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Abstract

Let GLΠ be the group of n x n invertible complex matrices, and P a
parabolic subgroup of GLn . In this paper we give a geometric descrip-
tion of the cohomology ring of a Schubert subvariety Y of GLn /P .
Our main result (Theorem 3.1) states that the coordinate ring A(Y Γ\Z)
of the scheme-theoretic intersection of Y and the zero scheme Z of
the vector field V associated to a principal regular nilpotent element n
of glπ is isomorphic to the cohomology algebra H*(Y C) of Y . This
theorem was conjectured for any reductive algebraic group G in [4], and
it was proved for the Grassmannian manifolds in [2]. We were recently
informed that Professor D. H. Peterson has just proved that GLΛ is ex-
actly the algebraic group G where the cohomology ring of any Schubert
subvariety Y of the space G/B is isomorphic to A(Y ΠZ). Here B
stands for a Borel subgroup of G . It is also interesting to note that the
cohomology ring of the union of two Schubert subvarieties in GLn /P
may not admit such a description. This result is due to Professor J. B.
Carrell.

0. Introduction

Let X be a nonlinear complex projective variety having the following
properties:

(A) there exists an algebraic vector field V with exactly one zero x0,
and

(B) there exists an algebraic C*-action on X

λ:C* xX^X {(t,x)

such that dλ(t) V = tpV for some p > 0 and for all t in C*, where
dλ(t) is the associated tangent action of λ(t) on vector fields.

Let Z be the zero scheme of the vector field V, and let Y be any
V- and C*-invariant subvariety of X. It follows from property (B) that
Z is a C*-invariant subscheme of X. Thus, the coordinate ring A(Z)
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(respectively A(Y ΠZ)) of Z (respectively Y Π Z) has a natural graded
algebra structure induced from the C*-action λ. Here, YΠZ stands for
the scheme-theoretic intersection of Y and Z . Throughout the rest of the
paper the rings A(Z) and A(Y Π Z) will be regarded as graded algebras
with the gradation above, and H*(W\ C) will denote the cohomology ring
of the variety W with coefficients in the field of complex numbers C. The
following theorem is proved in [4], [5].

Theorem. There exists a graded algebra isomorphism

ψ:A(Z)-+H*(X;C)

which induces a graded algebra homomorphism

ψ:A(YΠZ)-+H*(Y;C)

commuting with the natural maps

A{Z)-+A(YnZ) and H*(X; C) -> H*{Y C).

For any parabolic subgroup P of a complex reductive algebraic group
G, the space G/P has the properties (A) and (B). Moreover any Schubert
subvariety Y = BσP of G/P is V- and C*-invariant. Thus, by the
Theorem we have a surjective graded algebra homomorphism

ψ:A{YΓ)Z)-+H*{Y;C).

Definition. The cohomology ring of the Schubert variety Y is said to
have a nilpotent description if ψ is an isomorphism. It is known that the
cohomology ring of any Schubert subvariety Y of the Grassmann man-
ifold Gk n has a nilpotent description [2]. In this paper, we generalize
this result to any Schubert subvariety of the partial flag manifold GLΠ jP.
The paper is organized as follows. In §1, we begin with the preliminaries.
In §2, we investigate a certain ideal in the cohomology ring of GLn jB
associated with a Schubert subvariety Y = BσB of GLn jB . This is done
by finding a relation between the functions Pσ constructed by Bernstein,
Gelfand, and Gelfand in [6] (independently by Demazure in [7]), and the
Plύcker coordinates. In §3, we first prove that if the cohomology ring of
any Schubert subvariety of the space G/B has a nilpotent description,
then so does the cohomology ring of any Schubert subvariety of G/P.
Here P is a parabolic subgroup of a complex reductive linear algebraic
group G which contains the Borel subgroup B of G. Then we finally
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prove that the cohomology rings of the Schubert subvarieties of GLn/P
have nilpotent descriptions.

1. Preliminaries

Let GLn be the group of n x n invertible complex matrices, B the
group of upper triangular matrices in GL^ , W the symmetric group in
1, 2, , n, and /(τ) the length of τ e W. Let R = C[xχ, , xn]
be the polynomial algebra with the usual grading, and IR the ideal of
R generated by the elementary symmetric polynomials in xχ, , xn .
W acts on R by permuting the variables. We denote this action by
σ f ( x χ , , x n ) = f { x O χ , - " , x σ ) , σ = ( σ χ , , σ n ) e W . L e t ( / , j )
denote the transposition of W obtained by changing i with j . We recall
the following facts from [6], [7] (see also [10] for a more combinatorial
approach). For any 1 < / < j < n , the polynomial / - ( / , j)-f is divisible
by x. - Xj . Thus, the operator

is well defined.
Let i{, , ir be integers in {1, , n) , and let ω = {iχ, iχ + 1)

(ir,ir+l) be any element of W. Then the following hold:
(a) If /(α>)^r, then 3 ( I |,,-+ 1 ) •• 0(,. ; 1 > 1 ) = 0.

(b) If l(ω) = r, then the operator <9(/ + n dn , + n depends only on

ω and not on the representation in the form ω — (i{, iχ +1) (ir, ir+1).

In case (b) we put dω = d,t . + 1 ) 9(/ . + 1 ) . We note that the opera-

tor dω: R -> R preserves the ideal IR, and thus it induces an operator

~dω\ R/IR -> R/IR of homogeneous degree -/(ω). Let ωQ be the per-

mutation (n, n - 1, ,1) in W, and let Pω^ = ( Π i < ί < y < π ( ^ - *,-))/*!

mod (/i?). For each ω in W, let P ω = ~dωωyωj , and let [Xτ] denote

the cycle class of the Schubert variety Xτ = ΈτB in H^{GLn /B C). The

following theorem is proved in [6], [7].

Theorem 1.1. There exists a graded algebra isomorphism β: R/IR -+

H*(GLJB;C) such that β(PJ = &([XωQJ) for any ω in W\ where

& stands for the Poincare duality map

n IB C) -> ^ ( G L , , /B C).

We shall now discuss the nilpotent case A(Z) for the space GLn jB.
Let U be the group of all lower triangular unipotent matrices in GLrt ,
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and let z. .., 1 < j < ί < n, be the coordinate functions z. j(x) = x. •,
x e U. Let n be the regular nilpotent « x n matrix, which is in the Jordan
form, and let V be the vector field on GLn /B induced from the one-
parameter subgroup exp(ίn) of GLn . V has a unique zero x0 = B, and
satisfies property (B) [1]. The coordinate ring A(Z) of the zero scheme
Z of V in the affine neighborhood U of x0 has been computed in [2],
and the following description has been obtained. Consider the grading
on the polynomial algebra A(U) = C[z.j\ 1 < j < i < n] determined
by taking degz, = i - j . Then A(Z) is isomorphic, as a graded alge-
bra, to A(U)/I(Z), where /(Z) is the ideal of A(U) generated by the
homogeneous elements

where we take zk r = 0 if k > n , or r < 1, or r > k .
Let Ik, k = 1,2, , π — 1, denote the set of sequences of integers

(ij, ••• , i^) such that 1 < i\ < ί2 < ••• < / f < Λ, and let Wk be the
set of all permutations (μ{, ••- , μn) in FT such that (μ{, , /ẑ ) G /^
and (μk+ι, , //Λ) G /^.^ . For any (i{, , ι"fc) in Ik there exists a
unique permutation in the form (i{9 --- , ik, i ^ j , , /Λ) in Ŵ  . We
denote this permutation by σ(i{, , ik). For (i{, , ẑ ) in Ik , let
[/p , kk] denote the function in A(Z) which is induced from the
Plϋcker coordinate detfz^ . ] , 1 < m, j < k.

Here and throughout the rest of the paper, we put zk r = 0 if k > n ,
or r > k, or r < 1. The following theorem is proved in [2].

Theorem 1.2. The homomorphίsm φ: R -> Λ!(C/) determined by φix^)
= zi+ι i ~ zi Ί-\> *' = 1 > , Λ, induces a graded algebra isomorphism
ψ: R/IR -> A(Z). Moreover for any (iΛ , , ẑ ) in /^ we

2. A certain ideal associated with a Schubert variety
in the cohomology of GLrt jB

We keep the notation of § 1, and moreover, for a given sequence of dis-
tinct integers (j\ , , j k ) , (jχ, , ^ ) < (respectively (j\ , , y j t)

>)
denotes the sequence (jτ , , 7τ ), where j τ < < j τ (respectively,
Λ > * * * > Jτ ) f o r s o m e permutation τ = (τ{, , τk) of {1, 2, , A:}.
We recall the following well-known formula, which is due to Monk [11]
(see also [6], [7], and [10]).
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Theorem 2.1. Let μ = (μχ, , μn) be a permutation in W, and let
k = 1, 2, - , n - 1. Then the identity

holds in R/IR, where the sum is over all j Φ k such that l(μ(j, k)) =
Aθ + 1-

For k = 1, 2, , n - 1, let pk: W -> Ŵ  denote the projection map

We note that the Bruhat ordering < on W (τ < μ if and only if 5 τ ^ c
5//5 in GLw /5) induces an ordering on Wk , which we will also denote
by < . Recall that for μ = (μχ, , μn) and v = {vχ, , i/J in Wk,
μ<v (in W )̂ if and only if μi<vi for / = 1, , k .

Lemma 2.1. Lei μ = (/^ , ••• , μn) be a permutation in W which

satisfies μχ > > μk and μk+ι > > μn . Then we have the following

equality in R/IR,

p _ p k-\ k-2 n-k-l n-k-2 ^ ^ p

^μ-rpk(μ)Xl X2 '"Xk-lXk+l Xk+2 ' " Xn-\ + Z^ mτ^τ '

where the sum is over all τ in W such that pk{μ) < Pk(τ) in Wk .
Proof. By using Monk's formula for the successive multiplications

\(μ)X\ ' (Ppk(μ)X\)Xl ' * ' * ' (Ppk(μ)Xl )X1 '

^ P k ( μ ) X l ' X Ί ' " ' ' ^ P Λ ( / ^ ) X 1 X 2 ) ' * * * '
A : - l k - 2

^pk{μ)X\ X2 '"Xk-\>

it is not difficult to see that at each stage of the multiplication there appears
in the sum only one Pζ with pk(ζ) = Pk(μ), and all the remaining Pv

satisfy pk{μ) < P^i") (Note that we start with the permutation pk{μ),
where the first k elements appear in ascending order.) Thus we get an
expression in the form

where mξ e Z , and the sum is over all ξ in W such that pk(μ) < Pk{ζ)

We repeat this process, multiplying Pp ^μ)xχ ~

then by x2

k+x, , then by xk~x ~
ι, , and

that by arguing as above we obtain the claim.

We repeat this process, multiplying Pp ^μ)xχ ~ x2~ -xk_x first by xk+ι,

then by x2

k+x, , then by xk~x ~
ι, , and finally by xn_x. It is clear

i
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Lemma 2.2. For any permutation μ = (μι,-- , μn) in W, and k =
1, 2 , , n - 1, the equality

holds in R/IR, where the sum is over all τ in W such that ρk(μ) < pk(τ)
in Wk.

Proof. It follows from Lemma 2.1 that

P((μ{ .... ,μkr,(μk+ι,- ,μnΐ)
 = Ppk(μ)8 + Σ mξPζ '

where g = x\~xx\~2 • • xk_ιxk+ι~l • • * „ _ ! Since t h e opera tor d{ι;i+l)

has the property that

a (p Ϊ _ / P(d.",ί/+,.ί,.-.ί.) rf^x^+i'
0'(. . ί + i ) ^ « I , - , 0 J - \ o otherwise,

we can pass from P(( λ> (n λ>λ to P by using the operators

d (. /+1v in a n a p p r o p r i a t e way. We n o t e t h a t in doing this we need to use

only those <9(. / + 1 ) where iφk. O n t h e other h a n d for iψk we have

(a) d(itM)(PPk{μ)g) = PPklμ)d(itM)(g)9 because PPk(μ) is a symmetric

polynomial xχ, , jcfc , and does not depend on the remaining variables

(b) Pjk(9(/jJ.+1)(/^)) = Pjk(^), where pfc stands for the function
( )

= Pp ( τ ) for τ e W. Thus the assertion follows, q.e.d.

For a given permutation μ in W, let / be the ideal of R/IR gener-

ated by Pσ, σ ^ μ, and let ^ = \J£l{ Wk denote the set of the so-called

Grassmannian permutations of {1, 2, , n} .

Theorem 2.2. For any permutation μ in W, Jμ is the ideal generated

by Pτ, where τ ^ μ, and τ is in &.
Proof. The assertion is true for μ = ωQ = (n, n-1, , 1). For every

permutation μ Φ ω0 there exists a permutation v and k e {1, , n}
such that μ = v(k, k + 1) and l{v) = l(μ) + 1. Thus, it is sufficient to
prove the following implication: If the assertion is true for v , then it is
true for μ . Let f{μ) be the set of all permutations σ such that σ ^ μ .
It suffices to show that for every ω e f(μ) - f{y) the polynomial Pω

belongs to the ideal / . This is true for ω = v . To end, it is sufficient to
prove the following implication: If Pξ belongs to the ideal / , then for
every ω such that pk(ξ) > ρk(ω), the polynomial Pω belongs to the ideal
Jμ . By Lemma 2.2 we get Pω = fPp ( ω ) + Σ mξPξ > where the summation is
over ξ such that p^(£) > ρk(ω), mξeZ , and / e R/IR. We know that
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the terms in the sum on the right-hand side are in / . Moreover it is not
hard to check that ω e J{μ)S{y) if and only if ρk{ω) e
Therefore fPp ( ω ) e Jμ , and the proof is complete.

3. The nilpotent description of the cohomology ring
of a Schubert subvariety of GL r t /P

Let G be a complex reductive linear algebraic group, B a Borel sub-

group of G, and P a parabolic subgroup of G which contains B. Let n

be a regular nilpotent element of the Lie algebra 9 of G which is taken

from the Lie algebra b of B, and let V (respectively V) be the vector

field induced from the C-action exp(ίn) on GjB (respectively G/P). By

the Jacobson-Morosov Lemma (see [8]) V (respectively V) satisfies prop-

erty (B), and in fact the above C*-action is induced from a one-parameter

subgroup of B via the left multiplication. We also note that V (respec-

tively V) has only one zero x0 = B (respectively P). Thus we can talk

about the nilpotent description of any /^-invariant subvariety of GjB (re-

spectively G/P). In the following proposition we shall use the fact that

the fixed point scheme Xc of a holomorphic C-action σ: CxX -+ X on

a complex manifold X is equal to the zero scheme of the vector field V

associated to σ . This result appears to be not commonly known; a proof

can be found in [3].

Proposition 3.1. If the cohomology ring of any Schubert subvariety of

G/B has a nilpotent description, then the cohomology ring of any Schubert

subvariety of G/P has also a nilpotent description.

Proof Let Z (respectively Z) denote the zero scheme of V (respec-

tively V), and let Yσ = BσP be the Schubert subvariety of G/P. Let

π: B/G —• B/P denote the natural projection map. It is well known

that the inverse image scheme τ~ι(Yσ) of Yσ is a Schubert subvariety

Xστ = BστB of G/B, and the restriction map p := π\: Xστ -• Yσ

is a P/B fibration (see [9], for example). Thus the fiber product map

(Yσ Π Z) xγ Xστ -+ Yσ Π Z induced by p is also a P/B fibration.

This impliesσthat (Yσ Π Z) xγ Xστ is 5-equivariantly isomorphic to

(Yσ Π Z) x P/B, because dim Ϋσ Π Z = 0. Since p is a surjective B-

equivariant map, the fixed point scheme ((Y ΠZ) xγ Xστ)
c of the C-

action induced by exp(ίn) on YσΓ\Z) xγ Xστ is isomorphic to XστΠZ .
a

This gives us (Yσ Π Z) x (P/B)c ^ I f f T ί l Z . Let pχ denote the map

Xστ n Z -• Yσ Π Z , induced by the projection p: Xστ -• Yσ . It follows
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from above that the comorphism (pχ)*: A{Yσ n Z ) -> A(Xστ Π Z) is an
inclusion. On the other hand, we have the following commutative diagram
of graded algebra homomorphisms:

A(XστΠZ) -^H\Xστ'X)

(see [1], for example). It follows from the diagram that ~ψ is injective,
and therefore it is an isomorphism.

Theorem 3.1. The cohomology ring of any Schubert subvariety of
GLΛ jB has a nilpotent description.

Proof Let Xω = BωB be the Schubert subvariety of GLn jB associ-
ated to ω in W, and let Jω be the ideal of A(U) = Q{zi ;.: 1 < j < i < n]
generated by those Plucker coordinates det[z ] , 1 < m , j < k, where

(Ϊ\ , , ik) € Ik and σ(i{, , ik) ^ ω in W. It is well known that
/ ω is the ideal of the Schubert variety Xω in the affine neighborhood U
of x0 = B (see [9, Theorem 9.1], for example). This implies that if /
is in ~Jω, then / = 0 in A(Xω n Z ) , where 7 ω is the ideal of A{Z)
generated by [iχ, , ik] such that σ(ix, , ik) ^ ω in W. By us-
ing Theorems 1.2 and 2.2, we obtain j*(ψ(Pτ)) = 0 whenever τ £ ω
in JF. Here j stands for the natural inclusion XωΠ Z -> Z , and ^
is the isomorphism R/IR = A(Z) given in Theorem 1.2. It follows
from this fact that C-vector space A(Xω Π Z) is spanned by the set
{j*(φ(Pξ)): ξ < ω). Since {Pσ: σ e W) is a basis of R/IR, we get
dimcA(Xω Π Z) < cardinality^ G W\ ξ < ω} = dimcH*(Xω; C). Thus
the surjective map ψ: A(Xω n Z ) - > H*(Xω C) is an isomorphism.

Corollary. 77j£ cohomology ring of any Schubert subvariety of the par-
tial flag manifold GLn jP has a nilpotent description.

Proof. The corollary follows from Proposition 3.1 and Theorem 3.1.
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