigenvalues of A and denote the
μ^-eigenspace of A by l?(μ ). For λ eR, C(λ) is a unitary operator in
0 2<A2 ̂ (//.•). Let μλ > 0 be the smallest positive eigenvalue of A. If
\λ\ < μx, then C(λ) acts in Ker̂ 4 . It admits an analytic continuation to a
meromorphic function of λ € Σλ = C-((-oo, -μι]U[μι, oo)) with values
in the linear operators in Ker^4. Moreover, C(λ) satisfies the functional
equation

(0.5) C(-λ)C(λ) = Id, γC(λ) = -C(λ)γ, λ e Σv

In §5 we determine the large time asymptotic behavior of (0.4). The main
result is Corollary 5.16 which states that

(0.6) (
Jz

= ~ Γ λe~a2 ττ(γC(-λ)C'(λ)) dλ + 0{e~ct)
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for t > 1, which C'{z) = (d/dz)C(z). In fact, we expect a more general
formula to be true. Observe that the scattering matrix C(λ) is real analytic
at all real points λ which do not belong to Spec(v4). Denote by C\λ) the
derivative of C(λ) at λ φ Spec(Λ). We claim that the following relative
trace formula holds:

= Σ V~*' - ^I™λe~tλ2Ίr{yC{-λ)C\λ))dλ,
λj

where the λ s are running over the eigenvalues of 2J. Formula (0.6)
would then be an immediate consequence of this trace formula. Since
C(λ) is analytic, this formula leads to an asymptotic expansion of
fztτE(x, x, t)dx as t —• oo. The coefficients of this expansion are
determined by the scattering matrix, and are nonlocal in contrast to the
coefficients occurring in the asymptotic expansion for t —> 0.

Based on these results, we introduce the eta function η(s, 2J) in §6. If
D is a compatible Dirac type operator, then η(s, 2) is regular at s = 0
and the eta invariant is given by

(0.7) η(0, &) = -!= Γ1/2 / trE(x,x,t)dxdt.
Vπ Jo Jz

One of our main goals is to compare the two types of eta invariants studied
in this paper. First note that, by (0.5), τ = C(0) is a unitary involution
of KerΛ, which anticommutes with γ. In particular, we may use τ
to define the boundary conditions for D. There is also an equivalent
description in terms of Lagrangian subspaces of Ker^4. Observe that

has a natural symplectic structure defined by Φ(x, y) = (γx, y)
2where (x, y) denotes the L2 inner product of x, y € KerΛ . Then L =

Ker(C(0)-Id) is a Lagrangian subspace, that is, it satisfies LφγL = KerA
and Φ(L, L) = 0. Furthermore, given φ e KerA, there is associated a
generalized eigensection E(φ,λ) of D (cf. §4). If φ e L, then φ =
jE(φ, 0) satisfies Dφ = 0 and, on R+ x Y, it has the form φ + ψ where
ψ is square integrable. In particular, φ Φ 0. In other words, φ is the
limiting value of an extended zΛsolution of Dφ = 0 in the sense of [1].
It follows from Lemma 8.5 that L is precisely the subspace of all limiting
values of extended solutions. Thus, the continuous spectrum of 3 gives
rise to a distinguished choice of an involution σ of Ker^4—the on-shell
scattering matrix C(0)—or, equivalently, to a distinguished Lagrangian
subspace of Ker^4. Our main result can then be stated as follows.
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Theorem 0.1. Let D: C°°(M, S)-+C°°(M, S) be a compatibleDirac-
type operator which on a neighborhood I x Y of Y, takes the form (0.3).
Let C(λ): KQTA -• Ker^4 be the associated scattering matrix in the range
\λ\ < μχ and put τ = C(0). Then we have

In part II we shall employ this formula to prove a splitting formula for
eta invariants.

To prove Theorem 0.1, we pick a > 0 and consider the manifold
Mfl = M U ( [ 0 , f l ] x 7 ) . The operator D has a natural extension D(a) to
a compatible Dirac-type operator on Ma . It follows from the variational
formulas of §2 that η(0, D{a)τ) is independent of a. Therefore, it is suf-
ficient to show that I m ^ ^ η(0, D(a)τ) = η(093). To establish this re-
sult, we follow partially the approach used by Douglas and Wojciechowski
[11]. Namely, we start out with formula (0.2) and split the integral as
Jo + Jv5 I n §7 we prove that, as a —• oo, the first integral converges to

ι/(0, 3). To deal with the second integral, we write Ίr(D(a)τe~tD{a)χ) as
Sx(a, t) + S2(a91) where Sx is the contribution to the trace given by all
eigenvalues λ(a) satisfying \λ(a)\ > a~κ for some 0 < K < 1. Then it
is easy to see that f^Sχ(a, t)dt tends to zero as a -> oo . It remains to
study the behavior of f^S2(a, t)dt as a —> oo. This is done in §8. If
KerΛ = {0}, then the continuous spectrum of 3f has a gap at 0 which
implies that the nonzero eigenvalues of D(a)n stay bounded away from
zero and the proof is finished. This case was studied in [11]. The difficult
part is the case where KerΛ φ {0} . Then the continuous spectrum of 3
has no gap at zero, and eigenvalues of D(a)τ will cluster at zero if a -> oo.
The crux of the argument is to show that the nonzero spectrum of D(a)τ

becomes asymptotically symmetric near zero, and therefore cancels out in
the limit a -+ oo. Let φ Φ 0 be an eigensection of D(a)τ with eigenvalue
λ. Then on [0, a]x Y y φ takes the following form

—iλu iλu

φ = e ψ+ + e ψ_ + φ { ,
where ψ± e KerΛ, γψ± = ±iψ±, and φx(u9 •) is orthogonal to Ker^4
for each u e [0, a]. We call

—iλu iλu

<P0 = e ψ+ + e ψ_
the constant term of φ. In Proposition 8.14 we show that there exist
a0, δ > 0 such that, for a > a0 and 0 < |Λ| < δ, the constant term
of φ is nonzero. Thus, the eigensections of D(a)τ with sufficiently small
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nonzero eigenvalues are determined by their constant terms. We continue
to investigate the properties of the constant terms. Write ψ+ as ψ+ =
φ - iγφ where φ e ker(C(0) - Id). Associated to φ there is a generalized
eigensection E(φ, z) of 3 with eigenvalue z e R. The main observation
is that the constant term of φ differs from the constant term of E(φ, λ) by
a term whose norm is exponentially small as a —• oo. The constant term
of E(φ, λ) has the form e~iλuψ+ + eiλuC{λ)ψ+ . Therefore, the constant
term of φ satisfies

(0.8) \\ψ_-C(λ)ψJ<e-ca, α>α0.

Let L_ = Ker(C(0) + Id) and denote by P_ the orthogonal projection of
Ker^i onto L_ . Let / : L_ —> Ker(y - /) be defined by I{φ) = φ - iγφ.
Then we consider the linear operator

S(λ) = P_ o C{λ) o /

acting in L_ . It follows from (0.8) that det(e2/zf lS(z) + Id), considered

as a function of z , has a real zero p such that \p — λ\ < e~ca . Moreover,

the multiplicity of the eigenvalue λ can be estimated by the multiplicity of

p. Then we study more closely the real zeros of det(e2ιzaS(z) + Id) near

z = 0. The final result, Theorem 8.32, shows that, up to exponentially

small terms, we may replace the small eigenvalues by the real zeros of

άet(e2izaS(z) + Id) near z = 0. Since S(λ) satisfies

S(-λ)S{λ) = Id+O(λ2), \λ\<e,

it follows then that the nonzero spectrum of D(a)τ is indeed asymptoti-
cally symmetric near zero.

1. Eta invariants for manifolds with boundary

Let M be a compact oriented C°° Riemannian manifold of dimension
n with smooth boundary dM= Y. We shall assume that the Riemannian
metric of M is a product near the boundary.

Let S —• M be a complex vector bundle over M equipped with a
Hermitian fiber metric which is also a product near the boundary. Let
C°°(M, S) denote the space of smooth sections of S and C0°°(M, S)
the subspace of C°°(M, S) consisting of all sections with support con-
tained in the interior of M. Given s, s' e C°°{M, S), let (s, s) denote
the inner product of s, s' defined by the fiber metric of S and the Rie-
mannian metric of M. By L2(M, S) we shall denote the completion
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of C °̂ (M, S) with respect to this inner product. Let D: C°°(M, S) -•
C°°(M, 5) be a linear first-order differential operator on M 9 which is
formally selfadjoint; that is, D satisfies {Ds, s) = (s, Ds) for all s, s' e
C™(M, S). We assume that, in a collar neighborhood ( - l , 0 ] x 7 of the
boundary, D takes the form

(1.1) D = γ(d/du + A),

where γ: S\Y - S\Y is a bundle isomorphism, and A: C°°{Y, S\Y) ->
is an elliptic operator on y satisfying

(1.2) y2 = - I d , 7* = -7

and

(1.3) Aγ = -γA, A*=A,

where 4̂* means the formal adjoint of A. Thus, A is symmetric. Exam-
ples of such operators are Dirac-type operators.

Since Y is closed, A is essentially selfadjoint and has pure point spec-
trum. Let φ be an eigensection of A with eigenvalue μ. By (1.3), γφ is
also an eigensection of A with eigenvalue -μ. Thus, the nonzero spec-
trum of A is symmetric.

If we regard D as an unbounded operator in L (M, S) with domain
C™(M, S), then D is symmetric. To obtain a selfadjoint extension of
D: C™(M, S) -> L2(M, S) one has to introduce boundary conditions.
Appropriate boundary conditions are the spectral boundary conditions in-
troduced by Atiyah, Patodi, and Singer [1]. Let Π + (resp. Π_) denote the

orthogonal projection of L2(Y, S\Y) onto the subspace spanned by the
eigensections of A with positive (resp. negative) eigenvalues. Note that
the following equality holds:

(1.4) γh+ = Π_γ.

If KerΛ Φ {0}, then the boundary conditions defined by Π ± are not
selfadjoint. In this case we proceed as in [11, p. 162]. By (1.3), γ induces
a map of Ker^4 into itself, which we also denote by γ. We make the
following

Assumption. There exists a unitary involution

(1.5) σ: KerA —• KerΛl with ay = -γσ.

As we shall see in Proposition 4.26, this assumption is always satisfied.
Let L± denote the ±l-eigenspaces of σ. Then we have an orthogonal
splitting

(1.6)
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with

(1.7) ?(L±) = LT.

In particular, KerA is even-dimensional. We consider a special case. Let
S\Y = S+ θS~ be the splitting of S\Y into the ±/-eigenspaces of γ. In
view of (1.3), we obtain operators

If D is a Dirac-type operator, it follows from Theorem 3 of [24, Chapter
XVII] that Ind^4+ = 0. Thus, we get an orthogonal splitting

e KerA_

and dimKer^+ = dimKery4_ . Using this splitting one may construct
involutions σ as in (1.5).

Let σ be such an involution and let P± denote the orthogonal projec-

tion of L2(Y, S\Y) onto L± . Put

Note that the following equality holds:

(1.9) > ζ

Let Hι(M, S) denote the first Sobolev space. Put

(1.10) dom(Dσ) = {φe HX{M\ S)\Uσ_(φ\Y) = 0 } ,

and define Dσ: dom(Dσ) —> L2(M,S) by Dσφ = Dφ where, on the
right-hand side, derivations are taken in the sense of distributions. If
Ker̂ 4 = {0} , there is only one involution. In this case we shall write Dn

in place of Dσ .
Lemma 1.11. The operator Dσ is essentially selfadjoint.
Proof. Let

(1.12) C°°(M, 5; Π*) = {φ € C°°(M, S)\Πσ_(φ\Y) = 0}.

Then we may construct a two-sided parametrix R: C°°(M,S) —*
C°°(M, S; Uσ_) for Dσ in the same way as in [1, p. 54]. Thus DR - Id
and RD - Id are smoothing operators, and the lemma follows from the
standard arguments, q.e.d.

Now we shall study the heat operator exp -tD2

σ. For this purpose
we first consider the heat equation on the half-cylinder X = R+ x Y.
Let π: X -> Y be the canonical projection and Sχ = π*(S\Y). Let
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Dx: C°°(Sχ) -> C°°(Sχ) be defined by Dx = γ{d/du + A). Then Dx:

C™(SX) —> L2(SX) is symmetric and, if we impose boundary conditions by

Π* (p(0, •)) = 0, we obtain a selfadjoint extension Dx . Let ex σ be the

kernel of the heat operator exp -t(Dσ ) . Then e{ σ is a smooth kernel
which satisfies

d2/du2 + A2

x)eltσ((u,x),(v,y),t) = 0,

Tf_(eίσ((0, . ) , z , 0 ) = 0 , Π* ( J ^ e l t β ( ( u , -), z , ί ) | M = 0 ) = 0.

It can be given by an explicit formula. Let φj, j e N , be an orthonormal
basis for Ran(Π^) consisting of the eigensections of A with eigenvalues
0 < μ{ < μ2 < • Then we have
(1.13)

e X σ { { u , x ) , ( υ , y ) , t )

f

where erfc is the complementary error function defined by

erfc(x) = —= / e du.
y/π Jx

Let M =Jrf U -M be the double of M. Then S extends to a bundle
S over M. Because of (1.1), D has a natural extension to an elliptic
operator D: C°°(S) -» C°°(S). Let e2 denote the restriction to M of
the fundamental solution of d/dt + D2 . Then a parametrix eσ for the
kernel Kσ of exp -tD2

σ is obtained by patching together eχ σ and e2

as in [1, p. 55]. More precisely, let p(a, b) denote an increasing C°°
function of the real variable u, such that p = 0 for u < a and p = 1 for
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u>b. Suppose the metric of M is a product on the collar neighborhood
( - l , 0 ] x 7 of Y. We define four C°° functions φt, φ2, ψx, ψ2 by

(1 14) Φ^Pi-U-ϊ), Vi =/>(-|,-t),

We regard these functions of u as functions on the cylinder [-1, 0] x Y
and then extend them to M in the obvious way. Thus we put

(1.15) eσ = Φ ,

This is a parametrix for the heat kernel Kσ , and Kσ is obtained from eσ

as usually by a convergent series of the form

(1.16) K. = eβ

where * denotes convolution of kernels, cχ = (d/dt + D2)eσ, and cm =
cm-\ * c\' m ^ 2 J t f o l l o w s f r o m (! 1 6 ) t h a t» f o r * > 0, ^ σ is a
kernel which differs from eσ by an exponentially small term as t -> 0.

Lemma 1.17. (i) ΓΛe operators exp —ίD^ αm/ ^ exp - ^ flre of the
trace class for t > 0.

(ii) yίs t -> 0, ίΛ r̂̂  exirt asymptotic expansions

(1.18)
7=0

(1.19) ^ f ; / ^

(iii) ΓΛere exwί /oca/ densities cij(Dσ)(x) and bj{Dσ)(x) such that

ajW = / fly(βσ)(^) ^ bj(Dβ) = f bj(Dσ)(x).
J hi J M

The local densities aj(Dσ)(x)9 bj(Dσ)(x) are polynomials in the jets of

the total symbol of Dσ with coefficients which are smooth functions of the

leading symbol. Moreover, b(Dσ) = 0 if j is even.

Proof Since, for t > 0, Kσ(x, y, t) is a smooth kernel, it follows that

exp -tD2

σ and Dσ exp -tD2

σ are Hilbert-Schmidt operators. Employing

the semigroup property, we get (i). Furthermore, we have

(1.20) Ίr(e~φ2°) = ί XrK(x,x, t)dx
JM
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and

(1.21) Tτ(Dσe-tDh = f lr(DχKσ(x,y, t)\χ=y)dx.
JM

For the asymptotic expansion, we may replace Kσ by its parametrix eσ .
The asymptotic behavior of ί_χ 0 ] x y Xvex(x, x, t) dx can be studied ex-
plicitly by using (1.13). For the interior parametrix we use the local heat
expansion which implies (1.18). Furthermore, (1.15) yields that

and, by Lemma 1.7.7 of [12], there exists a local expansion of the form

tr(Dχe2(x, y9 ή\χ=y) ~ ,

as t -» 0. This proves (1.19). q.e.d.
By Lemma 1.17(i), Dσ has pure point spectrum. Let < A < λj+ι <

• b e the eigenvalues of Dσ where each eigenvalue is repeated according
to its multiplicity. Consider the counting function

N(λ) = #{λj\\λj\<λ}9 λ>0.

Applying a standard Tauberian theorem to (1.18), we get
Corollary 1.22. As λ —> oo, one has

N(λ) = ^ λ + o(λ).
(4τr) / l / 2Γ(«/2+l)

Therefore, we can introduce the corresponding zeta and eta functions.
Let

(1.23) ζ(s,Dσ)

and

(1.24)

By Corollary 1.22, both sides are absolutely converging in the half-plane
Re(s) > n. Let h — dimKer(Z>σ). Then, using Mellin transform, we
obtain

(1.25) ζ{s,Dσ) = f±
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and

(1 2 6 ) " ( s D°» = ΓWTTJ75)
By Lemma 1.17, these integrals are absolutely convergent for Re(^) > n
and admit meromorphic continuations to C. For compatible Dirac-type
operators (see below) this was established in [11]. Thus, ζ(s, Dσ) and
η(s, Dσ) are meromorphic functions of s e C. The poles can be deter-
mined from the corresponding asymptotic expansions (1.18) and (1.19).
Of particular interest is the behavior at s = 0. The zeta function ζ(s, Dσ)
is always regular at s = 0 and ζ(0, Dσ) = an(Dσ) - h. The eta function
η(s, Dσ) has a simple pole at s = 0 with

(1.27)

By Lemma 1.17(iii), the residue is zero for n even. Now suppose that n
is odd. We shall not study the behavior of the residue in general, but only
discuss this question for the case of an operator of Dirac type. We briefly
recall the definition of such an operator (cf. [15], [6]).

Let Clif(Λf) = Clif(ΓM) be the complexified Clifford algebra bundle
over M. The Riemannian metric and connection of TM can be nat-
urally extended to Clif(Λf). Let S be a complex vector bundle over
M. A Clif(M) module structure on S is a unital algebra morphism
v: Clif(Λf) -• End(S). A vector bundle S with a Clif(Λf) module struc-
ture is called a Clifford bundle over M if it is equipped with a Hermitian
fiber metric and a unitary connection V such that

(i) for each unit vector e e TχM, the module multiplication e: Sχ —>
Sχ is an isometry,

(ii) W = 0.
A connection on S, which satisfies (ii) is said to be compatible. Note

that V is compatible iff for all φ e C°°(Clif(M)) and ψ e C°°(S) the
following relation holds:

We shall assume that the fiber metric and the connection of S are also
products near the boundary.

If S is a Clifford bundle, there is a natural first-order elliptic differential
operator D: C°°(S) -> C°°(S) associated to S which is defined as the
composition

C°°(S) Z (C°°(S 0 T*M) -> C°°(S 0 TM) -> C°°(S).
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Here the second arrow is defined by the Riemannian metric of M, and
the third arrow by the Clif(M) module structure of S. This is the Dirac
operator attached to S and, following [6], we call D a compatible Dirac-
type operator. Let Xχ, , Xn denote a local orthonormal frame field.
Then D can be written as

i=\

Let ψ e C^End^S)). Then we call Dψ = D + ψ an operator of Dirac
type. First consider a compatible operator D of Dirac type. Recall that the
coefficients of the asymptotic expansion (1.19) are completely determined
by the interior parametrix e2. Therefore, we can apply Theorem 3.4 of
[6] to get

Proposition 1.28. Let D be a compatible operator of Dirac type.
(a) // j is even, then bj(Dσ) = 0.
(b) // n is even, then bj(Dσ) = 0 for all j.
(c)Ifj<n,then bj(Dσ) = 0.

By (1.26), this implies
Corollary 1.29. Let D be a compatible operator of Dirac type. Then

η(s, Dσ) is holomorphic in the half plane Re(s) > —2. Moreover, the eta
invariant η(0,Dσ) is given by

(1.30) 1,(0, Dσ) = -L Γrι/2τr(Dσe-tDhdt.
Vπ Jo

This result was also proved in [11]. In the next section we shall continue
the investigation of the residues of the eta function for general Dirac-type
operators.

Suppose that n = 2k, k e N, and D is a compatible Dirac-type
operator. Consider the standard involution τ: S —> S defined by τ =
i eX" e2k where eχ, , e2k form a local tangent frame field. Then we
have

(1.31) τD = -Dτ and τA = Aτ.

Hence, τ commutes with the spectral projections Π ± and induces a map
τ: KerΛ —• Ker^ . Suppose that the involution (1.5) satisfies τσ = στ.
Then τ also commutes with Π^.. Therefore, by (1.31), we obtain τDσ =
-Dστ. This implies that the spectrum of Dσ is symmetric and, hence, the
eta function vanishes identically. In particular, this is the case if KerΛ =
{0} . Thus, the interesting case is the odd-dimensional one.
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2. Variation of eta invariants

In this section we shall study the behavior of the eta invariant under the
variation of the operator and the boundary conditions. We first study the
case where the boundary conditions are held fixed. This means that the
operator D remains constant near the boundary, and the involution σ of
Ker^4 is not varied. As above, we assume that all metrics and connections
are products near the boundary.

Proposition 2.1. Let Dv be a C°° one-parameter family of formally
self adjoint elliptic first-order differential operators on M. Suppose that, on
a collar neighborhood ( - 1 , 0 1 x 7 , Dυ is given by

Dv = γ(d/du + A)

with y and A independent of v and satisfying (1.2), (1.3). Let σ be a
unitary involution of KerA as in (1.5). Let Bv = {Dυ)σ be the selfadjoint
extension of Dv defined by σ, and put Bv = (d/dv)Bv . Then

Proof The operators Dυ act on smooth sections of a fixed vector bun-

dle S. However, the fiber metric of S and the Riemannian metric of M

may depend on v and, therefore, the inner product in C°°(M, S) may

also so. In any case, the corresponding Hubert spaces L (M, S)υ have

equivalent norms. Hence, the trace functional is independent of v [20,

p. 161]. Moreover, by our assumptions, the domains of the operators Bυ

agree as topological vector spaces. Hence, we may regard Bυ as a one-

parameter family of linear operators in a fixed Hubert space L2(M, S)o

with domain independent of v . Thus, Bv = dBv/dv is well-defined and

, , 2 ,

To determine the derivative of the heat operator with respect to the pa-
rameter v , we proceed as in [22]. We use the identity

(2 3)
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Since the initial condition is independent of υ, we can use DuhamePs
principle to solve (2.3). This leads to

Using (2.4) and the trace identities, we get

B
Tr (*.^e~*) = -2tTτ(BvB

2

ve-tBη = It^-Ίrφ^). q.e.d.

Let Kυ(x,y, t) be the kernel of exp-tB2

v . Then in the same way as
in the proof of Lemma 1.17 it follows that

Ύτ(Bυe-tBh= ί tτ((Dv)χKv(x,y,t)\χ=y)dx9
J Ad

where Dυ = (d/dv)Dv is a first-order differential operator. If we employ
Lemma 1.7.7 of [12], then, as t —• 0, there exists an asymptotic expansion
of the form

(2.5) s
7=0

where the coefficients Cj(v) are again local in the sense that there exist

densities Cj(v, JC) such that Cj(υ) = fM Cj{υ , JC) .
Proposition 2.6. Let the assumptions be the same as in Proposition 2.1.

Moreover suppose that dimKer(5v) is constant. Then, for Re(s) > n, we
have

where the integral is absolutely converging.
Proof. We follow the proof of Proposition 8.39 in [22]. Let Rφ) > n

and T > 0. Using Proposition 2.1, (2.5) and integration by parts, we
obtain

dv Jo

(2.8)

[ / ( ί - 1 ) / 2 Tr( V~'*") dt.
o

Let Hv be the orthogonal projection of L (M, S)υ onto K e r ^ . Since
d i m K e r ^ ) is constant, Hv depends smoothly on v . By the self adjoint-
ness of Bv , we have BVHV = HVBV = 0 and, therefore,

Bυ = (Id-Hυ)Bυ(Iά-Hυ),
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which implies

K = - A A ( H - / ζ ) + (ld-Hv)Bv(ld-Hυ) - (ld-Hv)BvHυ.

Since \\{ld-Hυ)exp-tBl\\ < e~tc for some c = c(v) > 0, it follows that

I Tτ(Bυe~tBv)\ < Cχe~tCχ. If we pass to the limit T -> oo, the first term on
the right-hand side of (2.8) vanishes and the proposition follows, q.e.d.

By (2.5), the integral on the right-hand side of (2.7) admits a meromor-
phic continuation to C. At s = 0 it has a simple pole with residue equal
to 2cn(υ). Thus we have

Corollary 2.9. Let the assumptions be as in Proposition 2.6. Then
(d/dv)η(s, Bυ) is holomorphic at s = 0 with

where cn(v) is the nth coefficient in the asymptotic expansion (2.5).
Now observe that the poles of η(s, BΌ) are located at s = n-j, j e N .

In particular, poles stay separated during a deformation. Since
{d/dv)η(s, Bv) is holomorphic near s = 0, it follows that Res5 = 0 η(s, Bυ)
is independent of υ . We shall now extend this result to the case where
dimKer(Bυ) is not necessarily constant.

To study η(s, Bυ) near v = 0 we pick c e R not an eigenvalue of
±BQ. By continuity it is not an eigenvalue of any ±Bυ for \υ\ < ε.
Let Pc denote the orthogonal projection of L2(M, S)v onto the subspace
spanned by all eigensections with eigenvalue λ satisfying \λ\ < c. Put

(2.10) B'v=Bυ(ld-Pc) + Pc.

Then, for \υ\ < ε, B'υ is invertible and depends smoothly on v . Since

Pc has finite rank, the eta function is also defined for B'v , and

η(s9 Bυ) = η(s,B'v) + £ sign^μ.Γ - Ίτ(Pc).
\λj\<C

Thus η(s, Bv) and η(s,B'υ) differ by an entire function. In particular,

η(s, Bv) and η(s, B'v) have the same residue at s = 0. Furthermore, the

proofs of Propositions 2.1 and 2.6 work for B'υ as well. In fact, the proof

of (2.7) is simplified because B'υ is invertible. Thus

for Re(s) > n . Since Pv is a finite rank operator, it is easy to see that

't(K)2 -'Bh + 0 ( 1 )
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as t —> 0, which together with (2.5) shows that the integral on the right-
hand side of (2.11) admits a meromorphic continuation to Re( s) > - 1 .
Moreover, it has a simple pole at s = 0 with residue 2cn(v) where cn(v)
is the corresponding coefficient in (2.5). Therefore, (d/dυ)η(s, B'v) is
holomorphic at s = 0 and

This implies
Corollary 2.12. Let the assumptions be the same as in Proposition 2.1.

Then the residue of η(s, Bυ) at s = 0 does not depend on v .
Proof. As explained above, we have

Moreover, the poles of η(s, B'v) may only occur at s = n-j, J G N . Let
γ c C be the circle of radius 1/2 with center at 0. Then (d/dv)η(s, B'v)
is holomorphic in the interior of γ and, therefore,

q.e.d.
Thus Res j = 0 η(s, Dσ) is a homotopy invariant of Dσ .
As an application we consider a compatible Dirac-type operator D:

C°°(M, S) -+ C°°(M, 5) which, on ( - 1 , 0] x Y, takes the form (1.1).
Let ψ e C°°(End(S)) be such that ψ* = ψ. Moreover suppose that,
on ( - 1 , 0] x 7 , ψ satisfies (d/du)ψ(u,y) = 0 and γψ = -ψγ. Put
Dψ = D+ ψ . Then Dψ is formally selfadjoint and, near Y, it takes the
form (1.1). Let χ € C°°(R) be such that χ(u) = 0 for u < -3/4 and
χ(u) = 1 for w > -1/2. We regard χ as a function on ( - 1 , 0] x Y in
the obvious way, and then extend it by zero to a smooth function on M.
For υ e R, put

D* = D + υ(l-χ)ψ + χψ.

Then Z)^ is a one-parameter family of Dirac-type operators which sat-
isfy the assumptions of Proposition 2.1. Let σ be a unitary involution
of Ker^4 as in (1.5). In view of Corollary 2.12, the residue at s = 0 of
η(s, (Dψ)σ) equals the residue at s = 0 of η{s{D^)σ), which is deter-
mined by the coefficient bn{(Dl)σ) of the asymptotic expansion (1.19).
Since D is a compatible Dirac-type operator, the corresponding local den-
sity bn(x, iPl)σ) has support in ( - 1 , 0] x Y. Therefore, in order to
determine bn, we may replace M by the half-cylinder R " x 7 . Let
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S be the pullback of S\Y to R ' x 7 and let D = γ(d/du + A) + χψ

regarded as operator in C°°(R~ x Y 9S). Here γ(d/du + A) is the ex-

pression for D on ( - 1 , 0] x Y. Let ψ £ C°°(End(S)) be defined by

ψ(u,y) = ψ(0,y), y £ Y. Note that ψ satisfies yψ = -ψy. For
v £ R, put

Dv =D + v(\-χ)ψ.

Thus D0 = D. Moreover, on (-1/2, 0] x Y, we have Dv = γ(d/du + A).

We use ΓΓ , defined with respect to A, to introduce spectral boundary

conditions. Let Φυ)σ be the corresponding selfadjoint extension in L2 .
Now we observe that Lemma 3.9, Propositions 3.11 and 3.12 can be ap-
plied to the present case as well. This implies that the integral

is absolutely convergent and has an asymptotic expansion as t —• 0. For
v = 0, the coefficient of t~1^2 equals our bn above. Furthermore, if we
proceed as in the proof of Proposition 2.1, then

= ( l + 2 * ^ ) jΓ tr((l -χ(x))ψ(x)e-t{d«)l(x, x))dx.

Since γχ anticommutes with ψ(x) and

γχ o e x p - t φ υ ) 2

σ ( x , x ) = e x p - t φ υ ) 2

σ ( x , x ) o γ χ ,

it follows that the right-hand side vanishes. This implies that (d/dv)bn(v)
= 0. But bn(l) = 0. Thus bn = 0 and we have proved

Proposition 2.13. Let D: C°°(M, S) -> C°°(M, S) be any Dirac-type
operator which satisfies (1.1). Let Dσ be a selfadjoint extension defined by
some unitary involution (1.5). Then η(s, Dσ) is regular at s = 0.

Let Dυ be a smooth one-parameter family of Dirac-type operators such
that, on ( - l , 0 ] χ y , ΰ v = γ(d/du + A) with γ, A independent of v
and satisfying (1.2), (1.3). Let σ be any unitary involution of Ker^4 as
in (1.5). Put Bv = (Dυ)σ. Then η(s, Bυ) is holomorphic at s = 0.
However, if some eigenvalues cross zero, then η(0, Bυ) is not smooth in
v , but has integer jumps. Let

(2.14) η(0,Bυ) = η(09Bυ) modZ

be the reduced eta invariant which takes values in R/Z. If B'v is defined

as in (2.10), it is clear that 7/(0, Bυ) = 7/(0, B'υ). Using our results above,

we get
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Proposition 2.15β (i) The reduced eta invariant 7/(0, Bv) is a smooth
function of v and

(ii) If dimKeτ(Bv) is constant, then η(0, Bv) is smooth and

Here cn(υ) is determined by the asymptotic expansion (2.5). Moreover,
there exists a density cn{x\v) which is locally computable from the jets of
the complete symbol of Dυ such that cn(v) = fM cn(x v).

We shall now discuss two applications of our variational formulas. Let
D be a Dirac-type operator on M, which satisfies (1.1)—(1.3). Let a > 0
and set

Ma = MU{[0,a]x Y).

Then the bundle S can be extended in the obvious way to a vector bundle
Sa over Ma , and D has a natural extension to a Dirac-type operator D(a)
acting in C°°(Ma, Sa) which has the same properties as D = D(0). Let σ
be a unitary involution of Ker^4 as in (1.5). Let D(a)σ be the self adjoint
extension of D(a): C™{Ma, Sa) -> L2(Ma, Sa) defined above.

Proposition 2.16. The eta invariant η(0, D(a)σ) is independent of a.
Proof First we shall show that dimKerZ)(α)(T is independent of a.

Let φ e KerD(a)σ . This is equivalent to say that φ e C°°(Sa) satisfies

(2.17) D(a)φ = 0 and Πσ_{φ\({a} x Y)) = 0.

Let φj, j e N, be an orthonormal basis for Ran(Π^) consisting of the
eigensections of A with eigenvalues 0 < μx < μ2 < . In view of (2.17),
we may expand <p\([0, a]xY) in terms of the φ.:

Let a > a. Then φ can be extended in the obvious way to φ e
KerD(a) σ , and the map φ \-+ φ defines an isomorphism of KerD(a)σ

onto KerD(α')σ . Next, observe that there exists a smooth family of dif-
feomorphisms fa: ( - 1 , 0] -> ( - 1 , a] which have the following properties

fa(u) = u for ue (-1,-2/3)

and
fa(u) = u + a for ue (-1/3,0].
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Let ψa: ( - 1 , 0] x Y -+ ( - 1 , a] x Y be defined by ψa(u,y) = ( / > ) , y),
and extend ψa to a diffeomorphism ψa: M -^ Ma in the canonical way,
i.e., ψa is the identity on M - ( ( - 1 , 0] x Y). There is also a bundle
isomorphism ψa: S -> 5α which covers ^ α . This induces an isomorphism
^ C ^ M ^ S J - C ^ M , ^ . Let D(a) = ψ*a oD(a)o (ψ*yι. Then
D(α) is a family of Dirac-type operators on M, and D(α) = γ(d/du + A)
near 7 . Furthermore, 5(α) σ = y£ oD(a)σ o (ψ*)~~ι. Hence

*(*, Z>(α)σ) = η(s,D(a)σ) and ^;(KerD(β)^) = KerD(a)σ.

In particular, dim Ker D(a)σ is constant, and we apply Proposition 2.15(ii)
to get

*-

Now let S^ be the circle of radius 2a, π: S^ x Y —• 7 be the natural
projection, and Sa = π*(S|y). We define Z)fl: C°°(5fl) -^ C°°(5fl) by
Da = γ(d/du + v4). Since cn(a) is locally computable, it follows in the
same way as above that

But a direct computation shows that the spectrum of Da is symmetric.

Hence η(s, Da) = 0 and, therefore, cn(a) = 0. q.e.d.
Next we shall study the dependence of the eta invariant η(0, Dσ) on

the choice of σ. This question was independently settled by Lesch and
Wojciechowski [21]. Following [21], we pick a selfadjoint endomorphism
T of Ker()> - Id) such that e2πiT = σQσx\Keτ(γ - Id) and -π < T < π,
i.e., T = (l/2π/)log(σ0σ1|Ker(y-Id)). Weextend T to Ker ,4 by putting
T = 0 on Ker(y + Id). Let pυ = e2πivT, and put

0 < v < 1.

This is a one-parameter family of unitary involutions of Ker A which
anticommute with γ and connect σ0 to σχ. In order to study the variation
of the eta invariant of Dσ we have to transform the family Dσ into
one with fixed domain. This can be done as follows. Let / e C°°(R)
be such that f(u) = 1 for -1/3 < u and f(ύ) = 0 for u < -2/3.
Note that, by Fubini's theorem, we may identify L2([-1, 0] x Y, S) with
L 2 ([- l , 0]; L2{S\Y)). Therefore, we may regard L 2 ([- l , 0]; KerΛ) as
a closed subspace of L2(M, S). With respect to this identification, we
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define a one-parameter family Uυ, 0 < ϋ < 1, of unitary operators in

L2(M, S) as follows: Set Uυ = Id on L2([0, 1]; KerΛ)"1 and

(Uvφ)(u) = e2πivf{u)T(φ(u)), φ G L\[-\ , 0]; KerΛ).

Let Πv

± be the orthogonal projection (1.8) defined with respect to σy , 0 <
υ < 1. Then, by definition, we have

(2.18) UυoΠv

± = Π°±, 0 < z; < 1.

Put

(2.19) Df

σ=UvDσU*v, 0 < ^ < l .

By (2.18), we get
dom Dσ = dom Dσ .

Hence Df , 0 < υ < 1, is a smooth family of self adjoint operators in
V

L (M, S) with fixed domain. Moreover, it follows from the definition

of Uv that Uυ(C™(M,S)) = C™(M,S). Put D'v = UυDU*. Then

D': C™(M, S) -> L2(M, S) is symmetric, and D1 is the selfadjoint
v

extension of D'v defined by the boundary conditions H°_(φ\dM) = 0.
This implies

(2.20) Df

σ =Dσ - iπiυf'γT, 0 < υ < 1.

By (2.18), Dσ and D'σ have the same spectrum. Hence, the eta function

η(s, D'σ) is well defined and equals η(s, Dσ). Note that Z>̂  is not a

differential operator, but our results above can be easily extended to D' .

In particular, this applies to Proposition 2.15. Thus

where cn(v) is the coefficient of t~x' in the asymptotic expansion of

Tr(D'σ exp-t{D'σ ) 2 ) . By (2.19) and (2.20), the trace equals

~Uυe~<) = -2πiΎτ(f'γTe-<).

exp -tD2 by its parametrix on [-1, 0] x Y which can be taken to be
V

Since the support of / ' is contained in ( - 1 , 0 ) , we may replace
2 ich can

(χ>y)
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This shows that

Ίτ(f'γTe-<) = -±= Ίr(γT) + O(e~c/t)
V4πt

as t —• 0 and, therefore,

cn(v) = - | L Tr(Γ) = J^J l o g d e t ^ | Ker(y - Id)).

Thus we have proved
Theorem 2.21. Let D: C°°(M, S) -+ C°°(M, S) be a Dirac-type op-

erator which, on ( - 1 , 0] x Y, takes the form D = γ(d/du + A) with
conditions (1.2), (1.3) satisfied. Let σ0, σλ be two unitary involutions of

such that σtγ = -yσi i = 0, 1. Then

η(0, Dσι) - η(09 D,Q) = - ^ l o g d e t ( σ o σ i | K e r ( 7 - /)) modZ.

This result was proved independently by Lesch and Wojciechowski [21].

3. Heat kernels on manifolds with cylindrical ends

Let the setting be the same as in §1. We introduce the noncompact
manifold

Z = Jl/U(R + x Y)

by gluing the half-cylinder R+ x Y to the boundary Y of M. We equip
R+ x Y with the canonical product metric. Together with the given metric
on M we get a smooth metric on Z . Then Z becomes a complete
Riemannian manifold of infinite volume. We extend the bundle S with
its fiber metric and the operator D to Z in the obvious way. The extended
bundle and operator will be also denoted by S and D, respectively. Thus,
on R+ x Y,

where γ, A satisfy (1.2), (1.3).
Let C™(Z, S) be the space of compactly supported smooth sections of

S over Z , and L2(Z, S) the completion of C™{Z, S) with respect to
the natural inner product defined by the fiber metric of S and the metric
of Z . Then

(3.1) Z) :C 0 ° ° (Z,S)-*L 2 (Z,S)

is symmetric.
Lemma 3.2. The operator (3.1) is essentially self adjoint.
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Proof. It suffices to show that (D±i)C™(Z, S) is dense in L2(Z, S).
Suppose that ψ e L2(Z,S) is orthogonal to (D±i)C™(Z,S). By elliptic
regularity, ψ is smooth and satisfies Dψ = τιψ . If we expand ψ on
R+ x Y in terms of the eigensections of γA, it follows that ψ satisfies an
estimate of the form

\\ψ(u,y)\\<Ce-cu, (M,y)€R%r,

for some constants C, c> 0. Applying Green's formula, we get (Dψ, ψ)
= (ψ, Dψ) and, therefore, ψ = 0. q.e.d.

Let ^ denote the unique selfadjoint extension of D. In this section
we shall investigate the kernel K(x, y, t) of the heat operator exp -t22.
We construct a parametrix for AT as follows. Let Q2 be the restriction
to M of the fundamental solution of d/dt + D2 on the double M of
Λ/, i.e., <22 = e2 in the notation of (1.15). Furthermore, let Qχ be the
fundamental solution of d/dt - d2/du2 + A2 on R x Y. Then

Qx{{u,x), (v,y),t) = -j== exp\ - Λf \e (x,y),

where e~tΛ (x, y) is the kernel o f e x p -tA2 . Let the funct ions φ{, φ2,
ψχ, ψ2 be defined by (1.14) , and put

(3.3) Q = ΦιQιΨι+Φ2Q2Ψr

Then Q is a parametrix for K, and K is obtained by a convergent series
similar to (1.16):

(3.4) K = Q 4
m = l

where Q{ = (d/dt + D2)Q, β m = Qm_{ * βj for m > 2, and * denotes
convolution of kernels. For t > 0, Â  is a C°° kernel which represents
exp -t3f2 . In particular, it satisfies (d/dt + £>2)^(x, >>, ί) = 0. More-
over, for each xQ e Z and m e N, there exist constants C, c > 0 such
that

||Z)>

< C « p ( - c ( r f ( x , x 0 ) 2 + d{y, x 0 ) 2 + \)/t)ect

for all X J G Z , k,l,<m and / > 0 .

Let Z)o = γ(d/du + A) regarded as operator in C°°(R+ xY,S). Sup-
pose that there exists a unitary involution σ of KerΛ such that γσ =
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-σy. Let Π* be the orthogonal projection (1.8) with respect to σ, and
put

{φe C°°(R+ x Y, S ) | Π > ( 0 , .)) = 0}.

Denote by C~(R+ xY,S;Πσ

+) the subspace of C°°(R+ x Γ , S ; Π f f

+ )
consisting of the sections which vanish for u » 0. Then

Z>0: C0°°(R+ x Y, S; Πσ

+) - L2(R+ x Y, S)

is essentially selfadjoint. Let 3fQ be the unique selfadjoint extension. We

observe that the kernel KQ of exp - t ^ is given by formula (1.13) with

the roles of φ. and γφ. switched. From this formula for KQ follows

immediately that, for each m e N , there exist Cχ, cx > 0 such that

(3.6)

dk dι

-j.—Ap

yA
9

yl(K0((u,y)9 (v,y'),t) - Q^u, y ) , ( v , y ' ) , ή)
duκ d υ

for y, y e Y, w, v > 1, and k, l,p, q <m. We extend exp —t3^ by

zero to an operator in L2(Z, S).

Theorem 3.7. fbr t > 0, ί/z£ operators exp - ί ϋ ^ 2 - exp - ^ 0

2

3 exp -t2J - 3Q exp —t30 are of the trace class.

Proof. Pick χ e C°°(Z) such that 0 < χ < 1, χ(z) = 1 for z e M

and χ(u,y) = (1 + w2)"1 for (w, y) G [1, oo) x Y. Denote by Uχ the

operator in L2(Z, 5) defined by multiplication by χ . Then we may write

exp —t3 - exp -t&0

= (exp -iz32 - exp - ^ 5

+ exp -lψjl o t^ o U~x o Lxp -lψJ2 - exp - ^

It follows from (3.5) that ( e x p - ^ 2 - e x p - ^ 0

2 ) o U~ι and U~ι o

( e x p - j & 2 - e x p - J & Q ) are Hilbert-Schmidt operators. Furthermore, the
function

(z, z ) € (R+ x F) x (R+ x Y)~χ(z)\\Qx(z9 z, Oil

belongs to L2((R+ x Y) x (R+ x Γ)) . Together with (3.6) this shows that

exp -tS^l o Uχ is Hilbert-Schmidt. By (3.5), it also follows that Uχ o

exp -t9J2 is a Hilbert-Schmidt operator. Thus e x p ( - ^ 2 ) - e x p ( - ^ 0

2 )
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can be written as a product of Hilbert-Schmidt operators and, therefore,
is of the trace class. The remaining case is similar, q.e.d.

Put

(3.8) E(x,y,t) = DχK(x,y9t).

This is the kernel of 31 exp -t2f2 .
Lemma 3.9. For each t > 0, the function x *-> ΐrE(x, x, t) is abso-

lutely integrable on Z.

Proof. It follows from (3.5) that tv{Dχ(K(x ,y,ή- Q(x, y, t))\x=y}

is absolutely integrable on Z , and the integrated absolute value is O(e~c^)
as t —> 0. Furthermore, by definition of Qx,

γ ( έ
Since γA = -Ay and γ acts fiberwise, we have \τ{pχQx(x9 y, t)\χ=y)
= 0. Thus

(3.10) tτ(DxQ{x9y9 t)\x=y) = tr(Dχ(φ2(x)Q2(x, y, 0 ) 1 ^ ) .

The right-hand side has compact support which implies the lemma.
Proposition 3.11. For t > 0,

*») = f tτE{z, z, t)dz.
Jz

Proof Let E0(z, z', t) be the kernel of ^ 0 e x p - ^ 0

2 . Then
E0(z, z', t) = (D0)zKQ(z, z\t). Using the explicit description of Ko

similar to (1.13), we get

= 0.

The last equality follows because γ* = -γ y eY. Since E - EQ is the

kernel of & exp(-t&2) - ^ 0 e x p ( - ^ 0

2 ) , the proposition follows from
Lemma 3.9 by the standard arguments.

Proposition 3.12. (a) As ί —• 0, there exists an asymptotic expansion
of the form

j^vE{z,z,t)dz~Σaj{D)tU-n-l)l\
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Moreover, there exist local densities aj(D)(x) with support contained in M
such that aj(D) = fz a.(D){x).

(b) If D is a compatible Dirac-type operator, then a.(D) = 0 for j < n
and ak{D) = 0 for k even.

Proof It follows from (3.5) and (3.10) that

f
J Z

trE(z, z9t)dz= [ tr(Dz(φ2(z)Q2(z, z\ t)\z=z,)dz
Z JZ

The integral on the right-hand side equals

ί φ2(z)tτ(D2Q2(z,z',t)\z=z,)dz

(3.13)

φ'2(u) I t r ( y β 2 ( ( « ,y),{u,y), 0 ) dy du.

If we employ Theorem 0.2 of [6], we obtain an asymptotic expansion of the
first integral. This expansion has the properties claimed by the proposition.
To deal with the second integral we may replace Q2 on [ - l , 0 ] x 7 by an
appropriate parametrix, say (Λπt)~l^2exp(-(u-v)2/4t)exp -tA2 . Hence,
up to an exponentially small term, the second integral equals

Tτ(γe~tA2)/y/4πi. Let S\Y = 5 + Θ S_ be the splitting into the ±i-
eigenspaces of γ, and A± the restriction of A to C°°(S±). Then

Ίτ{γe~tΛl) = i{Tr{e~tA-A+) - Ίv(e~tA+A-)} = i1ndA+.

This proves (a). If D is a compatible Dirac-type operator, then I n d ^ = 0
by Theorem 3 of [24, Chapter XVII]. Moreover, by Theorem 3.4 of [6], the
coefficients b. in the asymptotic expansion of the first integral of (3.13)
vanish if either j < n or j = Ik, k € N .

4. The spectral decomposition

In this section we summarize some results about the spectral decompo-
sition of the selfadjoint operators 3 introduced in the previous section.

Theorem 4.1. The point spectrum of 2J consists of a sequence <
λ; < λj+ι < of eigenvalues of finite multiplicity with ±oo as the only
possible points of accumulation. There exists C > 0 such that

λ2n)9 λ>o.

Proof It is sufficient to prove that the spectrum of 2J2 consists of
eigenvalues 0 < λχ < λ2 < of finite multiplicity and

#tf.j\λj<λ}<C(l+λn)9 λ > 0 ,
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for some constant C > 0. If 2!2 is the Laplacian of Z acting on func-
tions, then this has been proved by Donnelly [10]. His method extends
without difficulties to the present case, q.e.d.

Let L2

d(Z, S) be the subspace of L2(Z, S) spanned by all eigensec-

tions of 2 . This is also the discrete subspace for 3 2 . Let 3d denote

the restriction of 3 to L2

d{Z, S).

Corollary 4.2. For t>0, exp -t3% is of the trace class and we have

Tr(exp-ίi^ 2 )

The proof can be derived from Theorem 4.1 by the standard arguments.
Next we study the behavior of the eigensections of 3 at infinity. Let

φj9 J G N , be an orthonormal basis of Ran(Π^) consisting of eigensec-
tions of A with eigenvalues 0 < μχ < μ2 < . Then yφ , j e N , is an

orthonormal basis for Ran(EΓ) with eigenvalues -μ}.. Since L2(Z,S)

is the direct sum of Ran(Π^) and Ran(ΓΓ), we get in this way an or-

thonormal basis for L2(Z, S). Put

(4.3)

Then \μ* and ψj are eigensections of yA with eigenvalues μ. and -μ ,

respectively. Moreover, we have

(4.4) ψj = -γy/J,

and {ψ*, ψ~} is an orthonormal basis of the eigensections of yA. Sup-

pose that φ € L 2 (Z, 5) satisfies Dφ = λφ , λeR. Then, on R+ x Y, we

may expand φ in terms of the basis just constructed:

(u, y) = Σ{fj(u)ψ+{y) + gj(u)ψ7(y)},
7=1

where the coefficients f . . , g satisfy

h didu

-dldu -μj
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Using the square integrability of φ, we obtain

(4.5)

.2 ,2
f/ή-λ

In particular, if λ = 0, then (4.5) can be written as

(4.6)

(-yjμ2.-λ2ι?) Ψj (y) I.

Let μ. > 0 be the smallest positive eigenvalue of A such that μ. > \λ\.
Jo Jo

Then (4.5) implies

\\φ(u,y)\\<Cexp(-^/μ2

Q-λ2u/2), u>09

for some constant C > 0. Thus we have proved
Proposition 4.7. Let φ e L2(Z, S) be an eigensection of 3 . Then

~cuthere exist C, c> 0 such that, on R+ x Y, we have \\φ(u, y)\\ < Ce
We turn now to the study of the continuous spectrum of 2 . First we

note that the operator ^ 0 defined in §3 has no point spectrum. Indeed,
suppose that φ e C°°(R+ x Y, S) satisfies DQφ = 0 and Uσ

+(φ(0, •)) = 0.
Then φ has an expansion of the form

so that φ cannot be square integrable unless φ = 0. Thus 2J^ has pure
absolutely continuous spectrum.

Let J be the canonical inclusion of L2(R+ x 7 , S) into L2(Z, S).
Consider the wave operators

(4.8) W±{β ,3ro) = s- Hm eit9ίJe~ii2\

Theorem 3.7 together with the Kato-Rosenblum theory [17] and the
Birman-Kato invariance principle of the wave operators [18] implies

Proposition 4.9. The wave operators W±{3, &0) exist and are com-
plete.

Thus W±(3f93rQ) establishes a unitary equivalence of 3^0 and the
absolutely continuous part 2Jac of 3 .

Another method to establish the existence and completeness of the wave
operators is based on the method of Enβ (cf. [16]). As a by-product one
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obtains that the singularly continuous spectrum of 3 is empty. Thus we
have

Theorem 4.10. (a) 3 has no singularly continuous spectrum.
(b) The absolutely continuous part 2Jac of3 is unitarily equivalent to

The wave operators can be described more explicitly in terms of gener-
alized eigensections (cf. [16]). Let ω be the set of all nonnegative eigen-
values of A. Let μeω. If μ > 0, let &(μ) denote the μ-eigenspace. If
μ = 0, put &(μ) = Ker(σ - 1 ) . Let Σs be the Riemann surface associated
to the functions y/λ±μ, μ e ω, such that y/λ± μ has positive imagi-
nary part for μ sufficiently large. Thus Σ5 is a ramified double covering
πs: Σs -» C with ramification locus {±μ \ μ e ω). To each μeω and
φ e &(μ) there is associated a smooth section E(φ, Λ) of S which is a
meromorphic function of Λ e Σs and satisfies

DE(φ, Λ) = π\A)E(φ, Λ), Λ e Σ5,

(cf. [16] for details). The half-plane Im(λ) > 0 can be identified with
an open subset FPS of Σs, the physical sheet. Each section E(φ, Λ)
is regular on dFPs = R. In particular, E(φ,λ) is regular for λ e
(-oo, -μ] U [μ, oo). This is the generalized eigensection attached to φ.
If φj, j e N, is the basis of Ran(Π^) chosen above, then the E(φj, λ)
form a complete system of the generalized eigensections of 3 . More
precisely, this statement means the following. Let φ e C™(Z, S). Put

Φj(λ) = JzE(φj,λ, zMz)dz, j e N.

For μeω define the measure dτμ by

= Jλ2-μ2/2πλdλ.

Then, for any m e N, the function λ »-> (1 +A2)W#.(A) belongs to

L ([μ., oo) dτ ) as well as to L ((-oo, —μλ rfτ#. ), and the orthogonal
22projection φac of φ onto the absolutely continuous subspace L2

ac(Z, S)
of 2J has the expansion

\Γ > λ > *)Φj
(4.11)

f~E(φJ,-λ,z)φJ{-λ)dτμμ)\.
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We shall now consider more closely the generalized eigensections E(φ, λ)
attached to φ e Ker(cr - 1). Let ψ € KevA, and define h(ψ, λ) e
C°°(R+ xY,S) by

Let χ e C°°(R) such that χ(u) = 0 for u < 1 and χ(u) = 1 for u > 2.
We regard χ as a function on R + x 7 in the obvious way, and then extend
it by zero to a smooth function on Z . Observe that (D2 - λ2)(χh(ψ, A))
is a smooth section with compact support. In particular, it is contained in
L2(Z,S). Put

(4.12)

Ίm(λ) > 0.

Then F(ψ9λ) belongs to C°°(Z, S) and satisfies

D2F{ψ, λ) = λ2F{ψ, λ), Im(A) > 0.

The function λ *-> F(ψ, λ) admits also a meromorphic continuation to
Σs [16]. Let μχ > 0 be the smallest positive eigenvalue of A and put

(4.13) Σx =C-{(-oo9-μι]U[μl9 oo)}.

Then, in particular, F(ψ, λ) is a meromoφhic function of λ e Σ{. We
explain this in more detail. Let Hι (Z, S) denote the first Sobolev space.
Let ψχ, , ψ2r be an orthonormal basis for Ker^4. For any b > 0 we
introduce a closed subspace of Hι(Z, 5) by

(4.14) Hι

b(Z,S) = {<pe H\Z9S) I (9{u, •), ̂ > = 0

for w > ft and j = 1, , 2r}.

Consider the quadratic form

(4.15) q(φ) = \\Dφ\\2, φ e H\(Z , S).

Let %ί be the closure of H\(Z, 5) in L2(Z,S). Then the quadratic
form (4.15) is represented by a positive selfadjoint operator i/̂  in ^ .
This operator is analogous to the pseudo-Laplacian used by Colin de
Verdiere [9]. Similarly to Theorem 1 of [9], the domain of Hb can be
described as follows. For j , 1 < j < 2r, we define the distribution TJ

b

by

where ψ denotes the restriction of ψ to R+ x Y. Then φ e H^ (Z, S)
belongs to the domain of Hb iff there exist C{, , C2r e C such.that
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2φ Σ C T belongs to L2(ZS)Here D2D2φ - Σj CjTb belongs to L2(Z, S). Here D2φ is taken in the sense of

distributions. If φ is in the domain of Hb , then Hbφ = D2φ- Σj CjTi

Lemma 4.16. The essential spectrum of Hb equals [μ], oo) where μ{ >
0 is the smallest positive eigenvalue of A.

Proof We introduce Dirichlet boundary conditions on {b} x Y. This
gives rise to a selfadjoint operator Hh 0 . Since Y is compact, it follows
that Qxp(-tHb) - Qxp(-tHb 0) is of the trace class for t > 0. Hence,
Hb and Hb 0 have the same essential spectrum. By definition, we have

2Hb,o = Hb,int®Hb,oo w h e r e Hb,im a c t s i n L2Wb,S) and Hboo in
L 2 (R + x Y,S). The operator Hb ^ is obtained from D2, acting in
C°°(Mb, 5), by imposing Dirichlet boundary conditions. Therefore, Hb i n t

has pure point spectrum. The operator Hb ^ can be analyzed by applying
separation of variables. This shows that the essential spectrum of Hb ^

equals [μ2, oo). q.e.d.

In particular, Hb has pure point spectrum in [0,μ2

χ). Therefore,
(Hb - A2)"1 is a meromorphic function of λ e Σ{. Now we may pro-
ceed in the same way as in the proof of Theorem 4 in [9]. Fix b > 2 and
put

G(ψ, X) = χe-iλuψ - (Hb - λ2y\(D2 - λ2)(χh(ψ, λ))), Im(A) > 0.

This is a meromorphic function of λ e Σ{. On R+ x Y, it has the form

Go + GX where Gχ is smooth and square integrable and

u<b.

Here C{(λ), C2(λ): Ker^l —• Ker^4 are linear operators which depend
meromorphically on λ e Σ{. Let fb denote the characteristic function of
[b, oo) x Y. Put

G{ψ, λ) = G(ψ, λ) + fb{e-iλuCx{λ)ψ + eiλuC2(λ)ψ - * " * > ) .

Then G is in C°°{Z, S) and satisfies D2G = λ2G. Moreover, it is easy
to see that Cx{λ) is invertible and

(4.17) l

The right-hand side provides the meromorphic continuation of F(ψ9λ)
to Σj. Put

(4.18) C(λ) = C2(λ)oCι(λ)-\ λeΣv
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This is a linear operator in KevA which is a meromorphic function of
A e Σ j . For μ e ω, μ > 0, there exist also linear operators

(4.19) Tμ(λ): KeτA-^^(μ)φ8f(-μ),

which depend meromorphically on A e Σχ such that, on R+ x Y, we have

(4.20)
τμ(λ)ψ9 λeΣv

μ>0

For λ e R, the operator C(λ) is regular and unitary, and equals the
"scattering matrix" for |A| < μχ. Furthermore, the following functional
equations hold

(4.21) C(A)C(-A) = Id, λ e Σx

(4.22) F(C(λ)ψ, -A) = F(ψ,λ), ψe KεrA.

There are also functional equations for the Tμ (cf. [16]).
Let φeKeτ(σ- 1). Put

(4.23)
E(φ, λ) = F(φ, λ) + {l/λ)DF(φ, λ) = F(φ - iyφ, λ), λe Σv

Then E(φ,λ) satisfies

DE(φ,λ)=λE(φ,λ).

This is the generalized eigensection of S attached to φ. If we apply
(4.20) to F(φ - iyφ, λ), it follows that, on ί + x Γ , w e have
(4.24)

E { φ , λ) = e ~ ι λ u ( φ - i γ φ ) + e ι λ u C ( λ ) ( φ - iyφ) + θ ( φ , λ ) , λeΣx,

where θ is square integrable, and θ(φ, A, (w, •)) is orthogonal to KerΛ.
If we compare (4.24) with the expansion of F(φ, λ) + λ~ιDF(φ, λ), we
obtain

(4.25) C ( λ ) γ = - γ C ( λ ) , λeΣx,

which together with the functional equation (4.21) yields
Proposition 4.26. The operator C(0): Ker^4 —• KerΛ is unitary and

satisfies

C(0)2 = Id and C(0)γ = -yC(0).

Thus there exists always a distinguished unitary involution σ of Ker^l
—the on-shell scattering matrix C(0)—which anticommutes with γ. This
involution is determined by the operator D.
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We remark that the on-shell scattering matrix C(0) is closely related to

the so-called limiting values of the extended L -sections φ of S satisfying

Dφ = 0 (cf. [1, p. 58]). Let L± denote the ±l-eigenspaces of C(0).

It follows from Proposition 4.26 that γ switches L+ and L_ . Thus

L±φγL± = KerA is an orthogonal splitting of KerA . By the prescription

Φ(ψ{, ψ2) = (γψx, ψ2) 9 Ψ\ 9 Ψ2 G Ker^4, we get a canonical symplectic

structure on Ker^4. Then an equivalent statement is that L + and L_

are Lagrangian subspaces of Ker^4. Let φ e L+. It follows from (4.24)

that, on R+ x Y, we have E(φ ,0) = 2φ + θ where θ is square integrable.

Put φ = jE(φ, 0). Then φ is nonzero and satisfies Dφ = 0. If we use

the notation of [1, p. 58], this means that φ is the limiting value of the

extended solution ψ of Dφ = 0. From Lemma 8.5 it follows that every

limiting value arises in this way, that is, L+ is precisely the space of all

limiting values of L2-extended sections φ of S satisfying Dφ = 0.

Finally, we recall a special case of the Maaβ-Selberg relations. We define

the constant term E0(φ, λ) e C°°(R+ x Y, S) by

(4.27) E0(φ, λ) = e~iλ\φ - iyφ) + eiλuC(λ)(φ - iγφ).

For a > 0 let χa denote the characteristic function of [a, 00) x Y c Z .
Set

(4.28) Ea{φ, λ) = E(φ, λ) - χaE0(φ, λ), λeΣv

By (4.24), Ea(φ, λ) is square integrable; its norm can be computed as

follows. Pick λf e Σx such that X Φ λ. Then

(Ea{φ, λ), Ea(φ, λ')) = -L.ϋDE^φ, λ), Ea{φ, λ'))
A — Λ

-(Ea(φ,λ),DEa(φ,λ'))}.

Now applying Green's formula together with (4.20) and taking the limit
λ' —>• λ give

2 2 ~ i(C(-λ)C'(λ){φ - iγφ), φ - iγφ),(4.29) ^Λφ' λ)W
λe(-μl9μx)9

where C\z) — (d/dz)C(z). This is a special case of the Maaβ-Selberg
relations.

5. The large time asymptotic behavior

In this section we shall study the behavior of fztrE(x, x, t)dx as
t —• oo. The main difficulty arises from the continuous spectrum of 2
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in particular, if the continuous spectrum has no gap at zero. By Theorem
4.10, this case occurs iff Ker^4 Φ {0}.

We start with some auxiliary result. Let

and \f(λ)\(l + \λ\)dλ < ooj .

We denote the trace norm of a trace class operator T in some Hubert
space by | |Γ | | , .

Lemma 5.1. Let Tχ, T2 be selfadjoint operators in a Hubert space.
Suppose that Tχ - T2 is trace class. Then, for every f e %, f(Tχ)-f(T2)
is trace class and

\\f{τx)-f{τ2)\\x < 4 = f ° \λf(λ)\dλ\\τx -T

For the proof see [26, p. 161]. Note that C0°°(R) c &.
Proposition 5.2. Let φ e C0°°(R). Then φ{β) - φiβfQ) is trace class.
Proof. Let a e C^°(R). Then, by Theorem 3.7 and Lemma 5.1,

(5.3) aiβe'1®1) - a(&oe'~t3'°) is trace class for t > 0.

Given φ e C^°(R), choose t > 0 such that supp0 is contained in

(-I/Λ/27, l/VTt). The map f(λ) = λexp-tλ2 is a diffeomorphism of the

interval (-l/VTt, l/VTt) onto the interval (-e~x/2/VTt,e~l/2/VTt).

Let a(u) = φ{f~X{u)). Then a e C^°(R) with support contained in

(-e~ι/2/VTt, e~ι/2/VTt). Moreover a{βe~t3jl)^φ{β) and a(SfQe'^)
= φ{2f0). From (5.3) our result follows.

Corollary 5.4. Let a e C°°(R) and suppose that a(λ) = 1 for \λ\ > C.

Then a{β)e~i9jl - a(%)e~^ and a(β)Se~t9)1 - a{3fo)3fQe~^ are
trace class for t > 0.

Proof. Let φ = 1 - a, φχ(λ) = φ(λ)e~tλ2 and φ2(λ) = φ{λ)λe~tλl, t >
0. Then φl9φ2e C^°(R) and, by Proposition 5.2, φ{{β) - Φi(&0), i =
1, 2, are trace class operators. Moreover

*2

a(β)e -a(3fQ)e °=e -e ° - (φx(β) - φχ{βQ))9

which is of the trace class by Theorem 3.7. The second case is simi-
lar, q.e.d.

Proposition 5.5. Let a e C°°(R). Suppose that there exist 0 < a < b
such that a(λ) = 0 for \λ\ < a and a(λ) = 1 for \λ\ > b. Then there exist
C, c> 0 such that

(5.6) \a[β)e~i9} - a{βΛe~t9!*\x < Ce~ct
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and
1 2

(5.7) \\a(3f)^e~t - a(^o)3^oe~t ° \\x < Ce

for t>\.
Proof The function a can be written as a = α + +α_ where a+(λ) = 0

for λ < a and a_(λ) = 0 for λ > -a, α > 0. Suppose that a = a+. For
ί > 0 put

f a(V-logi<)fi', 0 < w < 1,
ΦtW = 1 Λ + u

I 0 otherwise.
Then we have
(5.8) = a{Sf)e't3fl and φt(e~®°) = a{2ίQ)e~t9!\

Moreover, φt is smooth on R - { 0 } with support contained in ( 0 , 1 ) .

For t > 3 , φt belongs to CQ (R) . Therefore

Π
J—

\φt{λ)\{l + \λ\)dλ<oo forί>3.

By Theorem 3.7, Lemma 5.1 and (5.8) we get

\\a{β)e-t21 -ai^e-^W, < -±= Γ \λφt(λ)\dλ\\e-^ - e~^\\x

VLit J-oo

<c Γ \λφt(λ)\dλ
J—oo

for t > 3. To estimate the integral we split it as / ^ + /J^ + f™ . For the
first integral we obtain

f \λφt(λ)\dλ< f \φt{λ)\dλ<lΓ \φt(u)\du.
J — \ J — \ J—oo

If λ Φ 0 and t > 3, integration by parts gives

(iλy J-oo du5

which can be used to estimate the second and the third integrals. Putting
our estimates together, we get

Γ \λφt(λ)\dλ< Γ \φt(u)\du
J—oo J—oo du3

du.

By the definition of a, we have supp φ( c (-«, ε) for some ε < 1. Hence

Γ \λφt(λ)\dλ<Ce
J—oo

-/|logε|
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If a = a_, we set β{u) = a_(-u) and then proceed as above. This
establishes (5.6). The proof of (5.7) is analogous. For a = α + we put

J a(y/-logu)y/-logu vt, 0 < u < 1,

' ~ I 0 otherwise.

If t > 4, this function is three times continuously differentiable with
support contained in (0,1), and (5.7) follows in the same way as above,
q.e.d.

If KerA Φ {0}, the continuous spectrum of 3 fills the whole real line.
Our next goal is to isolate the contribution to fztτE(x, x, t)dx given
by the continuous spectrum near zero.

Proposition 5.9. Let μχ > 0 be the smallest positive eigenvalue of A.
Let a e C^°(R) be even and suppose that suppα c (-μx, μx). Further-
more, let 3Jac denote the absolutely continuous part of 2J. Then we have

= ~ p a(λ)λe-'λ2 Ίr(γC(-λ)C'(λ)) dλ

where C(λ) is the scattering operator (4.18), C\z) - (d/dz)C(z) and γ
is defined by (1.1).

Proof. Let E?(x,y,t) be the kernel of a(3J3ace~t31", and

£ ° ( x , y , t ) the kernel of a(^o)^oe~'^. Let </>,, •• , φr be an or-
thonormal basis for Ker(σ - 1), and E{φj, λ), j = 1, , r, the corre-
sponding generalized eigensections. It follows from(4.11) that the kernel
E^c has the following expansion in terms of the generalized eigensections:

(5.10)

Ea

a

c(x,y,t) = ̂ Σ,{fo

μt aWλe^Eiφj,λ,x)9E(φj,λ,y)dλ

- jΓ 1 a(λ)λe-'λ2E(φj, -λ, x) ® E(φJt-λ,y)dλ} .

A similar formula holds for the kernel E^(x, y, t). Let

e(φj ,λ,{u,y)) = sin(λu)φj(y) + cos(λu)γφj(y), (u, y) e R+ x Y.
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Then

(5.11)

e{φj,λ,y)dλ

e(φj,-λ,y)dλ} .

Let βfQ = L2(R+) ® KerΛ c L2(R+ xY,S) and J^ the orthogonal com-
plement of J£ in L2(Z, S). Let £ ( 0 , , A) = £0(<^ ;, λ) be the generalized
eigensection E(φj, λ) truncated at level 0 (cf. (4.24)). Furthermore, let
φ € C^(Z, S) and suppose that φ±β%. Then we have

(5.12) (E(φj,λ),φ) = (E(φj,λ),φ) and (e(φj, λ), φ) = 0.

Put

Using (5.10)-(5.12), we obtain

(5.13) {Tφ,φ) = ±-Σ Γ ^ ^ ί l W y A)> ^ l '
; = i - 7 0

Observe that E(φ., A) e ^ . Hence, by continuity, (5.13) holds for all
ί> € ^ . Let ψj , j € N, be an orthonormal basis for ^ . Then (5.13)
implies

(5.14)

/ ^. , Λ)||2 -

7=1

^°(R+)Now let φ e C^°(R+) ® Ker^. Then we get

( ^ , >̂ = ̂  έ _(Al «WAe-'A2{|(£0(^., λ), φ)\2 - \{E0(φj, -λ), φ)\2

-{\{e{φj,λ),φ)\1-\{e{φj,-λ),φ)\2)}dλ,

where E0(φj, λ) is the constant term of E(φj, λ) defined by (4.27). Using
the unitarity of C(λ) for λ real together with(4.25), a direct computation
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shows that (Tφ,φ) = 0. By (5.14) and (4.29) we are finally led to

Tr(Γ) = ~ jΓ' a(λ)λe-tχ ΣUCi-XiCfiλHφj - iγφj), φj - iγφj)

- {C(λ)C\-λ){φj - iγφj), φj - iγφj)}dλ.

Since φχ, , φr, γφx, , γφr form an orthonormal basis for KerA,
the sum equals

τr{C(-λ)C\λ))-τr(C(λ)C\-λ))+iτr(γC(λ)C\-λ))-iΎr(γC(-λ)C'{λ)).

By the functional equation (4.21) we have

(5.15) C\λ)C{-λ) - C{λ)C\-λ) = 0.

Therefore the first two traces cancel. If we employ (4.25) and (5.15) to
rewrite the remaining terms, we get the equality claimed by the proposi-
tion.

Corollary 5.16. Let μχ > 0 be the smallest positive eigenvalue of A.
Then there exists c > 0 such that

ί trE(x, x, t) dx = - J- Γ 1 λe~tχl Ίr{γC(-λ)C\λ)) dλ + O{e~ct)
Jz 2π Jo

for t>\.
Proof Let a e C °̂(R) be an even real-valued function such that

suppα c (-μι, μx) and a(u) = 1 for \u\ < δ. Put β = 1 - a. Then, by
Proposition 3.11, we get

L trE(x,
z

Note that the sum over the eigenvalues is finite. By Proposition 5.5, the
second trace on the right-hand side decays exponentially as t —> oo. Then
we apply Proposition 5.9 to the first trace. For the asymptotic expansion
we may replace α by 1.

Corollary 5.17. Suppose that KQVA = {0} . Then there exist constants
C, c> 0 such that

\LtτE{x, x,t)dx <Ce —ct
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Observe that, by (4.25), γ commutes with C{-λ)C'(λ). Therefore, the
integral on the right-hand side of the equality of Corollary 5.16 can be
rewritten as

^ Γ λe-tλl{Ίτ{C{-λ)C\λ)\ Ker(y-/))-Tr(C(-λ)C'(λ)| Ker(y+i))} dλ.

Furthermore, recall that C(λ) is real analytic for λ e (-μ{, μ{). More-
over, from (4.25) and (5.15), it follows that

Ίx(yC(-λ)C\λ)) = -Ίr(γC(λ)C'(-λ)).

In particular, this function vanishes at λ = 0. Using this observation, we
get an asymptotic expansion, as t —• oo, of the form

/'
Jo

~a2 Ύr(γC(-λ)C'(λ)) dλ~

where

(5.18) ck =
 l-

Therefore, Corollary 5.16 leads to
Corollary 5.19. As t -• oo, there exists an asymptotic expansion of the

form

L k-\

where the coefficients ck are given by (5.18).
Remark. In contrast to the asymptotic expansion at t = 0, the coeffi-

cients ck are nonlocal and determined by global properties of the contin-
uous spectrum at λ = 0.

6. Eta invariants for manifolds with cylindrical ends

We are now ready to define the eta function of 3 . Let a > 0. For
Re(s) > n put

(6.1) ηa(s, 9) = Γ * n / 7 . f > - 1 ) / 2 / tr£(x, x, ήdxdt.
1 K\S + A;/ ι ) Jo Jz

By Proposition 3.12, the integral is absolutely convergent in the half-plane
Re(s) > n and admits a meromorphic continuation to the whole complex
plane. Similarly, for Re(s) < 2, we put

(6.2) ηa(s, 9) = Γ ( ( j + \ ) / 2 ) Ja°° t
{S~m f*E(x9x, t)dxdt.
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By Corollary 5.19, the ^-integral is absolutely convergent for Re(^) < 2
and admits also a meromorphic continuation to C. Now observe that the
meromorphic function ηa{s 93) + ηa(s9 3) is independent of a > 0 and,
therefore, we may define the eta function of 3 by

(6.3) η(s a

Then η(s, 3) is a meromorphic function with simple poles at s = j , j e
Z . The poles at s = j , j > 2, may not be given as the integral of a local
density.

Remark. In view of Proposition 3.11 we may regard η(s, 2) also as
a relative eta function η(s\3f9 &0) attached to 3 , &0.

If η(s, 2f) is regular at s = 0, we define the eta invariant of ^ to be
//(0, 21). There are two special cases:

(a) KerΛ = {0}. Then JztvE(x, JC, t)dx decays exponentially as
/ —> oo, and η(s, 3) can be defined in the half-plane Re(s) > n by

<6-4> "< ί

(b) Suppose that Z> is a compatible Dirac-type operator and dim Z is
odd. By Proposition 3.12, we have fztτE(x,x, t)dx = O(tx/2) as t -•
0, and η(s, 3) can be defined by formula (6.4) in the strip 2 > Re(^) >
- 2 . In particular, η(s, «SΓ) is regular at s = 0, and the eta invariant of
3f is given by

(6.5) ι/(0,3) = -]= Γ Γ1/2 [ trE(x,x, t)dxdt.
Vπ Jo Jz

The case where (a) and (b) are both satisfied has been studied also by
Klimek and Wojciechowski [19]. In this paper we shall not attempt to
answer the question of the regularity of η(s, 2f) at s = 0 in general.
Next we derive a variational formula for compactly supported perturba-
tions. Let Dv be a smooth one-parameter family of first-order elliptic
differential operators on Z which satisfies the same assumptions as in §2.
In particular, Dv = γ(d/du + A) on R+ x Y. Let Dυ = dΌJdv .

Lemma 6.6. For t>0, the operator Dve~^v is trace class.

Proof. Let Uχ be the operator defined in the proof of Theorem 3.7.
Then we may write

ύy1^ = Dυe
{-"2^ o U~χ

λ o Uχ o e{~t/2)^\

In the course of the proof of Theorem 3.7 we showed that Uχ o exp - j2f2

is a Hilbert-Schmidt operator. By assumption, ^ = 0 o n R + x 7 . If
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we use (3.5), it is easy to see that Dv exp-j&2 o U~ι is Hilbert-Schmidt

too. q.e.d.
Let Eυ(x,y,t) be the kernel of 3υ exp -t32 . From (3.10), it follows

easily that fz trEv(x, x, t) dx is a smooth function of υ . If we employ
Proposition 3.11 and then proceed as in the proof of Proposition 2.1, we
obtain

Lemma 6.7. For t > 0, we have

To continue we have to determine the asymptotic behavior of

Ύxφve~t2v) as t -> 0 and t -> oo. Since Dυ = 0 on R+ x Y, the
small time asymptotic behavior is reduced to the compact case. Using
(3.5) and Lemma 1.7.7 of [12], we get an asymptotic expansion of the
form

(6.8) 0 ^ 1 ) / 2

as t -+ 0.
Now we come to the large time asymptotic behavior. Let Py be the

orthogonal projection of L2(Z, S) onto Kerϋ^ . Since 0 may not be an
isolated point of the spectrum of 3fυ , the following lemma is nontrivial.

Lemma 6.9. Suppose that d i m ( K e r ^ ) is constant. Then Pv depends
smoothly on v.

Proof. For b > 0, let Hb(v) be the operator which represents the
quadratic form (4.15) defined by Dv . By Lemma 4.16, Hb(υ) has pure
point spectrum in [0, μ\) where μx > 0 is the smallest positive eigenvalue
of A. By Proposition 8.7, we obtain KerHb(v) = K e r ^ 2 . Moreover, it
is clear that Keri^ 2 = Kerϋ^ . Using the definition of Hb{v), it is easy
to see that Hb(υ) depends smoothly on v. Since dim(KerHb(v)) is con-
stant and 0 is an isolated point in the spectrum of Hb(v), the orthogonal
projection of <^ onto KerHb(υ) depends smoothly on v . Now observe
that Ker.2^ is contained in ^ , and the orthogonal complement of ^
in L ( Z , S) is independent of v . This proves our claim, q.e.d.

Assume that d i m ( K e r ^ ) is constant. Then Pυ is smooth in v . Since
DVPV = 0 , we have

To begin with we consider the contribution of the eigenvalues first. Let
2fv d be the restriction of 3V to the subspace of L2(Z, S) spanned by
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the eigensections of 3fυ . Since Pυ has finite rank and \\Dυ exp -t3ί2

 d\\ <

Ce~ct, it follows from (6.10) that | T r ^ exp -t3f^d)\ < Ce~ct for some
constants C, c > 0.

To estimate the contribution of the continuous spectrum, we pick a e
C£°(R) as in Proposition 5.9. Put β = 1 - α. Since β(u) = 0 for \u\ <
δ, the spectral theorem implies that \\β(3r)exp -t&2\\ < e~tδ, t > 0.
Hence, for t > 1,

(6.11) \Tr(DJ(®v)e-'^)\ < || V ^ | | , Wβ^Je^'-^W < Ce~tδ.

Let &ac(v) denote the absolutely continuous part of 3V , and use (4.11)
to construct the kernel of t>va(βac(v)) exp -t&ac{v)2 . It is given by an
expression similar to (5.10). By means of this kernel, we get

1 oo

Σ
φυEυ(φJ9-λ)9Eυ{φJ9-λ))}dλ,

where EΌ(φ, λ) denotes the generalized eigensection of 2JV attached to
φ e Ker((j - 1). Since dim(KeτHb(v)) is constant, (Hb(υ) - λ2)~ι is
smooth for |Λ| sufficiently small. From the construction of the analytic
continuation of Eυ(φ, λ), λ e Σ{, it follows that Eυ(φ,λ) depends
smoothly on v for \λ\ sufficiently small. More precisely, for each υ0 there
exists δ > 0 such that, for |Λ| < δ, Eυ(φ, λ) is a smooth function of v
for \v - υo\ < δ. Differentiating the equation DυEv(φ, λ) = λEv(φ, λ)
with respect to v gives

DvEυ{φ, λ) = -(Dυ-λ)-^Ev(φ,λ), \λ\ < δ.

If we use Green's formula together with (4.20) and (4.24), we get

(DvEv(φj, λ), Ev(φj, λ))Ma = (γJLcυ(λ)(φ - iγφ), Cυ(λ)(φ - iγφ)}

+ 0{e~ca)

for some c > 0. Choose a such that suppα c {-δ, δ). Then
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=-i Γ awe~a2

( v ( ) ^ υ ( ) ή dλ.

The functional equation (4.21) implies

(6.12) (±C,(λ)) Cυ(-λ) + Cv(λ) (§^Cv(-λή = 0.

Therefore, the right-hand side of the equation above (6.12) equals

Since Ύv(γCυ(-λ)dCυ(λ)/dυ) is an analytic function near λ = 0, we get
an asymptotic expansion

7=1

as t —> oo, where the first coefficient is given by

Put

and

< 0 .

Then ^ ( 5 , ^ ) and £ 2(s,ίi^) admit meromoφhic continuations to the
whole complex plane. Summarizing our results, we have proved

Proposition 6.13. Let Dυ be a smooth one-parameter family of first-
order differential operators on Z satisfying the above assumptions. Suppose
that dim(Ker^) is constant. Then η(s,3^υ) is differentiate with respect
to υ and
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Corollary 6.14. Suppose that d i m ( K e r ^ ) is constant. Then the resi-
due of η(s, 3fv) at s = 0 is independent of v.

Since Dv has continuous spectrum, we cannot proceed as in the proof of
Corollary 2.12 to eliminate the condition on Ker.2^ . Eigenvalues embed-
ded into the continuous spectrum are usually unstable under perturbations.
We have to understand how this is compensated by the continuous spec-
trum. We claim without proof that Corollary 6.14 remains true without
any assumption on K e r ^ .

Corollary 6.15. Assume that dim(Ker.2^) is constant, and η(s, 3fv)
is regular at s = 0. Then

JLη{0, sr) = -j=cn(Dυ) + ±Tr(yCv(0) Ac.(0)),

where cn(Dv) is the nth coefficient in the asymptotic expansion (6.8).
Using (4.25) and (6.12), we get

T Γ ( y C » ( 0 ) ^ C » (

Comparing the variational formulas given in Corollary 2.9, Theorem 2.21,
and Corollary 6.15 thus leads to

Proposition 6.16. Let Dv be a smooth one-parameter family of compat-
ible Dirac-type operators as above. Suppose that dim(Keri^) is constant.
Let τυ = Cυ(0). Then η(0, (Dy)τ ) and η(O,3fv) are smooth functions
of v and

If the kernel of 3!v is not constant, η(O93fv) will have discontinu-
ities which we are going to study next. Let T > 0 be given. It follows
from (3.10) and Proposition 3.12 that f^Γι/2 fztrE(x, x, ήdxdt is a
smooth function of v . Now consider the integral from Γ to oo. Since
we vary 3fυ on a compact set, the constants occurring on the right-hand
side of (3.5) can be chosen to be uniform for υ e (—β, e). Thus

(6.17) ii —

for some constant Cχ > 0 and \v\ < ε. Let β be as in (6.11). Then
(6.17) implies that
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r
JT
IT

depends smoothly on υ .
Next we have to consider the contribution of the continuous spectrum

near zero. It follows from Proposition 5.9 that this contribution is given
by

(6.18) - i - Γ α(λ)sign λ Ίτ(γCυ(-λ)Cf

υ(λ))dλ,
*'"' JO

where suppα is contained in (-μχ, μχ).

Lemma 6.19. There exists ε > 0 such that Ίr{γCυ(-λ)C'v{λ)) is a
smooth function of v for \υ\ < ε, \λ\ < ε.

Proof Using the functional equation (4.21) we see that the singular-
ities of the meromorphic matrix-valued function Cv(-z)C'v{z) are sim-
ple poles with residues of the form —mid, m e N . Since Tr(y) = 0,
Tr(γCv(-z)C'v(z)) is an entire function of z. Let Γ c C be a circle with
center at the origin such that all poles ^ 0 of Co(—z)C'0(z) are contained
in the domain exterior to Γ. From the construction of the analytic con-
tinuation of the generalized eigenfunctions it follows that Cv(-z)C'v(z)
will be a smooth function of z e Γ and v, \υ\ < ε, for ε > 0 sufficiently
small. Our claim is thus obtained by Cauchy's theorem, q.e.d.

If we choose a with support sufficiently small, then by Lemma 6.19,
(6.18) is a smooth function of v for |ι;| < ε. Combining our results, we
see that the only possible discontinuities of η{0, 3tυ) may arise from the
small eigenvalues. There are two possibilities: either eigenvalues disappear
and become resonances, i.e., poles of the scattering matrix, or they remain
eigenvalues but cross zero. In the former case eigenvalues must disappear
in pairs of positive and negative eigenvalues. Indeed, the definition of the
generalized eigenfunctions immediately implies that the scattering matrix
satisfies the following relation:

Thus, the poles of C(λ) appear in pairs {z, -z} . Hence, the disappearing
eigenvalues do not cause discontinuities. Next observe that by (4.25),
Cv(0) has exactly ^dim(Ker^) eigenvalues equal to 1. Therefore, by
Proposition 8.10, we have dimKer((DJ τ) = d i m k e r ^ ) + \ dimKer(Λ).
This implies

Proposition 6.20. Let Dv be a smooth one-parameter family of compat-
ible Dirac-type operators satisfying the properties above. Then J/(0, (Dv)τ)-
7/(0, 3fv) is a continuous function of v .



ETA INVARIANTS AND MANIFOLDS WITH BOUNDARY 357

7. Convergence results for eta invariants

Throughout this section we shall assume that D is a compatible Dirac-
type operator on Z satisfying the above assumptions. Then the various
eta invariants are well defined. Let σ be a unitary involution of YLsrA as
in (1.5). Our main purpose is to relate the eta invariant η(0, Dσ) to the
eta invariant η(0, 2J). If Ker^4 = {0} , this problem was studied in [11].

For a > 0, consider the restriction of D(a) of D to the compact
manifold Ma = AfU([0, a]xY). By Proposition 2.16, we have η(0, Dσ) =
η(0, D(a)σ), a > 0. We shall now study the behavior of ^(0, D(ά)σ) as
a —• oo. Since D is a compatible Dirac-type operator, η(0, D(a)σ) is
given by (1.30). Then we may write

D(a)σ) =
(7.1)

The first integral can be treated in essentially the same way as in §7 of [11].
For our purpose we shall use a slightly different approach. Let e{ σ be the

kernel (1.13), and e\ the restriction of the heat kernel K of d/dt + &2

to Ma . We change coordinates so that Ma = M U ([-a, 0] x Y) where
the boundary of M is identified with {-a} x Y. Let φ{, φ2, ψχ, ^ 2 be
the functions defined by (1.14) and put

φ"{u) = Φiiu/a) and ψf(u) = ψ^u/a), i = 1, 2.
Again we regard these functions as functions on the cylinder [—a,0]xY,

and then extend them to Ma in the obvious way. Put

(7.2) el-φfarf + φleM.
This is the parametrix for the kernel Ka

a of exp -tD(a)2

σ, and Ka

a is
obtained from ea by a convergent series of the form

m=l

where the notation is similar to (1.16). By (1.13) and (3.5), it is easy to
see that, for m eZ, there exist C{, C 2 , C3 > 0 such that

(7.3) \\Dk

χ(Ka

σ(x,y, ή-ea

σ(x,y9 t))\χ=y\\ < Cx exp(C2t - C3(a2/ή)

for k < m, x G Ma, ί e R + . Using (3.10) and following the proof of
Proposition 3.12, we immediately obtain that

(7.4) trE(x,x,t)dx <Ct
1/2



358 WERNER MULLER

for 0 < t < 1 and some constant C > 0 independent of a. The estimate
(7.4) together with (7.3) implies that the first integral on the right-hand
side of (7.1) equals

(7.5) - ^ ί Y 1 / 2 ί XτE{x,x, ήdxdt + 0(exp(-C4α
3/2))

v π Jo Jλfa

for some C4 > 0 and a —• oo.
Proposition 7.6. W

= / V1 / 2

/ J

V 1 / 2

lim 4= /
/ Jo a

Proof. It follows from Corollary 5.19 that

lim 4= / V
so that it is sufficient to prove that

lim 4= / t ι/2\ KE((u9y),(u,y),t)dydu

Let b > 0. Note that the support of the right-hand side of (3.10) is
contained in M = MQ. Hence, by (3.5),

(7.7) lim f Γ 1 / 2 f \rE{x,x,t)dxdt = 0.
a^°°Jθ J[a,oo)xY

Pick a G C0°°(R) such that a(u) = a(-u), 0 < a < 1, a(u) = 1 for \u\ <
μJ4 and a(u) = 0 for \u\ > μjl. Set β = 1 - α. Let Ea (resp. ^ )

denote the kernel of a(3f)3f exp - ί ^ 2 (resp. β(3f)3f exp - r ^ 2 ) . Then
E = Ea + Eβ . Let / α denote the characteristic function of [a, oo) x Y
in Z . By following the proof of Proposition 3.11, one can show that

L tτEJx,x, ήdx
[fl,oo)xK

( 7 > 8 ) = j χa\xEβ{x,x,t)dx

Let 1 < b < y/a. Then Proposition 5.5 implies

,η ns

1 / 2

[a,oo)xY
trEJx,x,t)dx

P

< C Γ
Jb

dt < C ΓΓι/2e~ctdt
J

ι/2e~ct

b
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Now we turn to the kernel Ea . First, observe that

Ea(x,y,t)=

where E™ is the absolutely continuous part of Ea, λ runs over the eigen-
values of 3, and φ are the corresponding orthonormalized eigensec-
tions. By Proposition 4.7, the contribution of the discrete part to the
integral in question can be estimated by

μ I Γrl/2e-tλ2dt f \φj(u,y)\2dydu < Ce~ac\
Jθ J[a,oo)xY J

\λj\<μι/2

Since the kernel E*c is given by (5.10), by means of this formula we obtain

x fγ{\\E(φj, λ, (II, y))\\2 - \\E(φj, -λ, (II, y))\\2}dydλ.

Now we use (4.24) to compute the integral over Y. Note that φ - iyφ
belongs to the -h/-eigenspace of γ and, in view of (4.25), C(λ)(φj - iγφj)
belongs to the -/-eigenspace of γ. Hence φ. - iyφ is orthogonal to
C(λ)(φj - iγφj). Moreover, recalling that C(λ) is unitary for λ real, we
thus get

/ \\E(φ, λ, (II, λ)\\2dy = 4\\φ\\2 + f \\θ(φ, λ, (u, y))\\2dy.
JY JY

From (4.20) it follows that

\\θ{φAΛu,y))tdy<

Applying this to (7.10) yields

Γ'-"1 ί
Jb J[a,

,oo)x7
\xΈf"{x9x9t)dx dt

Putting our estimates together implies that there exist C, c> 0 such that

A"2 /
Jb J[a,

trE(x9 x,t)dx

for 0 < b < yfa. Combined with (7.7) this proves our claim, q.e.d.
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It remains to study the second integral in (7.1). First note that, for
μ > 0, one has

(7.11)

Let λj = λj(a) run over the eigenvalues of D(a)σ. Let 0 < K < 1/4.
Then we may split the trace as follows:

(7.12) Ίr{D{a)σe-tD(ah = ( Σ + Σ ] ¥~'^

From (7.11) it follows that

(7.13) f ° ° Γlβ Σ V ~ ' Λ J 2 dt - Ce~aXβ~"* Tr(e~D(a)h, a > \ ,

(cf. (7.2) in [11]). Using Theorem 4.1 of [11] (which holds without any re-

striction on A), we see that Tr(exp-Z)(α)^) can be estimated by

CVol(Mα) < Cχa where Cχ > 0 is independent of a. Hence (7.13)

can be estimated by C2aexp(-aι^2~2κ) which tends to zero as a —• oo.

It remains to study the contribution made by the eigenvalues λ. which

satisfy \λj\ < a~κ . If KerΛ = {0} it was proved in [11, Theorem 6.1], that

the nonzero spectrum of D(a)n has a positive lower bound as a —• oo.

In this case it follows from our estimates that η(0, D(ά)u ) converges

to7/(0, 2) as a —• oo. Combining this with Proposition 2.16 we thus

obtain

(7.14) η(0,D(a)n ) =

8. The small eigenvalues

Suppose that Ker^4 Φ 0. The scattering matrix C(λ) acts in this vector
space and, for λ = 0, we get a unitary involution τ = C(0) of Ker^4
which anticommutes with γ (cf. Proposition 4.26). In this section we
shall use τ to define the boundary conditions. Thus

(8.1) L ± =Ker(C(0)=Fld).

We shall employ the following notation. Let P± denote the orthogonal
projection of Ker^ onto L± . Let φ.9 j e N, be an orthonormal basis for

Ran(Π+) consisting of the eigensections of A with eigenvalues μ. > 0.



ETA INVARIANTS AND MANIFOLDS WITH BOUNDARY 361

Our main purpose is to investigate the small eigenvalues of D(a)τ. More
precisely, we pick 0 < K < 1 and study the eigenvalues λ of D(a)τ which
satisfy |λ| < a~κ. We shall employ the selfadjoint operator Hb defined
by the quadratic form (4.15). Recall that Hb has pure point spectrum in
[0, μ\). The description of the spectrum of Hb in [0, μ2

χ) is analogous
to Theorem 5 in [9]. Here we shall discuss only the kernel of Hb . For this
purpose we need some preparation. If we put λ = 0 in (5.15), it follows
that

(8.2) C'(0)C(0) = C(0)C'(0),

and, therefore, KerA admits a decomposition into common eigenspaces
of C(0), C'(0). Given b e R, put

(8.3) Vb = {φe KerA \ C{0)φ = -φ, Cf(0)φ = 2ibφ}.

Lemma 8.4. // Vb φ {0}, then b<0.
Proof. Suppose that Vb φ {0} and b > 0. Let φ e Vb, φ φ 0.

Consider the generalized eigensection E(γφ, λ) of 31 attached to γφ e
L+ . Let Eb(γφ, λ) be the truncated section (4.28). Employing (4.29), we
get

\\Eb(γφ, 0)| |2 = 4b\\φ\\2 - i(C(0)C'(0)(γφ + iφ), γφ + iφ)

= 4(b-b)\\φ\\2 = 0.

But Eb(γφ, 0) Φ 0, a contradiction, q.e.d.

Lemma 8.5. Let φ e C°°(Z , S) be a solution of D2φ = 0 and suppose
that, on R+ x Y, φ takes the form φ = φ + φ{ where φχ e L2 and
Φ e KerA. Then φ satisfies C(0)φ = φ.

Proof Since φχ is square integrable and satisfies D2φχ = 0, we have

(8.6) <Pι = Σcje~μjUΦj>

which implies Dφ = 0 on R+ x Y. If we apply Green's formula to Ma ,

then Dφ = 0 on Z . Thus φ e KerA is the limiting value of φ in the

sense of [1]. We may write φ as φ — Φ+ + Φ_ where C(0)φ± = ±(/>± .

Now consider the generalized eigensection E(γφ_ , λ) of 2 attached to

γφ_ e L+ . Put ψ = jE(γφ_ , 0). Then ψ is a smooth section of S and

satisfies Dψ = 0. From (4.24) it follows that, on R+ x Y, ψ = γφ_ + θ,

θ G L2. Moreover, θ is smooth and satisfies \\θ(u, y)\\ < Ce~cu. Using
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Green's formula and (8.6), we get

0 = {Dφ, ψ)M = / (γφ(a, y), ψ{a, y)) </y + (φ, D^) 7fl
 JY

Hence φ_ = 0.

Proposition 8.7. For 6 > 0, we have KeτHb =

Proof. If φ e L2(Z, 5) satisfies D2φ = 0, then, on R+ x y , p has an
expansion of the form (8.6). This expansion shows that φ belongs to the
domain of Hb and satisfies Hbφ = 0. To establish an equality, consider
φ e KeτHb. From the description of the domain of Hb given in §4, it
follows that φ is smooth in the complement of {b} x Y and therefore
satisfies D2φ = 0. Hence, on R+ x Y, φ can be written as follows

where
2i(u-b)φ, u<b,

for some φ € Ker^ί. Let χb be the characteristic function of [b, oo) x Y
and set

Then φeC°°{Z,S), D2φ = 0 and, on R + x r , we have

(8.8) φ = 2i(u-b)φ + <p{

where Pj e L2 . We may write φ as φ = φ+ + φ_ where C(O)0± =

Let / Γ ( ^ ± , λ) be the corresponding generalized eigensection and put

Then ψ e C°°(Z, S), Z>V = 0 and, on R+ x Y, we have

(8.9) y = 2iuφ+ + ̂ ( 0 ) 0 , - 2ibφ_ + ̂  ,

2where ψxe L2 . Now consider 2)^ . By (8.9), we obtain Dψ = 2iγφ+ +

Dψχ, Z> ĵ G L 2 on R+ x y , and Lemma 8.5 implies γφ+ = 0. Since

C"(O)0_ - 2ibφ_ belongs to the -1-eigenspace of C(0), Lemma 8.5 im-

plies also that C'(0)φ_ = 2ibφ_ . Thus φ = φ_ is contained in Vb . By

Lemma 8.4, φ = 0 and, therefore, ^ = φ is square integrable and satisfies
2D2φ = 0. q.e.d.
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Now we can start the investigation of the small eigenvalues. First, con-
sider the eigenvalue λ = 0. Let φ e KerD(a) τ. On [0, a]xY, φ satisfies
γ(d/du + A)φ = 0 and, therefore, it can be written in the form

where φ e L+. We may use this expansion to extend φ to a smooth
section φ on Z satisfying Dφ = 0. Let E(φ, λ) be the generalized
eigensection attached to φ. In view of (4.24), φ — ̂ ls(0, 0) is square
integrable and D(φ - jE(φ, 0)) = 0, i.e., φ - \E{φ, 0) e YJtxS. This
proves

Proposition 8.10. There is a natural isomorphism

KerD(a) τ £ K e r ^ θ Ker(C(0) - Id).

Now suppose that A, \λ\< μx, is an eigenvalue of D{a)τ with eigen-
section <p . On [0, a]xY, φ has an expansion of the form

-iλu , iλu

φ = e ψ{+e ψ2

(8.11)

where ψχ e Ker(y - i), ^ 2 e Ker(y -h /) and

(8.12) P.Ψ2 = -e~2iλaP_ψv

Set
/o 11\ —iλu iλu

(8.13) ίΌ = e Ψ\+e Ψ2

We call </>0 the constant term of p .
Proposition 8.14. There exist δ > 0, α 0 > 0, such that, for a > aQt

any eigensection p / 0 of D(a)τ with eigenvalue λ satisfying 0 <\λ\<δ
has nonvanishing constant term <pQ.

Proof Let φ be an eigensection of D(a)τ with eigenvalue λ, 0 < \λ\ <
μχ/2. Suppose that the constant term <p0 of φ vanishes, i.e., ψx = ψ2 = 0
in (8.11). We assume that | |p | | = 1. Then there is a constant C > 0,
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independent of a, such that Σj\aj{λ)\Leμ'a < C where a^X) are the
coefficients occurring in (8.11). We extend φ to a section φ of S over
Z by

ί 9(x), χeMa,
φ{X)~{ Σjaje'^u-a)φj, x = (u,y)e[a,oo)χY.

Then φ is continuous on Z and smooth on Z - ({a} x Y). Moreover, it

is easy to see that φ belongs to Hb ( Z , S) for every b > 0 and satisfies

11|0|| - 1| < Ce~ca. By Proposition 8.7, any ψ e KerHb is smooth,

satisfies Dψ = 0, and takes the form (8.6) on R+ x Y. In particular, ψ

satisfies Πσ_(ψ(u, •) = 0 for u > 0. Using Green's formula, we get

(Ψ,Ψ)M =λ~l(Dφ,ψ)M =λ-\φyDψ)M = 0 .
a a

Furthermore, in consequence of the definition of φ ,

f
J[aJ[a,oo)xY — Wj

for some constants C, c > 0. Hence, φ satisfies

(8.15) \(φ9ψ)\ <C\\ψ\\e~ca fovψeKerHb.

Now we shall apply the mini-max principle. Recall that by the second

representation theorem for quadratic forms (Theorem 2.23 of [17, VI,

§2.6]), the domain of Hι

b

/2 equals H\[Z , S). Let

W - π , t a
ψ€Hι

b(Z,S)
ψ±KeτHb

It follows from Lemma 4.16 that 0 < w < μ\. Using again Theorem 2.23
of [17, VI, §2.6], we get

(8.16) \\Hl

b

/2φ\\2 = \\Dφ\\2 = \\Dφ\\2

M =λ2.
a

Let πb denote the orthogonal projection of ^ onto KerHb. Put φ =
φ - πbφ. Employing (8.15) and (8.16) yields

-1 |<C6>- C * and | | | ;

This implies w < | | /^ 1 / 2 ^| | 2 / | |^ | | 2 < (1 + Ce~ca)λ2 and, therefore, we can

find a0 > 0 such that λ2 >π/2 for a > aQ . Put δ = (w/2)ι/2 . q.e.d.
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Proposition 8.14 shows that, for a > a0, the eigensections of D(a)τ

with sufficiently small nonzero eigenvalues are determined by their con-
stant terms. We shall now investigate the constant terms more closely.
Pick δ > 0 and a0 > 0 as in Proposition 8.14. Suppose that λ with
0 < \λ\ < δ is an eigenvalue of D(a)τ, a>a0, and φ an eigensection for
λ normalized by ||^|| = 1. Then the constant term (8.13) of φ does not
vanish. We may write ψχ as ψχ = φ{ - iγφ{ for a uniquely determined
ΦxeL+. Put

G = φ - E(φχ, λ).

Then G is smooth and satisfies DG = λG. On [0, a] x Y, it has an
expansion of the form

G = eiλu(ψ2-C(λ)Ψι)

The coefficients Cj(λ) and d.(λ) are determined by the expansions (8.11)
and (4.20). From (8.11), (4.20), and (4.29), it follows that these coeffi-
cients satisfy ]Γ\ \aj{λ)\2eμja < C and \bj(λ)\ < C for some constants
C > 0 independent of a and j . By Green's formula, we obtain

y)9 G{a,y))dy= (DG, G)κ - (G, DG)K = J(γG(a,

and therefore

(8.17) \\C(λ)Ψι-ψ2\\2<e-ca.

Let /: L_ -» Ker(y - i) be defined by I{φ) = φ- iγφ. Put

S(λ) = P_ o C{λ) o I, λeΣr

Observe that there exists a unique φ e L_ such that ψx = φ - iγφ. Then,
together with (8.12), inequality (8.17) can be rewritten as

(8.18) \\e2iλaS(λ)φ + φ\\2<e~ca.
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L e m m a 8 . 1 9 . The operator S(λ): L _ - + L _ is unitary for λ e {-μx , μ x ) .

This is an easy consequence of the unitarity of C(λ) for λ e (-μι, μ{).

Since S(λ) is unitary, the eigenvalues of the linear operator e21 aS(λ) +

Id are of the form eιθ + 1, θ e R. Let 0 < ζ be the smallest eigenvalue
of (e2iλaS{λ) + Id){e2iλaS(λ) + Id)*. Then

r . | | (* 2

ς = mm

which combined with (8.18) implies that ζ < e ca . Hence, e2ιλaS(λ) has

an eigenvalue eιθ satisfying |1 + cos0| < e~ca, and there exists k e Z

such that |πfc - 0| < e~ c α. Let m(λ) be the multiplicity of the eigen-

value λ. By Proposition 8.14, we get m{λ) linearly independent vectors

Φ\9 '" ' Φm(λ) e L_ which satisfy (8.18). Summarizing, we arrive at

Proposition 8.20. Let δ, a0 be chosen according to Proposition 8.14.

Let a > a0 and suppose that λ, 0 < \λ\ < δ, is an eigenvalue of D(a)τ

of multiplicity m. Then there exist m eigenvalues eιθγ, , eιθm of
2iλ
f

e2iλaS(λ) such that

l\<e-ca, 7 = 1, ••• , m.

Next we shall study the zeros of det(e2iλaS(λ) + Id) near λ = 0. By

(8.2), C'(0) preserves the eigenspace decomposition (8.1). Let C'_(0)

denote the restriction of C'(0) to L_ . Then S'{0) = C'_(0) and we have

(8.21) S(λ) = -Id+S'(0)λ + O(λ2).

In view of Lemma 8.19, we can apply Rellich's Theorem [4, p. 142] to
study S(λ). By choosing δ > 0 sufficiently small, the punctured disc
0 < \z\ < δ consists of simple points of S(z) only. Then there exist
p <r = dimL_ mutually distinct eigenvalues of S(z):

The eigenprojectors Pj{z) associated to ^ ( z ) are also holomorphic at
z = 0, and S(z) takes the form

J=ι

We shall obtain a sequence vχ(z), , uγ(z) by repeating the eigenvalues
according to their multiplicity. Let ψAz) be the eigenvector correspond-
ing to i/j(z). We may assume that ψj{z) is holomorphic at z = 0.
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Differentiating the equation S(z)ψ.(z) = v.(z)ψ.(z), we obtain

S'(0)Ψj(0) + S(0)ψj(0) = Uj(0)ψj(0) + ^-(0)^(0).

Since 5(0) = - Id and IΛ(0) = - 1 , we have

(8.22) S'(0)Ψj(0) = Vj(0)ψj{0).

Recall that S(λ) is unitary for λ € (-μ{, μx). Therefore, it follows that
there exist real analytic real-valued functions β.(λ) of λ € (-δ, δ) such

that Uj{λ) = -eiβ*{λ), λe(-δ,δ), and βj(O) = 0 . Moreover, each β.{λ)
has an expansion of the form

(8.23) βj(λ) = ajχλ + aj2λ
2 + , |A| < δ.

From (8.22), it follows that the eigenvalues of ^'(O) are equal to

v'j(0) = i a j l 9 j = 1 , ••• , r .

Fix δχ, 0 < <Jj < J, and let

(8.24) m y = max |^;W|.

Then the function f(λ) = 2aλ + βj(λ) is strictly increasing for |Λ| < δ{,

a > m.. Choose a0 > max(m , δ^κ). For a > a0 and k e Z, there

exists at most one solution p^ of

(8.25) 2αλ + βj(λ) = Ink, |A| < a~κ.

:j max = kj maχ(fl) ^ e ^ e m a χ i m a l k for which (8.25) has a solution.
Then

(8.26) l ^ m J ^ β l ~' C / π + c < *~* f o r a ^ ao-

Furthermore, if p^ is a solution of (8.25) for some k eZ, then

(8.27) p(f) = πk/{a + aJΪ/2) +

which together with (8.26) implies that

(8.28) ρ{p = πk/a + O(a

Lemma 8.29. Let a>a0 and \k\< kjmsχ(a). Then the solutions ρ\J

and p^}κ of (8.25) exist and satisfy

\Pk ^~ P-k\ — ^i

for some C > 0 independent of a.
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This can be easily derived from (8.23) and (8.27).
Given a > 0, we introduce

(8.30) Ω(α) = {p e R - {0} | άt\(e2iap S(p) + Id) = 0 and \p\ < a~κ}.

For p € Ω(a), let m(p) denote the order of the zero p.
Theorem 8.31. Let 0 < K < 1. Then there exists a0 > 0 such that the

following hold for a>a0:

(i) The zeros p e Ω(a) are of the form p = p^ for some j , l<j<r,
and\k\<kjmja).

(ii) There exist n e N and C > 0 such that, for any two zeros pχ, p2e
Ω(a) satisfying pγ Φ ±p2, we have \px ± p2\> C/an .

(iii) There exists a subset Ω'(a) c Ω(a) of cardinality < 2r with the
following property: For any p e Ω(a) - Ω'(a), p > 0 (resp. p < 0), there
exists a unique pf e Ω(a), p < 0 (resp. p1 > 0), such that

i '\ ^ ^ i 1+2*

\p + p\<C/a

and m(p) = m(p), where C > 0 is independent of a.
Proof. Let p e Ω(a). Then there exist j , 1 < j < r, and k e Z,

\k\ < kj m2Ά(a), such that p = p^ . Hence, p^ , regarded as solution of
(8.25), has multiplicity 1 and satisfies (8.27). This proves (i).

To prove (ii), consider two zeros p, p e Ω(a) and suppose that p =

pψ , p = p{p . If k φ ±k', it follows from (8.28) that

\ρ ± p'\ >\k± k'\/a > I/a for a > a0.

Assume that k = k', β, ± βr If k = k' = 0, then p = p = 0
by (8.23). Hence, we may assume that k = k' Φ 0, so that we have
2α/> + βj(p) = lap + βj>(ρ). Suppose that the corresponding Taylor
coefficients in (8.23) satisfy a ι = a., t for / < m - 1 and a > m Φ a m .
Then

oo oo

^ > y j ^ ^ -̂  j > i j 5 / ' *

Put c = αy/ w - α̂ . m . By assumption, c φθ. Moreover, |/?|, l/̂ 'l < a~κ .
This implies

Since k' φ 0 , it follows from (8.28) that \p\ > a~ι for Λ > a0, so that

i f\ ^ — ( m + 1 ) /,, .

\p- ρ\>ca 7 4 , Λ > av
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Furthermore, by (8.28), we have \p + p\ > cΓι. The case where k =
-k', βy £ βj, can be treated in much the same way. It remains to

consider the case where k' = -k and β' > = β., i.e., where p — pψ

and p = p{^k, k Φ 0. Then \p - p'\ > a~ι. If p Φ -p , there exists
n e N such that a- 2n Φ 0. Otherwise the function βj(λ) is odd implying

p)P = -p^l. Let m e N such that ΊΠK > 2n. By assumption, we have

2a{p + p) + j8y(/?) H- £;(//) = 0. We rewrite this as follows:

7=1
oo

aj,2p(P +P ) " Σ a,\
/2/+K

a,\2/+l(/> +/» )
/>=1 l=m+\

which yields

\p + p\(2a + O(a ))>\aj2n\(p +p ) + O(a ).

Since k φ 0, we have |/>|, |/?'| > a~ι by (8.28). Hence

which proves (ii). Finally, the first part of (iii) follows from (i) and Lemma
8.29. The multiplicity m(p) of any p e Ω(a) equals the number of j's,
1 < j < r, such that p is a solution of (8.25). This shows immediately
that m(p) = m{p). q.e.d.

We are now ready to prove our main result concerning the small eigen-
values.

Theorem 8.32. Let 0 < K < 1 and a>0. Let λλ(a) < λ2(a) < <

λ (a) be the nonzero eigenvalues, counted to multiplicity, of D(a)τ which

satisfy \λj(a)\ < a~κ, and let ρx{a) < ρ2{a) < ••• < ρm(a) run over

the zeros Φ 0, counted to multiplicity, of det(e2kλaS(λ) + Id) satisfying

\Pj(a)\ < a~κ. Then there exist aχ>0 and c > 0, independent of a, such

that, for a>ax, Pa = ma and

\λj(a) -Pj(a)\ <e'c\ j = U - , ma.

Proof Let a > aQ and let A, 0 < |Λ| < a~κ, be an eigenvalue of
D(a)τ of multiplicity m{λ). It follows from Proposition 8.20 that there
exist k e Z, 1 < j < r, such that

(8.33) \2λa + β.(λ) - 2πk\ < e~ca.
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Let pkj be the unique solution of (8.25). Then (8.33) implies

(8.34) \λ-pkj\<e-Cιa.

If m(λ) > 1, there exist pairwise distinct branches β , , /? such

that (8.33) holds with the same k. Let a0 > 0 be chosen according to

Theorem 8.31. Hence we obtain
Lemma 8.35. Let a>a0 and let λ, 0 < |Λ| < a~κ, be an eigenvalue

of D(a)τ of multiplicity m(λ). Then there exists a unique p e Ω(α) such

that \λ-p\< e~ca and m(p) > m{λ) where m(ρ) denotes the multiplicity

of the zero p.
By Lemma 8.35, it remains to show that

Σ m{p)= £ m(λ),
peΩ(a) λ

0<\λ\<a~κ

where λ runs over the eigenvalues of D(a)τ.
Let a > a0 and p e Ω(ά). Let φ e L_ , \\φ\\ = 1, such that

(8.36) eliapS(λ)φ = -φ.

Consider the generalized eigensection E(φ, λ) attached to φ. From
(4.20), (8.36) and the definition of S(λ), it follows that the constant term
EQ(Φ> P) of E(Φ> P) satisfies

(8.37) P_(E0(φ, p, {a, •))) = 0, P+ \j^E0(φ, p, (u, -))\u=aJ = 0.

Let p € Ω(α), p φ p . Choose φ'eL_, \\φ'\\ = 1, such that e2iap'S(p')φ'

= -φ'. By Green's formula, we get

(E(φ,p,x),E(φ',p',x))dx

(8.38) ^

- (

ί / " , />, («, ) ) , E ( φ ' , p , (a, )))dy.7 /(
p-p JY

To compute the right-hand side of (8.38), we need the complete expansion
of E(φ ,λ) on R+ x Y. Note that the section θ(φ, λ) occurring in (4.24)
is square integrable and satisfies Dθ(φ, λ) = λθ(φ, λ). Therefore, it can
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be expanded in terms of the eigensections (4.3). Let λ e Σ{. Together
with (4.24), we get

(8.39) E(φ, λ) = e~iλu(φ - iyφ) + eiλuC(λ)(φ - iyφ)

Using (4.29), it is easy to see that the coefficients aAλ) satisfy J2j \ajW\2

< C for λ e (-μx/2, μ{/2) and some C > 0. We apply this formula
to compute the right-hand side of (8.38). Because of (8.37), the constant
term makes no contribution and, by Theorem 8.31 (ii), we obtain

(8.40) \(E{φ, p), E{φ', p))M I < Ce-μ*a/2, a » 0.
a

By means of the description of KerZ>(α)τ given by Proposition 8.10, one
can show in the same way that

(8.41) \(E(φ, p), ψ)M I < Ce~μ>a/2, a » 0, ψ e KerZ)(α)τ.
a

Now let φ' e L_ , \\φf\\ = 1, be a second solution of (8.36). Let h > 0

and apply the above method to compute (E(φ, p), E(φf, p + ih))M . If

we pass to the limit h -+ 0, then

(E(φ,p),E(φ',p))M
a

(8.42) = 4a(φ, φ') - i(C(-p)C'(p)(φ - iγφ), φ' - iyφ1)

The constant in the remainder term is independent of a, p. If φ = φ',

we get a formula for \\E(φ, p)\\2

M .

Lemma 8.43. Let p e Ω(α) be given and suppose that φ0, φχ G L_
are two solutions o/(8.36). If (φQ9 φχ) = 0, then

(C(-p)C'(p)(φ0 - iγφ0), φx - iγφ,) = 0.

Proof. First, observe that C(p)(φj - iyφj) belongs to the (-z)-eigen-
space of γ. Therefore, (8.36) can be rewritten as

(8.44) C(p)(φj - iyφj) = -e~2ip\φ. + iyφ.), 7 = 0 , 1 ,
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and, we have to show that

(8.45) (C(p)(φ0 - iγφ0), φx + iyφx) = 0.

Let φue L_, \u\ < ε, be a smooth one-parameter family of eigenvectors

of S(p + u) with eigenvalues μ(u) such that μ(0) = -e~2ιpa . As above,

this is equivalent to

C(p + u)(φu - iγφu) = μ(u)(φu + iγφu).

Differentiating this equality yields

C(p)(Φ0 - iγφ0) = μ(0)(φ0 + iγφ0) + μ(O)(Φo + iγΦ0) '

Hence

(C'(p)(φ0 - iγφ0), φx + iγφχ) = - e-2ipa(φ0 + iyφ0,

Using the functional equation (4.21) and (8.44), we get

C(-p)(φx + iyφx) = -elipa{φx - iγφx).

Finally, since φ0, φx e L_ , we have

(ΦQ ~ iyΦo> Φ\ - iyΦ\) = (Φo + iyΦo> Φ\

Combining our results gives (8.45). q.e.d.
Now return to (8.42). Suppose that (φ, φ') = 0. Then, using Lemma

8.43, we get

(8.46) (E(φ, p), E(φ', p))M =
a

Let / € C°°(R) satisfying 0 < / < 1, f(u) = 1 for u < 1/2 and
f(u) = 0 for u > 1. Put /fl(w) = /(M/έi). We regard fa as a function
on Λfα in the obvious way. Furthermore, let χa denote the characteristic
function of [0, a] x Y c Ma. Let px < p2 < < pm be the zeros in
Ω(α) where each zero is repeated according to its multiplicity. For each
j , 1 < j < ma , we pick φ. £ L_ with the following properties:

(1) e

2ipJaS(pj)φj = -φj.
(2) Whenever p} = pj+{ = .. = pj+k, 0 y , ^ . + 1 , ... , φj+k form an

orthonormal system of vectors of L_ .
Put

Ψj = fa(E(φj, p.) - χaE0(φj, p.)) + Z A ( ^ ' ^ )

and
U 7 = 1, ,m f l.
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From the definition it follows that each ψ is a smooth section of S over
Ma and satisfies Ylσ_(ψj\dMa) = 0. Thus ψ belongs to the domain of
D(ά)χ. Furthermore, employing (8.40)-(8.42) and (8.46), we obtain that
there exist a2, C, c > 0 such that, for a>a2,

(8.47) \ ( ψ n Ψ j ) \ < C e - c \ i φ j 9 / , 7 = 1 , . , m a ,

a n d

( 8 . 4 8 ) \(ψnψ)\<Ce~ca

9 ψeKerD(a)τ, / = l , . . , m f l .

Let πa denote the orthogonal projection of L2(Ma, S) onto KerD(α)τ.
Put

Ψj = Ψ j - π

a Ψ j > j = l , ' , m a .

Since dim(KerD(ά)τ) is independent of α, it follows from (8.47) and
(8.48) that

(8.49) \(ψi9ψj)-δu\<Ce'ea

9 iϊj,i,j=l, ,ma, a » 0.

By (8.26), we have ma < ra~κ for a > 0 which together with (8.49)
implies that

(8.50) ψ{, , ψm are linearly independent for a > 0.

Now let 0 < λχ < λ2 < - - < λp denote the nonzero eigenvalues, counted
2 a —2κ

with multiplicity, of D(a)τ which are less than a . Let m = ma and

let kχ, , km be a permutation of {1, , m) such that 0 < p2

k <

p\ <-"< pi . By the mini-max principle, we have
2 m

where W runs over all ./-dimensional subspaces of dom(D(a)τ) which
are orthogonal to KerZ)(α)τ (cf. [25, p. 82]). Let W. be the subspace of
dom(D(a)τ) spanned by ψk , , ψk . By (8.50), dim W. = j for a >
0. Moreover, by construction, W. is orthogonal to KerD(α)τ. Hence,
using (8.47), (8.48) and the definition of ψ., we get

(8.51) I.
j

for some constants Cχ, q > 0. In particular, this shows that ma<pa, so
that in consequence of Lemma 8.35, ma = pa . Combined with Lemma
8.35 this completes the proof.
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Let 0 < JC < 1. We can now investigate the behavior of

(8.52) ΓY"2

as t —> oo. By Theorem 8.32, we may as well sum over p e Ω(α). Let
a'(a) be defined as in Theorem 8.31(iii). Let p e Ω(α) - Ω'(α), /> > 0.
By Theorem 8.31(iii), there exists a unique p e Ω(α), // < 0, such that

I/? + />'| < Ca~{x+lκ). Suppose that ρ> -p. Then

Γ
-p'ai/4

/, 1/4 . „ -3/4-2*

p\a' < Cχa '

Thus, (8.52) can be estimated by Cχ#Ω(a)rcΓ2>IA~2κ . By Theorem 8.31(i),
and (8.26), we have #Ω(α) < rax~κ and (8.49) can be estimated by
C2a

ι/4~3κ . Pick K such that 1/12 < ic < 1/4. Then (8.49) tends to zero
as a —• oo. Together with (7.5), Proposition 7.6 and the final estimate for
(7.13), we have proved that

Combined with Proposition 2.16, we get our main result, Theorem 0.1.
We conclude this section by discussing an example—the Dirac operator

in dimension one. Consider the differential operator

n/ x ( 0 d/du\
D{a)={-d/du 0 j

acting in C°°([0, a] C2), a > 0. Then γ = (_°j *), and C2 is equipped
with the standard symplectic structure Φ(z, w) = z2w{ - zχw2 where
z — (z{, z 2), w = (w{, w2). Let a e R and consider the complex
line La c C2 spanned by (1, -eιa). Then La, α e R, are Lagrangian
subspaces of C 2. Let Pa be the orthogonal projection of C2 onto La.
Denote by D(a)a the operator D(a) with domain

domD(a)a = {φ e C°°([0, ά\\ C2) | Po(φ(O)) = 0, Pα(^(β)) = 0}.

Then D(a)a is symmetric with selfadjoint closure. A direct computation
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shows that the eigenvalues of D(a)a are given by

1 / , a\ π /, a \ , „

Put b = α/2π and suppose that 0 < b < 1. Then the eta function of
D(a)a equals

It follows from [2, p. 411] that

ι/(0,Z)(β)β) = 2 6 - 1 = ^ - 1 , 0 < α < 2 π , and

In particular, the eta invariant is independent of a as claimed by Propo-
sition 2.16. Now consider D — D(oo) acting in L2([0, oo);C2) with
domain

domD = {φ e C°°([0, oo); C2) | P0(φ(0)) = 0, φ{ύ) = 0 for u > 0}.

If φ = (/, g), f,ge C°°([0, oo)), then the boundary conditions mean
that /(0) = ^(0). Let ^ be the closure of 2) in L 2. Then ^ is
selfadjoint. It is easy to see that the kernel of exp -t3f2 is given by

/ 1 fe-(u-u)2/4t

' u ' ι ) = Twt ̂ -(lί+M#)2/4ί

 e-
{

M + M ' ) 2 / 4 Λ

u - u ' ) 2 / 4 t ) '

which implies that tv(Duk(u, u , t)\u=u,) = 0. Hence η(0, ^ ) = 0. From
(8.53) we get

and ι,(0, D(α)π) = ι/(0, ^ ) .

Next we determine the scattering matrix associated to 3 . Let 0j = ( 1 , 0 )
and φ2 = (0, 1). Then it is easy to see that the corresponding generalized
eigenfunctions of <2f2 are the following:

F(φι,λ,u)=e-iλuφι+eiλuφ2 and F{φ29λ9u)=e'auφ2^eauφv

Therefore the on-shell scattering matrix C(λ): C2 -• C2 is given by
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In particular, the ±l-eigenspaces of C(0) are equal to Lo and Lπ, re-
spectively. Thus, the possible boundary conditions for which η(0, D(a)a)
equals //(0, 2J) are determined by the eigenspaces of C(0).
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