COHOMOLOGY OF SCHUBERT SUBVARIETIES OF GL_{n} / P

E. AKYILDIZ, A. LASCOUX \& P. PRAGACZ
Dedicated to Professor I. M. Gelfand on his seventy-fifth birthday

Abstract

Let GL_{n} be the group of $n \times n$ invertible complex matrices, and P a parabolic subgroup of GL_{n}. In this paper we give a geometric description of the cohomology ring of a Schubert subvariety Y of GL_{n} / P. Our main result (Theorem 3.1) states that the coordinate ring $A(Y \cap Z)$ of the scheme-theoretic intersection of Y and the zero scheme Z of the vector field V associated to a principal regular nilpotent element n of gl_{n} is isomorphic to the cohomology algebra $H^{*}(Y ; \mathbf{C})$ of Y. This theorem was conjectured for any reductive algebraic group G in [4], and it was proved for the Grassmannian manifolds in [2]. We were recently informed that Professor D. H. Peterson has just proved that GL_{n} is exactly the algebraic group G where the cohomology ring of any Schubert subvariety Y of the space G / B is isomorphic to $A(Y \cap Z)$. Here B stands for a Borel subgroup of G. It is also interesting to note that the cohomology ring of the union of two Schubert subvarieties in GL_{n} / P may not admit such a description. This result is due to Professor J. B. Carrell.

0. Introduction

Let X be a nonlinear complex projective variety having the following properties:
(A) there exists an algebraic vector field V with exactly one zero x_{0}, and
(B) there exists an algebraic \mathbf{C}^{*}-action on X

$$
\lambda: \mathbf{C}^{*} \times X \rightarrow X \quad((t, x) \rightarrow \lambda(t) \cdot x)
$$

such that $d \lambda(t) \cdot V=t^{p} V$ for some $p>0$ and for all t in \mathbf{C}^{*}, where $d \lambda(t)$ is the associated tangent action of $\lambda(t)$ on vector fields.

Let Z be the zero scheme of the vector field V, and let Y be any V - and \mathbf{C}^{*}-invariant subvariety of X. It follows from property (B) that Z is a \mathbf{C}^{*}-invariant subscheme of X. Thus, the coordinate ring $A(Z)$

Received July 12, 1989. The first author was partially supported by King Fahd University Petroleum and Minerals (KFUPM) Project MS/Action 2/100.
(respectively $A(Y \cap Z)$) of Z (respectively $Y \cap Z$) has a natural graded algebra structure induced from the \mathbf{C}^{*}-action λ. Here, $Y \cap Z$ stands for the scheme-theoretic intersection of Y and Z. Throughout the rest of the paper the rings $A(Z)$ and $A(Y \cap Z)$ will be regarded as graded algebras with the gradation above, and $H^{*}(W ; \mathbf{C})$ will denote the cohomology ring of the variety W with coefficients in the field of complex numbers C. The following theorem is proved in [4], [5].

Theorem. There exists a graded algebra isomorphism

$$
\psi: A(Z) \rightarrow H^{*}(X ; \mathbf{C})
$$

which induces a graded algebra homomorphism

$$
\bar{\psi}: A(Y \cap Z) \rightarrow H^{*}(Y ; \mathbf{C})
$$

commuting with the natural maps

$$
A(Z) \rightarrow A(Y \cap Z) \quad \text { and } \quad H^{*}(X ; \mathbf{C}) \rightarrow H^{*}(Y ; \mathbf{C})
$$

For any parabolic subgroup P of a complex reductive algebraic group G, the space G / P has the properties (A) and (B). Moreover any Schubert subvariety $Y=\overline{B \sigma P}$ of G / P is V - and C^{*}-invariant. Thus, by the Theorem we have a surjective graded algebra homomorphism

$$
\bar{\psi}: A(Y \cap Z) \rightarrow H^{*}(Y ; \mathbf{C}) .
$$

Definition. The cohomology ring of the Schubert variety Y is said to have a nilpotent description if $\bar{\psi}$ is an isomorphism. It is known that the cohomology ring of any Schubert subvariety Y of the Grassmann manifold $G_{k, n}$ has a nilpotent description [2]. In this paper, we generalize this result to any Schubert subvariety of the partial flag manifold GL_{n} / P. The paper is organized as follows. In $\S 1$, we begin with the preliminaries. In §2, we investigate a certain ideal in the cohomology ring of GL_{n} / B associated with a Schubert subvariety $Y=\overline{B \sigma B}$ of GL_{n} / B. This is done by finding a relation between the functions P_{σ} constructed by Bernstein, Gelfand, and Gelfand in [6] (independently by Demazure in [7]), and the Plücker coordinates. In $\S 3$, we first prove that if the cohomology ring of any Schubert subvariety of the space G / B has a nilpotent description, then so does the cohomology ring of any Schubert subvariety of G / P. Here P is a parabolic subgroup of a complex reductive linear algebraic group G which contains the Borel subgroup B of G. Then we finally
prove that the cohomology rings of the Schubert subvarieties of GL_{n} / P have nilpotent descriptions.

1. Preliminaries

Let GL_{n} be the group of $n \times n$ invertible complex matrices, B the group of upper triangular matrices in GL_{n}, W the symmetric group in $1,2, \cdots, n$, and $l(\tau)$ the length of $\tau \in W$. Let $R=\mathbf{C}\left[x_{1}, \cdots, x_{n}\right]$ be the polynomial algebra with the usual grading, and IR the ideal of R generated by the elementary symmetric polynomials in x_{1}, \cdots, x_{n}. W acts on R by permuting the variables. We denote this action by $\sigma \cdot f\left(x_{1}, \cdots, x_{n}\right)=f\left(x_{\sigma_{1}}, \cdots, x_{\sigma_{n}}\right), \sigma=\left(\sigma_{1}, \cdots, \sigma_{n}\right) \in W$. Let (i, j) denote the transposition of W obtained by changing i with j. We recall the following facts from [6], [7] (see also [10] for a more combinatorial approach). For any $1 \leq i<j \leq n$, the polynomial $f-(i, j) \cdot f$ is divisible by $x_{i}-x_{j}$. Thus, the operator

$$
\partial_{(i, j)}: R \rightarrow R, \quad \partial_{(i, j)}(f)=\frac{f-(i, j) \cdot f}{x_{i}-x_{j}}
$$

is well defined.
Let i_{1}, \cdots, i_{r} be integers in $\{1, \cdots, n\}$, and let $\omega=\left(i_{1}, i_{1}+1\right) \cdots$ $\left(i_{r}, i_{r}+1\right)$ be any element of W. Then the following hold:
(a) If $l(\omega) \neq r$, then $\partial_{\left(i_{1}, i_{1}+1\right)} \cdots \partial_{\left(i_{r}, i_{r}+1\right)}=0$.
(b) If $l(\omega)=r$, then the operator $\partial_{\left(i_{1}, i_{1}+1\right)} \cdots \partial_{\left(i_{r}, i_{r}+1\right)}$ depends only on ω and not on the representation in the form $\omega=\left(i_{1}, i_{1}+1\right) \cdots\left(i_{r}, i_{r}+1\right)$.

In case (b) we put $\partial_{\omega}=\partial_{\left(i_{1}, i_{1}+1\right)} \cdots \partial_{\left(i_{r}, i_{r}+1\right)}$. We note that the operator $\partial_{\omega}: R \rightarrow R$ preserves the ideal $I R$, and thus it induces an operator $\bar{\partial}_{\omega}: R / I R \rightarrow R / I R$ of homogeneous degree $-l(\omega)$. Let ω_{0} be the permutation $(n, n-1, \cdots, 1)$ in W, and let $P_{\omega_{0}}=\left(\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)\right) / n$! $\bmod (I R)$. For each ω in W, let $P_{\omega}=\bar{\partial}_{\omega \omega_{0}}\left(P_{\omega_{0}}\right)$, and let $\left[X_{\tau}\right]$ denote the cycle class of the Schubert variety $X_{\tau}=\overline{B \tau B}$ in $H_{*}\left(\mathrm{GL}_{n} / B ; \mathbf{C}\right)$. The following theorem is proved in [6], [7].

Theorem 1.1. There exists a graded algebra isomorphism $\beta: R / I R \rightarrow$ $H^{*}\left(\mathrm{GL}_{n} / B ; \mathbf{C}\right)$ such that $\beta\left(P_{\omega}\right)=\mathscr{P}\left(\left[X_{\omega_{0} \omega}\right]\right)$ for any ω in W, where \mathscr{P} stands for the Poincaré duality map

$$
\mathscr{P}: H_{*}\left(\mathrm{GL}_{n} / B ; \mathbf{C}\right) \rightarrow H^{*}\left(\mathrm{GL}_{n} / B ; \mathbf{C}\right) .
$$

We shall now discuss the nilpotent case $A(Z)$ for the space GL_{n} / B. Let U be the group of all lower triangular unipotent matrices in GL_{n},
and let $z_{i, j}, 1 \leq j<i \leq n$, be the coordinate functions $z_{i, j}(x)=x_{i, j}$, $x \in U$. Let n be the regular nilpotent $n \times n$ matrix, which is in the Jordan form, and let V be the vector field on GL_{n} / B induced from the oneparameter subgroup $\exp (t n)$ of $\mathrm{GL}_{n} . V$ has a unique zero $x_{0}=B$, and satisfies property (B) [1]. The coordinate ring $A(Z)$ of the zero scheme Z of V in the affine neighborhood U of x_{0} has been computed in [2], and the following description has been obtained. Consider the grading on the polynomial algebra $A(U)=\mathbf{C}\left[z_{i, j}: 1 \leq j<i \leq n\right]$ determined by taking $\operatorname{deg} z_{i, j}=i-j$. Then $A(Z)$ is isomorphic, as a graded algebra, to $A(U) / I(Z)$, where $I(Z)$ is the ideal of $A(U)$ generated by the homogeneous elements

$$
z_{i+1, j}-z_{i, j-1}+z_{i, j}\left(z_{j, j-1}-z_{j+1, j}\right),
$$

where we take $z_{k, r}=0$ if $k>n$, or $r<1$, or $r>k$.
Let $I_{k}, k=1,2, \cdots, n-1$, denote the set of sequences of integers $\left(i_{1}, \cdots, i_{k}\right)$ such that $1 \leq i_{1}<i_{2}<\cdots<i_{i} \leq n$, and let W_{k} be the set of all permutations $\left(\mu_{1}, \cdots, \mu_{n}\right)$ in W such that $\left(\mu_{1}, \cdots, \mu_{k}\right) \in I_{k}$ and $\left(\mu_{k+1}, \cdots, \mu_{n}\right) \in I_{n-k}$. For any $\left(i_{1}, \cdots, i_{k}\right)$ in I_{k} there exists a unique permutation in the form $\left(i_{1}, \cdots, i_{k}, i_{k+1}, \cdots, i_{n}\right)$ in W_{k}. We denote this permutation by $\sigma\left(i_{1}, \cdots, i_{k}\right)$. For (i_{1}, \cdots, i_{k}) in I_{k}, let [i_{1}, \cdots, k_{k}] denote the function in $A(Z)$ which is induced from the Plücker coordinate $\operatorname{det}\left[z_{i_{m}, j}\right], 1 \leq m, j \leq k$.

Here and throughout the rest of the paper, we put $z_{k, r}=0$ if $k>n$, or $r>k$, or $r<1$. The following theorem is proved in [2].

Theorem 1.2. The homomorphism $\varphi: R \rightarrow A(U)$ determined by $\varphi\left(x_{i}\right)$ $=z_{i+1, i}-z_{i, i-1}, i=1, \cdots, n$, induces a graded algebra isomorphism $\bar{\varphi}: R / I R \rightarrow A(Z)$. Moreover for any $\left(i_{1}, \cdots, i_{k}\right)$ in I_{k} we have

$$
\bar{\varphi}\left(P_{\sigma\left(i_{1}, \cdots, i_{k}\right)}\right)=\left[i_{1}, \cdots, i_{k}\right] .
$$

2. A certain ideal associated with a Schubert variety in the cohomology of GL_{n} / B

We keep the notation of $\S 1$, and moreover, for a given sequence of distinct integers $\left(j_{1}, \cdots, j_{k}\right),\left(j_{1}, \cdots, j_{k}\right)^{<} \quad$ (respectively $\left.\left(j_{1}, \cdots, j_{k}\right)^{>}\right)$ denotes the sequence $\left(j_{\tau_{1}}, \cdots, j_{\tau_{k}}\right)$, where $j_{\tau_{1}}<\cdots<j_{\tau_{k}}$ (respectively, $j_{\tau_{1}}>\cdots>j_{\tau_{k}}$) for some permutation $\tau=\left(\tau_{1}, \cdots, \tau_{k}\right)$ of $\{1,2, \cdots, k\}$. We recall the following well-known formula, which is due to Monk [11] (see also [6], [7], and [10]).

Theorem 2.1. Let $\mu=\left(\mu_{1}, \cdots, \mu_{n}\right)$ be a permutation in W, and let $k=1,2, \cdots, n-1$. Then the identity

$$
P_{\mu} x_{k}=\sum \operatorname{sgn}(j-k) P_{\mu(j, k)}
$$

holds in $R / I R$, where the sum is over all $j \neq k$ such that $l(\mu(j, k))=$ $l(\mu)+1$.

For $k=1,2, \cdots, n-1$, let $\mathfrak{p}_{k}: W \rightarrow W_{k}$ denote the projection map

$$
\begin{aligned}
\mathfrak{p}_{k}\left(\mu_{1}, \cdots, \mu_{n}\right) & =\sigma\left(\left(\mu_{1}, \cdots, \mu_{k}\right)^{<}\right) \\
& =\left(\left(\mu_{1}, \cdots, \mu_{k}\right)^{<},\left(\mu_{k+1}, \cdots, \mu_{n}\right)^{<}\right) .
\end{aligned}
$$

We note that the Bruhat ordering \leq on $W \quad(\tau \leq \mu$ if and only if $B \tau B \subseteq$ $\overline{B \mu B}$ in $\left.\mathrm{GL}_{n} / B\right)$ induces an ordering on W_{k}, which we will also denote by \leq. Recall that for $\mu=\left(\mu_{1}, \cdots, \mu_{n}\right)$ and $\nu=\left(\nu_{1}, \cdots, \nu_{n}\right)$ in W_{k}, $\mu \leq \nu$ (in W_{k}) if and only if $\mu_{i} \leq \nu_{i}$ for $i=1, \cdots, k$.

Lemma 2.1. Let $\mu=\left(\mu_{1}, \cdots, \mu_{n}\right)$ be a permutation in W which satisfies $\mu_{1}>\cdots>\mu_{k}$ and $\mu_{k+1}>\cdots>\mu_{n}$. Then we have the following equality in $R / I R$,

$$
P_{\mu}=P_{\mathfrak{p}_{k}(\mu)} x_{1}^{k-1} x_{2}^{k-2} \cdots x_{k-1} x_{k+1}^{n-k-1} x_{k+2}^{n-k-2} \cdots x_{n-1}+\sum m_{\tau} P_{\tau}
$$

where the sum is over all τ in W such that $\mathfrak{p}_{k}(\mu)<\mathfrak{p}_{k}(\tau)$ in W_{k}.
Proof. By using Monk's formula for the successive multiplications

$$
\begin{aligned}
& P_{\mathfrak{p}_{k}(\mu)} x_{1},\left(P_{\mathfrak{p}_{k}(\mu)} x_{1}\right) x_{1}, \cdots,\left(P_{\mathfrak{p}_{k}(\mu)} x_{1}^{k-2}\right) x_{1} \\
& \quad\left(P_{\mathfrak{p}_{k}(\mu)} x_{1}^{k-1}\right) x_{2}, \cdots,\left(P_{\mathfrak{p}_{k}(\mu)} x_{1}^{k-1} x_{2}^{k-2}\right), \cdots, \\
& \quad P_{\mathfrak{p}_{k}(\mu)} x_{1}^{k-1} x_{2}^{k-2} \cdots x_{k-1}
\end{aligned}
$$

it is not difficult to see that at each stage of the multiplication there appears in the sum only one P_{ζ} with $\mathfrak{p}_{k}(\zeta)=\mathfrak{p}_{k}(\mu)$, and all the remaining P_{ν} satisfy $\mathfrak{p}_{k}(\mu)<\mathfrak{p}_{k}(\nu)$. (Note that we start with the permutation $\mathfrak{p}_{k}(\mu)$, where the first k elements appear in ascending order.) Thus we get an expression in the form

$$
P_{\mathfrak{p}_{k}(\mu)} x_{1}^{k-1} x_{2}^{k-2} \cdots x_{k-1}=P_{\left(\mu_{1}, \cdots, \mu_{k}, \mu_{n}, \cdots, \mu_{k+1}\right)}+\sum m_{\xi} P_{\xi}
$$

where $m_{\xi} \in Z$, and the sum is over all ξ in W such that $\mathfrak{p}_{k}(\mu)<\mathfrak{p}_{k}(\xi)$. We repeat this process, multiplying $P_{\mathfrak{p}_{k}(\mu)} x_{1}^{k-1} x_{2}^{k-2} \cdots x_{k-1}$ first by x_{k+1}, then by x_{k+1}^{2}, \cdots, then by x_{k+1}^{n-k-1}, \cdots, and finally by x_{n-1}. It is clear that by arguing as above we obtain the claim.

Lemma 2.2. For any permutation $\mu=\left(\mu_{1}, \cdots, \mu_{n}\right)$ in W, and $k=$ $1,2, \cdots, n-1$, the equality

$$
P_{\mu}=f P_{\mathfrak{p}_{k}(\mu)}+\sum m_{\tau} P_{\tau}
$$

holds in $R / I R$, where the sum is over all τ in W such that $\mathfrak{p}_{k}(\mu)<\mathfrak{p}_{k}(\tau)$ in W_{k}.

Proof. It follows from Lemma 2.1 that

$$
P_{\left(\left(\mu_{1}, \cdots, \mu_{k}\right)^{>},\left(\mu_{k+1}, \cdots, \mu_{n}\right)\right)}=P_{\mathfrak{p}_{k}(\mu)} g+\sum m_{\xi} P_{\xi}
$$

where $g=x_{1}^{k-1} x_{2}^{k-2} \cdots x_{k-1} x_{k+1}^{n-k-1} \cdots x_{n-1}$. Since the operator $\partial_{(i, i+1)}$ has the property that

$$
\partial_{(i, i+1)}\left(P_{\left(\xi_{1}, \cdots, \xi_{n}\right)}\right)= \begin{cases}P_{\left(\xi_{1}, \cdots, \xi_{i+1}, \xi_{i}, \cdots, \xi_{n}\right)} & \text { if } \xi_{i}>\xi_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

we can pass from $P_{\left(\left(\mu_{1}, \cdots, \mu_{k}\right)^{>},\left(\mu_{k+1}, \cdots, \mu_{n}\right)^{>}\right)}$to P_{μ} by using the operators $\partial_{(i, i+1)}$ in an appropriate way. We note that in doing this we need to use only those $\partial_{(i, i+1)}$ where $i \neq k$. On the other hand for $i \neq k$ we have
(a) $\partial_{(i, i+1)}\left(P_{\mathfrak{p}_{k}(\mu)} g\right)=P_{\mathfrak{p}_{k}(\mu)} \partial_{(i, i+1)}(g)$, because $P_{\mathfrak{p}_{k}(\mu)}$ is a symmetric polynomial x_{1}, \cdots, x_{k}, and does not depend on the remaining variables x_{k+1}, \cdots, x_{n}.
(b) $\tilde{\mathfrak{p}}_{k}\left(\partial_{(i, i+1)}\left(P_{\xi}\right)\right)=\tilde{\mathfrak{p}}_{k}\left(P_{\xi}\right)$, where $\tilde{\mathfrak{p}}_{k}$ stands for the function $\tilde{\mathfrak{p}}_{k}\left(P_{\tau}\right)$ $=P_{\mathfrak{p}_{k}(\tau)}$ for $\tau \in W$. Thus the assertion follows. q.e.d.

For a given permutation μ in W, let J_{μ} be the ideal of $R / I R$ generated by $P_{\sigma}, \sigma \not \leq \mu$, and let $\mathscr{G}=\bigcup_{k=1}^{n-1} W_{k}$ denote the set of the so-called Grassmannian permutations of $\{1,2, \cdots, n\}$.

Theorem 2.2. For any permutation μ in W, J_{μ} is the ideal generated by P_{τ}, where $\tau \not \ddagger \mu$, and τ is in \mathscr{G}.

Proof. The assertion is true for $\mu=\omega_{0}=(n, n-1, \cdots, 1)$. For every permutation $\mu \neq \omega_{0}$ there exists a permutation ν and $k \in\{1, \cdots, n\}$ such that $\mu=\nu(k, k+1)$ and $l(\nu)=l(\mu)+1$. Thus, it is sufficient to prove the following implication: If the assertion is true for ν, then it is true for μ. Let $\mathcal{J}(\mu)$ be the set of all permutations σ such that $\sigma \not \leq \mu$. It suffices to show that for every $\omega \in \mathscr{J}(\mu)-\mathscr{J}(\nu)$ the polynomial P_{ω} belongs to the ideal J_{μ}. This is true for $\omega=\nu$. To end, it is sufficient to prove the following implication: If P_{ξ} belongs to the ideal J_{μ}, then for every ω such that $\mathfrak{p}_{k}(\xi)>\mathfrak{p}_{k}(\omega)$, the polynomial P_{ω} belongs to the ideal J_{μ}. By Lemma 2.2 we get $P_{\omega}=f P_{\mathfrak{p}_{k}(\omega)}+\sum m_{\xi} P_{\xi}$, where the summation is over ξ such that $\mathfrak{p}_{k}(\xi)>\mathfrak{p}_{k}(\omega), m_{\xi} \in Z$, and $f \in R / I R$. We know that
the terms in the sum on the right-hand side are in J_{μ}. Moreover it is not hard to check that $\omega \in \mathscr{J}(\mu)-\mathscr{J}(\nu)$ if and only if $\mathfrak{p}_{k}(\omega) \in \mathscr{J}(\mu)-\mathscr{J}(\nu)$. Therefore $f P_{\mathfrak{p}_{k}(\omega)} \in J_{\mu}$, and the proof is complete.

3. The nilpotent description of the cohomology ring of a Schubert subvariety of GL_{n} / P

Let G be a complex reductive linear algebraic group, B a Borel subgroup of G, and P a parabolic subgroup of G which contains B. Let \mathfrak{n} be a regular nilpotent element of the Lie algebra \mathfrak{g} of G which is taken from the Lie algebra \mathfrak{b} of B, and let \widetilde{V} (respectively V) be the vector field induced from the \mathbf{C}-action $\exp (t \mathfrak{n})$ on G / B (respectively G / P). By the Jacobson-Morosov Lemma (see [8]) \tilde{V} (respectively V) satisfies property (B), and in fact the above \mathbf{C}^{*}-action is induced from a one-parameter subgroup of B via the left multiplication. We also note that \widetilde{V} (respectively V) has only one zero $x_{0}=B$ (respectively P). Thus we can talk about the nilpotent description of any B-invariant subvariety of G / B (respectively G / P). In the following proposition we shall use the fact that the fixed point scheme $X^{\mathbf{C}}$ of a holomorphic \mathbf{C}-action $\sigma: \mathbf{C} \times X \rightarrow X$ on a complex manifold X is equal to the zero scheme of the vector field V associated to σ. This result appears to be not commonly known; a proof can be found in [3].

Proposition 3.1. If the cohomology ring of any Schubert subvariety of G / B has a nilpotent description, then the cohomology ring of any Schubert subvariety of G/P has also a nilpotent description.

Proof. Let \widetilde{Z} (respectively Z) denote the zero scheme of \widetilde{V} (respectively V), and let $Y_{\sigma}=\overline{B \sigma P}$ be the Schubert subvariety of G / P. Let $\pi: B / G \rightarrow B / P$ denote the natural projection map. It is well known that the inverse image scheme $\tau^{-1}\left(Y_{\sigma}\right)$ of Y_{σ} is a Schubert subvariety $X_{\sigma \tau}=\overline{B \sigma \tau B}$ of G / B, and the restriction map $\rho:=\pi \mid: X_{\sigma \tau} \rightarrow Y_{\sigma}$ is a P / B fibration (see [9], for example). Thus the fiber product map $\left(Y_{\sigma} \cap Z\right) \times_{Y_{\sigma}} X_{\sigma \tau} \rightarrow Y_{\sigma} \cap Z$ induced by ρ is also a P / B fibration. This implies that $\left(Y_{\sigma} \cap Z\right) \times_{Y_{\sigma}} X_{\sigma \tau}$ is B-equivariantly isomorphic to $\left(Y_{\sigma} \cap Z\right) \times P / B$, because $\operatorname{dim} Y_{\sigma} \cap Z=0$. Since ρ is a surjective B equivariant map, the fixed point scheme $\left(\left(Y_{\sigma} \cap Z\right) \times_{Y_{\sigma}} X_{\sigma \tau}\right)^{\mathbf{C}}$ of the \mathbf{C} action induced by $\exp (t \mathfrak{n})$ on $\left.Y_{\sigma} \cap Z\right) \times_{Y_{\sigma}} X_{\sigma \tau}$ is isomorphic to $X_{\sigma \tau} \cap \widetilde{Z}$. This gives us $\left(Y_{\sigma} \cap Z\right) \times(P / B)^{\mathbf{C}} \cong X_{\sigma \tau} \cap \mathrm{Z}$. Let ρ_{1} denote the map $X_{\sigma \tau} \cap \tilde{Z} \rightarrow Y_{\sigma} \cap Z$, induced by the projection $\rho: X_{\sigma \tau} \rightarrow Y_{\sigma}$. It follows
from above that the comorphism $\left(\rho_{1}\right)^{*}: A\left(Y_{\sigma} \cap Z\right) \rightarrow A\left(X_{\sigma \tau} \cap \tilde{Z}\right)$ is an inclusion. On the other hand, we have the following commutative diagram of graded algebra homomorphisms:

(see [1], for example). It follows from the diagram that $\bar{\psi}$ is injective, and therefore it is an isomorphism.

Theorem 3.1. The cohomology ring of any Schubert subvariety of GL_{n} / B has a nilpotent description.

Proof. Let $X_{\omega}=\overline{B \omega B}$ be the Schubert subvariety of GL_{n} / B associated to ω in W, and let J_{ω} be the ideal of $A(U)=\mathbf{C}\left[z_{i, j}: 1 \leq j<i \leq n\right]$ generated by those Plücker coordinates $\operatorname{det}\left[z_{i_{m}, j}\right], 1 \leq m, j \leq k$, where $\left(i_{1}, \cdots, i_{k}\right) \in I_{k}$ and $\sigma\left(i_{1}, \cdots, i_{k}\right) \not \leq \omega$ in W. It is well known that J_{ω} is the ideal of the Schubert variety X_{ω} in the affine neighborhood U of $x_{0}=B$ (see [9, Theorem 9.1], for example). This implies that if f is in \bar{J}_{ω}, then $f=0$ in $A\left(X_{\omega} \cap Z\right)$, where \bar{J}_{ω} is the ideal of $A(Z)$ generated by $\left[i_{1}, \cdots, i_{k}\right.$] such that $\sigma\left(i_{1}, \cdots, i_{k}\right) \not \leq \omega$ in W. By using Theorems 1.2 and 2.2 , we obtain $j^{*}\left(\bar{\varphi}\left(P_{\tau}\right)\right)=0$ whenever $\tau \not \leq \omega$ in W. Here j stands for the natural inclusion $X_{\omega} \cap Z \rightarrow Z$, and $\bar{\varphi}$ is the isomorphism $R / I R \cong A(Z)$ given in Theorem 1.2. It follows from this fact that C -vector space $A\left(X_{\omega} \cap Z\right)$ is spanned by the set $\left\{j^{*}\left(\bar{\varphi}\left(P_{\xi}\right)\right): \xi \leq \omega\right\}$. Since $\left\{P_{\sigma}: \sigma \in W\right\}$ is a basis of $R / I R$, we get $\operatorname{dim}_{\mathbf{C}} A\left(X_{\omega} \cap Z\right) \leq \operatorname{cardinality}\{\xi \in W: \xi \leq \omega\}=\operatorname{dim}_{\mathbf{C}} H^{*}\left(X_{\omega} ; \mathbf{C}\right)$. Thus the surjective map $\bar{\psi}: A\left(X_{\omega} \cap Z\right) \rightarrow H^{*}\left(X_{\omega} ; \mathbf{C}\right)$ is an isomorphism.

Corollary. The cohomology ring of any Schubert subvariety of the partial flag manifold GL_{n} / P has a nilpotent description.

Proof. The corollary follows from Proposition 3.1 and Theorem 3.1.

References

[1] E. Akyildiz, SL_{2} actions and cohomology of Schubert varieties, Topics in Algebra, Banach Center Publications, Vol. 26, Part 2, Warsaw, 1990, 13-26.
[2] E. Akyildiz \& Y. Akyildiz, The relations of Plücker coordinates to Schubert calculus, J. Differential Geometry 29 (1989) 135-142.
[3] E. Akyildiz \& B. Aubertin, Zero scheme of a vector field is equal to fixed point scheme, IV. Ulusal Matematik Sempozyumu Antakya (1991), to appear.
[4] E. Akyildiz, J. B. Carrell \& D. I. Lieberman, Zeros of holomorphic vector fields on singular spaces and intersection rings of Schubert varieties, Compositio Math. 57 (1986) 237248.
[5] E. Akyildiz \& J. B. Carrell, Cohomology of projective varieties with regular SL_{2} actions, Manuscripta Math. 58 (1987) 473-486.
[6] I. N. Bernstein, I. M. Gelfand \& S. I. Gelfand, Schubert cells and cohomology of the space G/P, Russian Math. Surveys 28 (1973) 1-26.
[7] M. Demazure, Desingularisation des varietes de Schubert generalisees, Ann. Sci. École Norm. Sup (4) 7 (1974) 53-88.
[8] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of complex semisimple Lie group, Amer. J. Math. 81 (1959) 973-1032.
[9] V. Lakshmibai \& C. S. Seshadri, Geometry of G/P - V , J. Algebra 100 (1986) 462-557.
[10] A. Lascoux \& M. P. Schützenberger, Symmetry and flag manifolds, Lecture Notes in Math., Vol. 996, Springer, 1983, 118-144.
[11] D. Monk, The geometry of flag manifolds, Proc. London Math. Soc. 9 (1959) 253-286.
Middle East Technical University, Turkey
Universite Paris-VII
Polish Academy of Sciences

