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LINKING AND HOLOMORPHIC HULLS

H. ALEXANDER

1. Introduction

If X and Y are disjoint compact oriented smooth submanifolds of a
smooth oriented manifold M and are homologous to zero in M , then the
linking number of X and Y, denoted link(X, Y) (or by link(X, Y ; M)
for clarity) is equal to the intersection number of ¥ and Y, where (V, X)
is a compact oriented submanifold with boundary in M . This can be taken
as one of the several equivalent definitions of linking number; here the
dimensions a, k, m of X, Y ,and M respectively, satisfy a+k = m—1.
We say that X and Y are linked if link(X, Y) is not zero. Our object
is to apply this linking notion of Gauss to the geometry of holomorphic
hulls. For example, in the case that the underlying manifold A is C",
our results say that the polynomially convex hull of one of the sets X or
Y has a nonempty intersection with the other set, provided that X and
Y are linked.

Now take M to be a Stein manifold and let X be a compact subset of
M . Then the holomorphic hull of X is

X ={p e M:|f(p)| < max{|f(q)|:q € X} for all f € A(M)}

where A(M) is the space of all holomorphic functions on M. X is a
compact subset of M . In special cases arising from the maximum prin-
ciple, (/\A’ , X) is a smooth manifold with boundary which is foliated by
complex manifolds with boundaries in X . In general however, X is not
so nice and may not contain any complex manifolds, or even continuous
ones. Nevertheless the perception persists that the pair (X, X) behaves
like a manifold with boundary. This is the motivation for what follows.
To adapt the above data on linking to this context we replace (V' , X) with
(X' , X) where now X is an arbitrary compact subset of M . As before Y
is an oriented manifold disjoint from X and homologous to zero in M .
Then, when X and Y are linked in an appropriate sense, the previous
consequence that ¥ and Y have a nonzero intersection number will be
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replaced by the cruder statement that X and Y have a nonempty inter-
section. To adapt the hypothesis of the manifolds X and Y being linked
to the setting in which X is an arbitrary compact set it suffices to require
that Y not be homologous to zero in M\ X ; when X is a manifold as
above this is equivalent to link(X, Y) being nonzero.

Theorem 1. Let M be a Stein manifold of (complex) dimension n
and X a compact subset. Let Y be a compact oriented submanifold of M
of (real) dimension k, disjoint from X, and homologous to zero in M .
Suppose that Y is not homologous to zero in M\ X . Suppose that either

(@) 0<k<n-1,o0r

(b) k=n-1and H' (M, C)=0.

Then X has a nonempty intersection with Y .

Remarks. 1. Suppose that X and Y are now linked manifolds in M
of dimensions a and k, respectively. Then, as a+k = 2n—1, the smaller
of a and k is at most n — 1. Hence the hull of the set corresponding to
the smaller of a and k has a nonempty intersection with the other set,
unless, in case (b), the smalleris n — 1 and H"(M, C) #0.

2. The cohomology condition in (b) is needed. Consider for M the
product in C" of n copies of C*, the punctured plane. Let X be the
n-torus in M , i.e., the product of # unit circles. Choose Y asa k = n—1
sphere in M disjoint from X and such that X and Y are linked in M ;
for example, Y could be a small sphere in the normal space to X at
some point. Then, as X=X , the intersection of X and Y is empty. Of
course, H"(M,C) #0.

Corollary 1. Suppose that C" = S&T is an orthogonal decomposition of
C" into real linear spaces S and T of real dimension s and k respectively
with s > n and let n:C" — S be the orthogonal projection to S. Let E
be a compact subset of S and let f:E — T be a continuous map and let
Gr(f) be the graph of f in C". Let D/bi a relatively compact component
of the complement of E in S. Then Gr(f), the polynomially convex hull
of Gr(f), covers D, i.e.

7(Gr()) 2 D.

The special case of the corollary when S is complex linear and D is a
ball appeared in [3] with two proofs and a third proof was given by Ahern
and Rudin [1]. The second proof in [3], due to J.-P. Rosay, is closest to
the methods of this paper. The case n =2 and s = 3 where [ is a real-
valued function on a 2-manifold is of interest. When D is convex with
smooth boundary, a very precise description of the hull is due to Bedford
and Klingenberg [7]: the hull is a disjoint union of analytic disks. In other
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cases, the structure of the hull is less well understood, as, for example,
when D is a solid torus.

Another phenomenon of linking is the relationship of linking at the
boundary of a domain to intersections in the domain. The prototype of
such results is the following. Cf. [10, Proposition, p. 383].

Proposition. Let (V, X) and (W, Y) be oriented submanifolds with
boundary in R" such that V and W are contained in the open unit ball B
and such that their boundaries are contained in the unit sphere bB . Suppose
that X and Y are disjoint and that V and W intersect transversally, if
at all. Then

I(V, W) =link(X, Y bB).

Remarks. We are assuming that the linking number is defined. This
means that dim(V) + dim(W) = n. Here I(V, W) denotes the (signed)
intersection number of ¥ and W . In the case that V' and W are com-
plex manifolds in C” with their natural orientations, then the intersection
number is just the number of points in the intersection. For example, if
V and W are complex linear spaces of complex dimension » meeting
transversally at the origin in C>" | it follows that their boundaries X and
Y , which are disjoint 2n — 1 spheres in the boundary of the unit ball,
satisfy link(X, Y; S‘"”l) = 1. With n = 1, this fact is used in the stan-
dard computations of the Hopf invariant of the Hopf fibration (see [8, pp.
235-239)).

The following is the statement corresponding to the proposition in the
case when X is an arbitrary compact set in a Stein manifold and with V
replaced by a holomorphic hull of X .

Theorem 2. Let M be a Stein manifold of complex dimension at least
2, and D a smoothly bounded relatively compact strictly pseudoconvex
domain in M. Let X be a compact subset of bD. Let Y be a k-
dimensional compact oriented smooth submanifold of bD with 0 < k <
n — 2 which is homologous to zero in bD and which is disjoint from X ,
i.e, Y C G := bD\X, and suppose that there is a (k + 1)-dimensional
submanifold W of D such that Y = bW . Let X be the @5 hull of X .
Suppose that 'Y links X in bD in the sense that Y is not homologous to
zeroin G. Then X has a nonempty intersection with W .

As a consequence we obtain the following corollary originally obtained
by the author with E. L. Stout [4] by a different method, extending the
Euclidean space case of [2]; also see [6]. The corollary was also proved by
Lupaccioulu [9] who obtained more general results related to Theorem 2
in the case of pseudoconcave manifolds. Our approach is perhaps more
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geometric. With more elaborate hypotheses, the strict pseudoconvexity of
D in Theorem 2 could be relaxed.

Corollary 2. Let M, D, X and X be as in Theorem 2. Each compo-
nent of D\X’ contains in its boundary exactly one component of bD\X .

Proof. Without loss of generality we can suppose that D is connected.
Then bD is connected, since D is Stein and »n > 2. It suffices to prove
the following. If p and ¢ are points in distinct components of 5D\ X
and if W is a simple smooth curve in D joining p to g, then W
has a nonempty intersection with X. Let Y be bW = {q,-p}, a0-
dimensional submanifold of dD. The connectedness of 4D implies that
Y is homologous to zero in bD. Since p and g lie in different compo-
nents of bD\X , Y is not homologous to 0 in D\ X . Thus we can apply
Theorem 2 to conclude that X meets W .

2. Proof of Corollary 1

Set X = Gr(f). We argue by contradiction and suppose that there exists
pen(X)\D. Set Q =n""({p}), a real k-plane in C". Then X NQ is
empty. Hence X NY is empty for all geometric k-spheres Y in C" of
sufficiently large radius. R , which are tangentto Q at (p, 0) e SxT =C".
It is evident and straightforward to check that Y “links” X, i.e., Y does
not bound in C”\X , if R is sufficiently large. Since k = 2n —s < n,
Theorem 1 implies that X meets Y . Contradiction.

3. Poincaré duals and linking

We next recall some of the basic facts needed about Poincaré duals and
linking. A very nice reference for all of this is the book of Bott and Tu [8].
Our manifolds will be smooth and oriented; for such a manifold M the
gth de Rham cohomology group will be denoted by H?(M), and the de
Rham cohomology with compact support by Hf(M ). For a noncompact
oriented manifold M of dimension m , Poincaré duality states that

*

H (M) = (H" (M),

c

and also, if M is of finite type,

(H (M) = H" ™ (M).
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If Y is a closed oriented submanifold of M of dimension k, then its
Poincaré dual is a closed m — k form 75, on M with the property that

[ forn

for all closed k£ forms o with compact supportin M . Sometimes to avoid
ambiguity we denote the Poincaré dual by rz‘y . The form is not uniquely
determined, but its cohomology class [n,] € H m—k (M) is unique and is
also referred to as the Poincaré dual.

Three basic properties of the Poincaré duals are:

(1) Localization. For any tubular neighborhood of Y in M there is a
Poincaré dual #, with support in that neighborhood.

(i1) If the oriented submanifolds ¥ and W of M meet transversally,
then

Ny ANMw = Nyaw-
(i) If f: M' — M is an orientation-preserving map, and Y is an ori-
ented submanifold of M , then, assuming appropriate transversality,
S (”y) = 'If—l(y)-
In particular, if 4 andY are oriented submanifolds of M intersecting
transversally, and f is an inclusion map i: 4 — M, then (iii) gives
S A
Nyla =1 (My) = Mgy

Let Y be a compact oriented submanifold of A . By localization, we
can take 7, with compact support in M. We can then ask whether (x)
remains valid if we drop the hypothesis that o« have compact support
in M. By Poincaré duality, this is so, provided that A has finite type.
However, even if M does not have finite type, we can find a particular
1y such that

(*x) / a= / aAn, for all closed k-forms « on M.
Y M

To see this we choose a tubular neighborhood N of Y in M. Then N
is of finite type and so there is a “compact Poincaré dual” (see [8, p. 51])

IN
/Yﬁ=/NB/\n¥V

ny of Y in N such that
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for all closed k forms B in N; n;N is a closed (m — k)-form with
compact support in N. Now define 7, as the extension to M of n;,N by
0 outside of N . Then for any closed k-form a on M we have

/a=/a/\nlyN=/ afy.
Y N M
Thus (*+) holds.

Suppose furthermore that Y is homologous to zero in M and let 7,

be chosen so that (x«) holds. Then we claim that [7,] =0 in Hc’" _k(M ).
By Poincaré duality it suffices to show that

/a/\nY=O
M

for all closed forms o on M . This follows from (x*) because the integral
over Y is zero by Stokes’ theorem, since Y is homologous to zeroin M .
Thus there exists a (m — k — 1)-form w, with compact support in M
such that n, =dw, .

Suppose that X and Y are disjoint oriented compact submanifolds
of M, which are homologous to zero and satisfying s + k = m — 1 with
dimensions s and k respectively. Then link(X, Y) is defined and can
be computed as follows. Choose 7, and 7, with compact and disjoint
supports. By the last paragraph we have w, with compact support in M
such that dw, = n, . Then

link(X, Y) =/ Wy Ay.
M

4. Proof of Theorem 1

We argue by contradiction and suppose that X is disjoint from Y.
Then there exists a relatively compact @,,-convex domain Q in M con-
taining X and such that Q is disjoint from Y. Let 7, be a Poincaré
dual of Y in M\X such that spt(n,) is disjoint from Q and (*x) holds
for k-forms o in M\X. Extending by 0 we can view 7, as a closed
formin M . Asin §3, since Y is homologous to zero in M , there exists a
(2n — k — 1)-form w, with compact support in M such that dw, =7, .
Let D, be a relatively compact subdomain in M containing Qu spt(wy)
such that bD, is smooth. Choose a relatively compact subdomain D, of
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Q such that X is contained in D, and bD, is smooth. Set D = Dl\ﬁz.
Then spt(n,) €D and bD = bD, U(-bD,). As Y is not homologous to
zero in M\ X there exists, by de Rham’s theorem, a closed k-form « on
M\X such that 0# [, a.

We have

0# /ya - /M\Xa/\ Ty (b ()

=/a/\17y=/a/\dwy
D D

=(—1)k/Dd(a/\wY) = (—l)k bDa/\wy (Stokes)

=(—1)k/bD a/\wy+(—1)k/_bD awy

1 2

= (=1 /_bD aANwy, (spt(wy,)NbD, =Q).

Now in case (a), k <n—1 andso 2n—k—1> n. Hence HZ”—k_I(Q) =0
since Q is Stein [5]. On Q, dw, =n, =0. Hence thereisa (n—k —2)-
form ¢ on Q such that w, =do on Q. Thus

/ a/\wY=/ a/\da=(—l)k dlano)=0
—bD, —bD, bD,

by Stokes. This contradicts the choice of «.

In case (b), 2n —k — 1 =n. Since (M, Q) is a Runge pair, it follows
from [5] that the natural restriction map H" (M) — H"(Q) is surjective.
As H"(M) =0, we have H"(Q) = 0, and the argument of case (a) can
be applied to arrive at the same contradiction.

5. Proof of the Proposition

Extend V and W to a neighborhood N of B and choose Poincaré
duals 1, and 7, in N such that spt(n,) Nspt(n, ) is a compact subset

of B. Then n,Any, = nﬁnw is a Poincaré dual of V' NW . In particular,
s yow =10V, W).

Let j:bB — N be the inclusion map. We may assume that N is a ball.
Hence there exists an (n — k — 1)-form w, in N such that dw, =17, .

ok

Set nf’YB = j"(n,) and rzl}’,B = j (n,). These are Poincaré duals on bB
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with disjoint supports. Set a)i’(B = j*(w,). Then on bB, we have

d(@) = d(j* (@) = j"(dw,) = j"(n,) = 0.

Thus

link(X, Y; bB) = / a)X A nf,B
bB

- / F (@) A ()
bB

=/ j*(wy/\'lw)=/ wV/\r’W
bB bB
= / d(w, Nny) (Stokes)

B

= / dwy, A1y (1 is closed)

/’7V/\’7W /"VnW

=1V, W).

6. Proof of Theorem 2

By replacing M by an appropriate Stein neighborhood of D in M we
can assume that (M, D) is a Runge pair, that X is the &,,-convex hull
of X and that W extends to be a submanifold of M which intersects
bD transversally in Y .

We argue by contradiction and suppose that X is disjoint from W .
Then there is a relatively compact @,, convex domain € containing X
such that Q is disjoint from W . Let Ny be a Poincaré dual on M
with support disjoint from Q. Since 2n —k —1 > n and M is Stein,
Hzn_k_l(M) = 0. Hence there exists a (2n — k — 2)-form w,, on M
such that dwy, =1, . (n, isaclosed (2n — (k + 1))-form on M.)

Let j:G — M be the inclusion map. Set nf," = j"(n,) and wg =
j*(a)W). Then n,G, is a Poincaré of Y in G with compact support in G
such that (xx) holds on G, at least if we choose the support of 7, close
to Y.

As Y does not bound in G there exists a closed k-form « on G such
that [, o # 0, by de Rham.

Choose a relatively compact domain E; of QN bD such that bE,
is smooth and X C E,. Set E = bD\E,. Then Y C EF C G and
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bE = —bEl C QN G. Thus we have
0¢/Ya=/b_am$ (by (++); spt(n%) C E)
= /a/\da)gz(—l)k/d(a/\w)c,)
E E

= (—l)k/ a/\a))G, (Stokes).
bE

We now consider two cases. First suppose k < n—2. Then 2n—-k—-2 > n
and therefore H"*72(Q) = 0, as Q is Stein. Since dwy =1, =0 on
Q, there exists a (2n — k — 3)-form ¢ on Q such that do = w, on Q.
Set the inclusion map i:QNbD — Q and set ¢' = i"(g). Then, on bE,
do' = i*(w,) = @ and so

/ a/\w$=/ andd
bE bE

= (=1 /bE d(and’)=0 (Stokes),

this contradicts the choice of «.

In the second case Kk =n—2 and 2n—k -2 =n. Since (M, Q) is
a Runge pair, the natural restriction H"(M) — H"(Q) is surjective [5].
Since wy, is closed on Q, we conclude there exists a closed n-form ¢
on M and an (n— 1)-form 6 on Q such that

Wy, =¢+do

on Q. Hence

/bEa/\wgz/bEa/\qH-/bEa/\dB
:/Ed(a/\¢)+(—-l)k/bEd(a/\9)

by Stokes’ theorem. Again by Stokes the last integral vanishes. Also the
integral over E vanishes since aA¢ is closed because o« and ¢ are closed
(and defined on FE). This again contradicts the choice of a« and completes
the proof.
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