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Abstract

Let GL, be the group of n X n invertible complex matrices, and P a
parabolic subgroup of GL, . In this paper we give a geometric descrip-
tion of the cohomology ring of a Schubert subvariety Y of GL, /P.
Our main result (Theorem 3.1) states that the coordinate ring A(Y N Z)
of the scheme-theoretic intersection of Y and the zero scheme Z of
the vector field V associated to a principal regular nilpotent element n
of gl, is isomorphic to the cohomology algebra H *(Y; C) of Y. This
theorem was conjectured for any reductive algebraic group G in [4], and
it was proved for the Grassmannian manifolds in [2]. We were recently
informed that Professor D. H. Peterson has just proved that GL,, is ex-
actly the algebraic group G where the cohomology ring of any Schubert
subvariety Y of the space G/B is isomorphic to 4(Y NZ). Here B
stands for a Borel subgroup of G . It is also interesting to note that the
cohomology ring of the union of two Schubert subvarieties in GL, /P
may not admit such a description. This result is due to Professor J. B.
Carrell.

0. Introduction

Let X be a nonlinear complex projective variety having the following
properties:

(A) there exists an algebraic vector field V' with exactly one zero X,
and

(B) there exists an algebraic C*-action on X

LCTxX—-X  ((t,x)—=A) x),

such that dA(¢)- V = £’V for some p > 0 and for all ¢ in C*, where
dA(t) is the associated tangent action of A(¢) on vector fields.

Let Z be the zero scheme of the vector field V', and let Y be any
V- and C’-invariant subvariety of X . It follows from property (B) that
Z is a C'-invariant subscheme of X . Thus, the coordinate ring A(Z)
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(respectively A(Y N Z)) of Z (respectively Y N Z) has a natural graded
algebra structure induced from the C"-action A. Here, Y N Z stands for
the scheme-theoretic intersection of ¥ and Z . Throughout the rest of the
paper the rings A(Z) and A(Y N Z) will be regarded as graded algebras
with the gradation above, and H" (W ; C) will denote the cohomology ring
of the variety W with coefficients in the field of complex numbers C. The
following theorem is proved in [4], [5].
Theorem. There exists a graded algebra isomorphism

w: A(Z) - H (X;C)
which induces a graded algebra homomorphism
V:AYNZ)—- H(Y;C)
commuting with the natural maps
A(Z)— AYNZ) and H'(X;C)— H'(Y;C).

For any parabolic subgroup P of a complex reductive algebraic group
G, the space G/P has the properties (A) and (B). Moreover any Schubert
subvariety Y = BoP of G/P is V- and C’-invariant. Thus, by the
Theorem we have a surjective graded algebra homomorphism

V:AYNZ)—- H (Y;C).

Definition. The cohomology ring of the Schubert variety Y is said to
have a nilpotent description if ¥ is an isomorphism. It is known that the
cohomology ring of any Schubert subvariety Y of the Grassmann man-
ifold G, , has a nilpotent description [2]. In this paper, we generalize
this result to any Schubert subvariety of the partial flag manifold GL, /P .
The paper is organized as follows. In §1, we begin with the preliminaries.
In §2, we investigate a certain ideal in the cohomology ring of GL, /B
associated with a Schubert subvariety ¥ = BgB of GL, /B. This is done
by finding a relation between the functions P, constructed by Bernstein,
Gelfand, and Gelfand in [6] (independently by Demazure in [7]), and the
Pliicker coordinates. In §3, we first prove that if the cohomology ring of
any Schubert subvariety of the space G/B has a nilpotent description,
then so does the cohomology ring of any Schubert subvariety of G/P.
Here P is a parabolic subgroup of a complex reductive linear algebraic
group G which contains the Borel subgroup B of G. Then we finally
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prove that the cohomology rings of the Schubert subvarieties of GL,/P
have nilpotent descriptions.

1. Preliminaries

Let GL, be the group of n x n invertible complex matrices, B the
group of upper triangular matrices in GL,, W the symmetric group in
1,2,.--,n, and I(7) the length of 7 € W. Let R = C[x_, --- s X,]
be the polynomial algebra with the usual grading, and IR the ideal of
R generated by the elementary symmetric polynomials in x,, --- , X, -
W acts on R by permuting the variables. We denote this action by
o-flx;, - ,x,) =f(xal, ,xa"), g=(0,, - ,0,) € W. Let (i, j)
denote the transposition of W obtained by changing i with j. We recall
the following facts from [6], [7] (see also [10] for a more combinatorial
approach). Forany 1 <i < j < n, the polynomial f—(i, j)-f is divisible
by x; — X; . Thus, the operator

f- (lJ)f

1x1

az L0 'R— R ; ) (f)
is well defined.

Let i,,---,i, beintegersin {1,---,n},and let w = (i;, i, +1)--
(i,, i, 4 1) be any element of W . Then the following hold:

(a) If l[(w) # r, then 6(1 i) 6(1 i +1) =0.

(b) If /(w) =r, then the operator 8(1 i+ 6(1.”,.’ +1y depends only on
o and not on the representation in the form o = (i, i, +1)---(,, i, +1).

In case (b) we put J,, = 6(,.1, i+ 6(,.’, i+1) We note that the opera-
tor §,: R — R preserves the ideal /R, and thus it induces an operator
5w: R/IR — R/IR of homogeneous degree —/(w). Let w, be the per-
mutation (n,n—1,---,1) in W, and lfs_t Pm0 = (]'[15i<j$n(xi - x;))/n!
mod (IR). Foreach w in W ,let P = 6ww0(P%) , and let [X ] denote

the cycle class of the Schubert variety X, = BtB in H,(GL,/B; C). The
following theorem is proved in [6], [7].

Theorem 1.1. There exists a graded algebra isomorphism B: R/IR —
H*(GL, /B; C) such that B(P,) = P(X,.) for any w in W, where
P stands for the Poincaré duality map

#:H,(GL,/B;C)—- H'(GL,/B;C).

We shall now discuss the nilpotent case A(Z) for the space GL, /B.
Let U be the group of all lower triangular unipotent matrices in GL, ,
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and let z, i 1SJj<isgn, be the coordinate functions z; (x) X i
x € U. Let n be the regular nilpotent »n x n matrix, which is 1n the Jordan
form, and let ¥V be the vector field on GL, /B induced from the one-
parameter subgroup exp(tn) of GL,. V has a unique zero x, = B, and
satisfies property (B) [1]. The coordinate ring A(Z) of the zero scheme
Z of V in the affine neighborhood U of x, has been computed in [2],
and the following description has been obtained. Consider the grading
on the polynomial algebra A(U) = C[z; jl<i< i < n] determined
by taking degz; ; = i—j. Then A(Z) 1s isomorphic, as a graded alge-
bra, to A(U)/I(Z) where I(Z) is the ideal of A(U) generated by the
homogeneous elements

Zivt,; ~ Zi 1t 2 5(Z 0T 2 )
where we take zk,r=0 if k>n,orr<l,orr>k.

Let I, k=1,2,---,n—1, denote the set of sequences of integers
(8,---,10) such that 1 < i <1, <---<i; <n,andlet W, be the
set of all permutations (4, --- , u,) in W such that (u,,---, u) € I,
and (4, ., -, M4, €1, ,. Forany (i;,---, i) in I, there exists a
unique permutation in the form (i, -, i, i, -, i,) in W, . We
denote this permutation by o(i,,--- , ). For (i;,---, i) in I, let
[i;, -+, k,] denote the function in A(Z) which is induced from the
Pliicker coordmate det[z;, ], 1<m,j< k.

Here and throughout the rest of the paper, we put 2y, = =0if k>n,
or r>k,or r<1. The following theorem is proved in [2]

Theorem 1.2. The homomorphism ¢: R — A(U) determined by ¢(x;)
=2z, — %, i =1, ,n, induces a graded algebra isomorphism

9: R/IR — A(Z). Moreover for any (i,,--- , i) in I, we have
W(Pa(,-l,... ,,'k)) = [il >ttt ik]-

2. A certain ideal associated with a Schubert variety
in the cohomology of GL, /B

We keep the notation of §1, and moreover, for a given sequence of dis-
tinct integers (ji, -, ji), (jy» -, Jj,)" (respectively (j,,--,j)7)
denotes the sequence ( jtl sty jtk) , where jr, < < jtk (respectively,
jTI > ... >jrk) for some permutation 7 = (t,,--- , 7,) of {1,2,---, k}.
We recall the following well-known formula, which is due to Monk [11]
(see also [6], [7], and [10]).



COHOMOLOGY OF SCHUBERT SUBVARIETIES OF GL, /P 515

Theorem 2.1. Let u = (u,, -, u,) be a permutation in W, and let
k=1,2,--- ,n—1. Then the identity

holds in R/IR, where the sum is over all j # k such that I(u(j, k)) =

I(u)+1.
For k=1,2,---,n—1,let p,: W — W, denote the projection map

Pty s ) =0y, 1))
= (B> s ) s (s s )0)-

We note that the Bruhat ordering < on W (7 < u if and only if BtB C
BuB in GL, /B) induces an ordering on W, , which we will also denote
by <. Recall that for u = (g;,--- ,u,) and v = (v, - ,v,) in W,
p<v (in W,)ifandonly if u,<v, for i=1,.-- k.

Lemma 2.1. Let u = (u,,---, u,) be a permutation in W which
satisfies p, > --- > w, and p, , > --- > u,. Then we have the following
equality in R/IR,

P, =P (u)xf le 2"'xk—1x1':+1k lxl’:+2k 2"'xn—1 +Zmer
where the sum is over all © in W such that p,(u) < p, (1) in W, .
Proof. By using Monk’s formula for the successive multiplications

k

Ppk(u)xl ’ (Ppk(ﬂ)xl)xl > ( Xy )xl >
k—1 k k
By s s (B Xt %5 ),
P k—1 k=2
pw*1 X2 Xy

it is not difficult to see that at each stage of the multiplication there appears
in the sum only one P, with p,({) = p,(u), and all the rerpaining P,
satisfy p, (1) < p,(v). (Note that we start with the permutation p, (u),
where the first k elements appear in ascending order.) Thus we get an
expression in the form

k—1_k=2
Ppk(ﬂ)xl X2 K T P(#.w Mt Hey) +ZmCP€’
where m, € Z , and the sum is over all £ in W such that p, () < p,(£).
We repeat this process, multiplying Pp X k le'z coex_, firstby x
n—k—1 '

then by x,f 410 s thenby X e, and finally by x,_,. It is clear
that by arguing as above we obtain the claim.
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Lemma 2.2. For any permutation u= (u,,--- , 4,) in W, and k =
1,2, ,n—1, the equality

Pﬂ = fPPk(u) + Z mrPr

holds in R/IR, where the sum is over all T in W such that p, (1) < p, (1)
in W,.
Proof. 1t follows from Lemma 2.1 that

P((ﬂn ) g 1)) T Ppk(#)g + Z meFe
where g = xf_lx;‘_z . --xk_lx,f;k—l -+-X,_; . Since the operator §; ;.

has the property that

7] (P )= P('fl s &G0 6) 6>
DR 6) 0 otherwise,
we can pass from P(( By o) s Gy o 2 1)7) to Pu by using the operators

6(,.’ i+1) in an appropriate way. We note that in doing this we need to use
only those 8(1.’ i+1) where i # k. On the other hand for i # k we have
(a) 6(i’i+1)(Ppk(mg) = Ppk(#)a(i’m)(g) , because ka(u) is a symmetric
polynomial x,,--- , x, , and does not depend on the remaining variables
Xigr1s ™" s Xy
(b) ﬁk(a(l.,m)(Pc)) = p,(P;), where p, stands for the function p, (P,)
= ka(r) for 7 € W . Thus the assertion follows. q.e.d.

For a given permutation yx in W, let J, be the ideal of R/IR gener-

atedby P, o £ u,and let & = UZ;II W, denote the set of the so-called
Grassmannian permutations of {1,2,--- , n}.

Theorem 2.2.  For any permutation p in W, J is the ideal generated
by P, where 14 pu,and 1 isin & .

Proof. The assertion is true for 4 = w, = (n, n—1, --- , 1). For every
permutation u # w, there exists a permutation v and k € {1, --- , n}
such that u = v(k, k+ 1) and /(v) = [(u) + 1. Thus, it is sufficient to
prove the following implication: If the assertion is true for v, then it is
true for u. Let #(u) be the set of all permutations ¢ such that g £ u.
It suffices to show that for every w € #(u) — #(v) the polynomial P,
belongs to the ideal J, This is true for w = v . To end, it is sufficient to
prove the following implication: If P, belongs to the ideal J# , then for
every w such that p, () > p,(w), the polynomial P, belongs to the ideal
J,- ByLemma22weget P = f Ppk (@) +> - m ¢P: , where the summation is
over ¢ such that p, (&) > p, (w), m, € Z,and f€ R/IR. We know that
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the terms in the sum on the right-hand side are in J, - Moreover it is not
hard to check that w € #(u)—# (v) if and only if p, (w) € F (u)-F (v).
Therefore f ka @) € J# , and the proof is complete.

3. The nilpotent description of the cohomology ring
of a Schubert subvariety of GL, /P

Let G be a complex reductive linear algebraic group, B a Borel sub-
group of G, and P a parabolic subgroup of G which contains B. Let n
be a regular nilpotent element of the Lie algebra g of G which is taken
from the Lie algebra b of B, and let V' (respectively V') be the vector
field induced from the C-action exp(tn) on G/B (respectively G/P). By
the Jacobson-Morosov Lemma (see [8]) 1% (respectively V) satisfies prop-
erty (B), and in fact the above C™-action is induced from a one-parameter
subgroup of B via the left multiplication. We also note that ¥ (respec-
tively V') has only one zero x, = B (respectively P). Thus we can talk
about the nilpotent description of any B-invariant subvariety of G/B (re-
spectively G/P). In the following proposition we shall use the fact that
the fixed point scheme X Cofa holomorphic C-action g: Cx X — X on
a complex manifold X is equal to the zero scheme of the vector field V
associated to o . This result appears to be not commonly known; a proof
can be found in [3].

Proposition 3.1. If the cohomology ring of any Schubert subvariety of
G/B has a nilpotent description, then the cohomology ring of any Schubert
subvariety of G/P has also a nilpotent description.

Proof. Let Z (respectively Z) denote the zero scheme of 14 (respec-
tively V), and let Y, = BoP be the Schubert subvariety of G/P. Let
n: B/G — B/P denote the natural projection map. It is well known
that the inverse image scheme r_l(Ya) of Y_ is a Schubert subvariety
X,, = BotB of G/B, and the restriction map p = =n|: X,, — Y,
is a P/B fibration (see [9], for example). Thus the fiber product map
(Y,nZ) x, X,, - Y, NZ induced by p is also a P/B fibration.
This impliesathat (Y,nZ) x, X, is B-equivariantly isomorphic to
(Y,nZ) x P/B, because dim }a’a NZ = 0. Since p is a surjective B-
equivariant map, the fixed point scheme ((¥, N Z) Xy Xm)C of the C-

action induced by exp(¢n) on Y NZ) x, X__ is isomorphic to XmﬂZ .

ot
This gives us (Y, N Z) x (P/B)C = X,,NZ. Let p, denote the map
X,.N Z - Y_ N Z, induced by the projection p: X — Y . It follows
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from above that the comorphism (pl)*: AY,NZ) - AX, N Z) is an
inclusion. On the other hand, we have the following commutative diagram
of graded algebra homomorphisms:

AX, NZ) —=— H'(X,

o] I

V:A(Y,nZ) — H'(Y,;C)
(see [1], for example). It follows from the diagram that ¥ is injective,
and therefore it is an isomorphism.

Theorem 3.1. The cohomology ring of any Schubert subvariety of
GL, /B has a nilpotent description.

Proof. Let X, = BwB be the Schubert subvariety of GL, /B associ-
atedto @ in W ,andlet J, betheidealof A(U)=C[z; ;:1<j<i<n]
generated by those Pliicker coordinates det[zl.m ’ j] , 1<m, j<k, where
(i,,---, i) €l and a(i;, -, i) £ @ in W. It is well known that
J,, is the ideal of the Schubert variety X in the affine neighborhood U
of x, = B (see [9, Theorem 9.1], for example). This implies that if f
isin J,, then f =0 in A(X,NZ), where J,, is the ideal of A(Z)
generated by [i;,---, ] such that o(i;, -+, i) £ @ in W. By us-
ing Theorems 1.2 and 2.2, we obtain ;" (@(P,)) = O whenever 7 £
in W. Here j stands for the natural inclusion X, NZ — Z, and 9
is the isomorphism R/IR = A(Z) given in Theorem 1.2. It follows
from this fact that C-vector space A(X, N Z) is spanned by the set
{j*(W(Pé)): ¢ < w}. Since {P,: 0 € W} is a basis of R/IR, we get
dim A(X, N Z) < cardinality{{ € W: ¢ < w} = dim  H* (X ; C). Thus
the surjective map ¥: A(X,NZ) - H *(X,; C) is an isomorphism.

Corollary. The cohomology ring of any Schubert subvariety of the par-
tial flag manifold GL, /P has a nilpotent description.

Proof. The corollary follows from Proposition 3.1 and Theorem 3.1.

0)

T2

References

[1] E. Akyildiz, SL, actions and cohomology of Schubert varieties, Topics in Algebra, Ba-
nach Center Publications, Vol. 26, Part 2, Warsaw, 1990, 13-26.

[2] E. Akyildiz & Y. Akyildiz, The relations of Pliicker coordinates to Schubert calculus, J.
Differential Geometry 29 (1989) 135-142.

[3]1 E. Akyildiz & B. Aubertin, Zero scheme of a vector field is equal to fixed point scheme,
IV. Ulusal Matematik Sempozyumu Antakya (1991), to appear.

[4] E. Akyildiz, J. B. Carrell & D. L. Lieberman, Zeros of holomorphic vector fields on singular
spaces and intersection rings of Schubert varieties, Compositio Math. 57 (1986) 237-
248.



COHOMOLOGY OF SCHUBERT SUBVARIETIES OF GL,/P 519

[5] E. Akyildiz & J. B. Carrell, Cohomology of projective varieties with regular SL, actions,
Manuscripta Math. 58 (1987) 473-486.
[6] I. N. Bernstein, I. M. Gelfand & S. 1. Gelfand, Schubert cells and cohomology of the
space G/P , Russian Math. Surveys 28 (1973) 1-26.
[7]1 M. Demazure, Desingularisation des varietes de Schubert generalisees, Ann. Sci. Ecole
Norm. Sup (4) 7 (1974) 53-88.
[81 B. Kostant, The principal three-dimensional subgroup and the Betti numbers of complex
semisimple Lie group, Amer. J. Math. 81 (1959) 973-1032.
[9] V. Lakshmibai & C. S. Seshadri, Geometry of G/P—V ,J. Algebra 100 (1986) 462-557.
[10] A. Lascoux & M. P. Schiitzenberger, Symmetry and flag manifolds, Lecture Notes in
Math., Vol. 996, Springer, 1983, 118-144.
[11] D. Monk, The geometry of flag manifolds, Proc. London Math. Soc. 9 (1959) 253-286.

MIDDLE EAST TECHNICAL UNIVERSITY, TURKEY
UNIVERSITE PARIs-VII
PoLISH ACADEMY OF SCIENCES








