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ISOSPECTRALITY IN THE FIO CATEGORY

STEVEN ZELDITCH

0. Introduction

Compact riemannian manifolds (Mx, gx), resp. (Af2, g2), are called
isospectral if there exists a unitary operator U: L2(Mγ) -> L2(M2) which
intertwines their Laplacians: C/Δ(1) U* = Δ ( 2 ) . At this time, quite a variety
of (nonisometric) isospectral pairs have been constructed. On the other
hand, all of these pairs are quite special: to the author's knowledge, each
known pair has a common riemannian cover, and frequently a common
quotient. These observations raise the questions:

(Ql)—Are isospectral manifolds locally isometric? Do they have a com-
mon riemannian cover?1

(Q2)—Is a generic metric spectrally determined (i.e., not nontrivially
isospectral to another)? Is a metric with simple length spectrum spectrally
determined?

There exist few positive results on these problems at present. Our pur-
pose in this paper is to show that they can be solved (affirmatively) if
we restrict the isospectral problem to the FIO (Fourier Integral Operator)
category. At least, we will show this for (M, g) of dimension d — 2
and curvature K < 0. These dimension and curvature restrictions repre-
sent the current state of knowledge on the isometry problem for conjugate
geodesic flows ([3], [4], [17]; see below); they should become relaxed as
this knowledge develops further.

Isospectral Laplacians A{ and Δ2 will be called isospectral in the FIO
category (or, Fourier-isospectral for short) if there exists a unitary FIO
U intertwining them as above. More precisely, U will be assumed to
lie in the Hόrmander space I°{M{ x M2, C) for some closed, embedded
canonical relation C «-> T* Mχ x f*M2 , such that C o Cι is a clean
composition (see §1). To prevent confusion, we emphasize that C is not
assumed to be the graph of a symplectic difFeomorphism (even locally).
Indeed, our first step (§2-3) will be to characterize the canonical relations
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1A counterexample has recently been found by C. Gordon.
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underlying unitary FIO's and in particular those FIO's which intertwine a
pair of Laplacians.

Our original motivation for studying Fourier-isospectrality came from
the observation (with A. Uribe) that Sunada's isospectral Laplacians can be
intertwined by unitary FIO's. To give some idea of the kinds of canonical
relations that come up in isospectral theory, let us recall that his isospectral
pairs (M{, M2) fit into a diagram

(0.1)

of finite normal covers. Let H. be the covering group for π., and G the
covering group for π 0 . Sunada observes that if L2(G/H{) and L2(G/H2)
are unitarily equivalent G-modules, then, for any metric g0 on MQ,
π*(g0) will be isospectral to nl(gQ). We add the following observation:
from a unitary intertwining kernel A(g) between these modules, one can
construct such a kernel between the Laplacians (§5). The resulting op-
erator is essentially just the weighted sum ΣgeG A(g)π2* T' π* of Radon
transforms between Mχ and M2 (Γ is the translation associated to g).
The corresponding canonical relation is thus the union (for g e G) of
the conormal bundles iV*(graph(π2 o g o πj"1)) to graphs of the indicated
correspondences.

Sunada's examples form in a certain sense the main class of known
isospectral pairs: for, the pairs come in families of positive functional
dimension equal to the dimension of the Mi. Moreover, the metric need
not be locally homogeneous, or have any local isometrics. By comparison,
the other known examples still use rather special metrics (e.g., flat [16],
spherical [12], hyperbolic [19], or (partially) locally solvable [8], [5]).

The next most robust examples are those of DeTurck-Gordon (espe-
cially [5]) and Gordon-Wilson. In particular, DeTurck-Gordon construct
isospectral pairs (in fact, continuous families) of quotients M/T, where
M carries an action by a nilpotent Lie group G such that G/T and
M/T are compact. The metric on M only needs to be invariant under a
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certain subgroup ΓH (see [5, Proposition 4.1]). Hence, their examples
also come in families of positive functional dimension, although not of
the dimension of M.

DeTurck-Gordon explicitly construct intertwining operators between
their Laplacians [5, Theorem 2.1]. Recently, F. Marhuenda made a mi-
crolocal analysis of (at least some of) these intertwining operators [15].
They turn out to be a singular FIO's associated to cleanly intersecting
canonical relations in the sense of Guillemin, Melrose, and Uhlmann. In
particular, they have well-defined and composable principal symbols.

Thus, many of the robust (i.e., highly deformable) known isospectral
pairs live in the FIO category—broadly enough interpreted. We do not
presently know which of the other examples are Fourier-isospectral (al-
though the transplantation examples of Buser and Berard almost certainly
are). However, the remaining examples appear to be isolated among
isospectral pairs, and hence may be considered sporadic. So, at least ac-
cording to our present knowledge, Fourier-isospectrality provides a kind of
boundary between generic and sporadic isospectralities. It would be very
desirable to have an a priori understanding of this (i.e., not confined to
studying examples). As we will see, the fundamental isospectral problems
can, to a large degree, be reduced to this question of how generically an
isospectrality is Fourier.

Let us now turn to the main results of the this paper. In answer to (Ql),
we have:

(4.1) Theorem. Let {M{, g{) and (M2, g2) be a pair of Fourier-
isospectral surfaces. If {Mχ, gχ) is nonpositively curved, then the (Mi, g.)
posses a common, finite riemannian cover.

In answer to (Q2), we have:
(4.2) Theorem. Let (M{, g{) be a negatively curved surface with sim-

ple length spectrum. If (M{, gχ) is Fourier isospectral to (M2, g2), then
it is isometric to (M2, g2).

(Here, Lsp(M, g) is the length spectrum: the set of lengths of closed
geodesies. Simplicity means at most one geodesic has a given length.)

The proofs of these theorems contain two main ingredients. The first
is a symbolic analysis of Fourier-isospectrality (§§1-3). In the case of
surfaces, our result is:

Lemma (see Corollary 3.7(b) and Proposition 3.8). Let (Mχ, gχ) and
(M 2, g2) be Fourier-isospectral compact surfaces. Then:

(i) there exists a common finite cover pt: M —> M.
(ii) there is a common cyclic cover q(: Q -> S*M (S*M being the unit

cotangent bundle for p * ( ^ )), such that qt only unwinds the circles S*Mm
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(iii) there is a diffeomorphism Φ: Q -• Q so that the correspondence

qχoφo q~ι conjugates the geodesic flows G\ of P*(^)

Thus, Fourier-isospectral compact surfaces nearly have smoothly (even
symplectically) conjugate geodesic flows: the flows are conjugate up to cer-
tain finite cyclic covers.

The second main point is to determine when such near conjugacy im-
plies local isometry. The crucial ingredients here are the recent results of
Croke [3], Croke-Fathi-Feldman [4], and Otal [17] on the marked length
spectrum of a nonpositively curved surface. This is the function L :

ftχ(Mχ) -+ R+ on free homotopy classes of loops, which assigns to yG
ftχ(M) the common length L(γ) of the closed geodesies γ for g in γ (γ
is unique if K < 0). We will use:

Theorem A [4]. Let M be a closed surface and gχ, g2 metrics on M,
with gχ of nonpositive curvature and g2 without conjugate points. If gχ

and g2 have the same marked length spectrum, then they are isometric.
As we will see, the Lemma implies that if (Mχ, gχ) is negatively curved

(say) and (Af2, g2) is Fourier-isospectral to (Mχ,gχ), then (Af2, g2)
has no conjugate points and has the same marked length spectrum as
(Mχ, gχ). Hence Theorem A will imply Theorem 4.1.

In sum, our point in this paper is that many of the principal questions in
isospectral theory (such as (Ql) and (Q2) can be reduced, at least for broad
enough classes of metrics, to the solvability of the isospectral equation

( 0 2 ) ί(A^A

by Lagrangian distribution U e 3f'(Mι x M2). Actually, since our results
depend only on a symbolic analysis, it would suffice to solve (0.2) to leading
order.

The main problems suggested by this work seem to be the following:
First, for what class of metrics does symbolic isospectrality imply local
isometry? (Note that Zoll spheres are always symbolically isospectral
[20].) Second, how generically are isospectral pairs generically Fourier-
isospectral? Third, does isospectrality generically imply the microlocal
solvability of (0.1) along products of a x β of closed geodesies of Mχ x M2

with L(a) = L(β)Ί (In other words, can one find a solutions Uaxβ

so the left sides in (0.2) have wavefront set disjoint from a x β, resp.
a x a, β x β.) This question is closely related to Weinstein's conjecture
that the spectrum determines the Birkhoff-Moser canonical forms for the
Poincare maps associated to each closed geodesic γ (see [7]).
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1. Fourier-isospectrality and symbolic isospectrality

Recall that the respective Laplacians Δ (1) and Δ (2) of compact rieman-

nian manifolds (M{, g{) and (M2, g2) are Fourier-isospectral if there

exists an FIO U: L2(M{) -• L2(M2) so that

(i) ,

(ii) UU* =U*U = I d .

By FIO, we mean that the (Schwartz) kernel U(x, y) lies in a space

I°(M{ x M2, C) for some closed, embedded, canonical relation C *-•

T*Mχ x f*M2 . C is understood to be homogeneous (i.e., to be invari-

ant under the free M+-action on f*Mχ x f*M2). We will also assume

that C o C% and C o C* are clean compositions [11, III, 21.2.14]. Here,

C* = {(y, η, x, ξ): (x, ζ, y, η) e C} is the transposed canonical relation

of C .
We have departed here from the notation C " 1 in [11, IV, 25.2] to

emphasize that C o Cι need not be the diagonal relation. We will depart
from the customary notational conventions of FIO theory in a few other
ways as well. For one, we will view C = Γ* Mχ x f*M2 as a relation (or
correspondence) from T*Mχ to T*M2 rather than the reverse. Hence,
we will compose relations in the usual set-theoretic way: relations Cχ C
T*XxT*Y and C2 c T*YxT*Z will compose as C2oC{ c T*XxT*Z.
Further, we will not twist canonical relations as in [11, III, 21,2,9] or [11,
IV, 25.2]. These and future departures are necessary in order to conform to
conventions standard outside of FIO theory, and hopefully are transparent
enough not to cause confusion.

The principal symbol of U will be denoted by σv. It is a section of

Ω^/2 <g> Mc , where Ω^/2 is the bundle of 1/2-densities on C and Mc is

the Maslov bundle (a flat, trivializable hermitian line bundle over C). Our

assumptions that U has order 0 means that σv is homogeneous of order

m/2, where m = dimMχ (= dimM2) i.e., συ e Sm/2(C, Ω^/2 (8) Mc).

The isospectral equations (1.1) imply a corresponding set of equations

for the principal symbol data (C, σv). To state them, we first introduce

some terminology and notation. G\ will denote the geodesic flow on T*Mi

(=T*Mi\0) generated by the norm function l ^ of the metric. The prod-

uct flow G\ x G~ι is then the flow on f*Mχ x f*M~ of the Hamilton vec-

tor field Hf of the difference Hamiltonian f(x{ ,ζl9x2, ξ2) = IfJi - \ζ2\i

(recall that Γ*M~ is f*M equipped with - ω , ω being the canonical
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symplectic form). Further, o denotes composition for canonical relations
or symbols, σ^ denotes the adjoint symbol, Δt*M is the diagonal in
f*M x T*M, and μ is its canonical 1/2-density.

The pair (C, σv) determines what Guillemin-Uribe and Weinstein call
a morphism in the symplectic category: this is the category whose objects
are symplectic manifolds X, Y and whose morphisms are canonical re-
lations C c I x Γ equipped with 1/2-densities σ e C°°(Ω^/2) ([10],
[21]). Following their terminology, we will have:

(1.2) Definition. A morphism (C, σ) from f*M{ to f*M2 is uni-

tary if C oC* and C* o C are clean compositions, and if

(i) At.M c C ' o C ,

(ii) -oυ o σv = I_ , ^ i

0 on C o CArM

(similarly for C o Cι and σv o σ^).
The simplest example of a unitary morphism is the graph Γ of a

symplectic diffeomorphism χ: f*M{ -> f*M2, equipped with its natu-
ral graph 1/2-density (χ and all other maps are understood to be homo-
geneous). The intertwining operators in §0 provide other examples (see
§5).

We will also have:

(1.3) Definition. A morphism (C, σ) from f*M{ to T*M2 is an

intertwining morphism between the geodesic flows G\ n f*Mi if:

(i) (G[ x G2

t)(suppσu) = suppσ^ .

A special case is again the graph Γ of a symplectic diffeomorphism

χ , such that χoG[o χ~ι = G2 . There are other examples (see §3).
Finally, we will have:
(1.4) Definition. Compact riemannian manifolds (Mι,gι) and

[M2, g2) are symbolically isospectral if there exists a unitary morphism
(C, σ) which intertwines their geodesic flows.

We then have the simple
(1.5) Proposition. Fourier-isospectrality implies symbolic isospectral-

ity.
Proof. Let U be the unitary intertwining operator in (1.1). Modulo

one technical problem, (1.1)(ii) immediately implies that (C, σ^) is a
unitary morphism. The technical problem is that Cι oC and CoC* need
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not be embedded relations, so the usual definitions of 1/2-densities on
them and of the composition formula for σ^ o aυ need to be modified
(compare [11, IV, 25.2.3]). This complication occurs in the Sunada ex-
ample, so is quite essential. We will deal with it in the appendix to this
section (see (A1.8)).

Next, rewrite (l.l)(i) in the form (Δ^1} - Δ{2))U(x, y) = 0. View

(A^]-A{2))U(x,y) as the composition of a ΨDO on L2(M{ x M2) and

an FIO from C to L2(M{ x M2). As an FIO of order 2, its principal

symbol is fσΌ e Sm/2+2(C, Ω{/2 ® Mc). So fσυ = 0 and, since C is

Lagrangian, Hj must be tangent to C on supp(σ [/).

As an FIO of order 1, its principal symbol is ϊ~x&H (σv) (see [11, IV,

25.2.4]; note that the subprincipal symbol of Δ ^ - Δ ^ is zero). Hence
Jϊ?H (σv) = 0, proving 1.3(i)-(ii).

Remarks. (1) Observe that we have not assumed C = s u p p ^ ) . This
temporarily leaves open the possibility that supp(σ(/) might be any closed
invariant subset of C for G\ X G2* which can support a smooth function.
Actually, we will show in §2 that the unitarity condition forces supp(σc/)
to be a closed Lagrangian manifold without boundary. At that point, it
will be most sensible to require C = s u p p ^ ) .

(2) Suppose conversely that (C, σ) is a symbolic isospectrality between
(Mx, gx) and (Af2, g2). Then U\ U* - Δ2 is an FIO of order 0 for any
U e I°{Mι x Af2, C) with συ = σ . In some cases, this conclusion can be
significantly improved. For example, Weinstein has proved that if C is the
graph of a symplectic diffeomorphism, then \λn(Mx, £i)-λ Λ + i k (M 2 , g2)\ =
0(1), as n —• oo for some integer k [20]. Here k = ind(C/) is the
index of U (completely mysterious at present). Weinstein's proof does
not immediately generalize to C which are not graphs.

Appendix to §1

We need to discuss symbol composition when the various simplifying
assumptions in [11, III, 25.2.3] and elsewhere are dropped. Hopefully, our
discussion will also make §§2-3 accessible to those not already familiar
with FIO theory.

Let X. = T*M., and assume for simplicity that dim M. = m (j =

1,2,3) . Also, let C ^ X x X~+ι be a pair of closed, embedded, canon-

ical relations (7 = 1,2). The composition C2 o C{ c X{ x X^ is just the
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usual set-theoretic composition of relations [11, III, 21.2.12]). It is said to
be clean if the following fiber product is clean:

cx

(Al.l)

c2

where F = {(cχ, c2) e CχxC2: πχ(cχ) = π2(c2)}, and π 2 : ̂  x Xj+ι -> X2

is the natural projection. Cleanliness of (Al.l) means that F is a disjoint
union | J . F. of closed, embedded submanifolds of Cχ x C2 (of possibly
varying dimensions rf.), and that the tangent diagram at each / e F is
also a fiber product.

Now let p: F -> C2 o C t be the natural projection; i.e., the restriction
to F of the projection πχ x π3: Xχ x X2 x X2 x X^ —> Xχ x X^ onto

the outer factors. If (Al.l) is clean, then p is a map of constant rank 2m
(indeed, dpj-(T^F) is always Lagrangian). Hence p is a local fibration to
its image (compare [11, III, 21.2.14]).

In general, p will fail to be a global fibration due to self-intersections
in C2 o Cj (example: the Sunada intertwining relations). In order to
compose symbols, we will require that these self-intersections be clean.
More precisely, let {Vj} be a finite (homogeneous) cover of F so that

p\v is a fibration onto its image (note that F/R+ is compact). The images

Bj = p(Vj) are then open, embedded submanifolds of Xχ x X3, whose
union is C2 o Cx. We will refer to them as the "branches" of C2 o C{

(relative to the cover).
In general, let us call a map φ: M —> N of constant rank between two

manifolds a clean local fibration (CLF) if there is a cover of M for which
the associated branches B intersect cleanly (i.e., B Γ)Bk is a submanifold
of N and Tb(Bj Π Bk) = Tb(Bj) Π Th(Bk)). We then say:

(A 1.2) Definition. The composition C2 o Cx is extra-clean if (Al .1)
is clean, and p: F -> C2 o Cx is a CLF.

With this assumption, the tangent planes to the branches of C2 o Cx

never coincide. Hence the manifold Λ c o C of such tangent planes is an

embedded submanifold of the Lagrangian Grassmannian A(Xχ x X^).
Here, for any symplectic manifold S, A(S) is the bundle over S whose
fiber at s e S is the Grassmannian A(TSS) of Lagrangian planes of TSS.
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The natural projection from A(Xχ x l 3 " ) to Xχ x l 3 " restricts to Λ c o C

to determine an immersion ic oC : Λ c o C -> Xχ x X~ . It is the parame-

trization of C2 o Cx by its tangent planes.

Let Λ c , resp. Λ c , similarly denote the manifold of tangent planes

to Cj, resp. C2 . The corresponding maps ic are now diffeomorphisms.

Hence, we may view the fiber product F above as a submanifold of Λ r x

Λ c . We may also factor the projection p as ic oC o ψ, where:

(A1.3) Definition, ψ: F —> Λ c o C is the map ^(A t, A2) = A2 o λχ

(i.e., the composition of these subspaces of Γ(JC ξ χ ξ ^(X{ x X~), resp.

If C 2 o Cj is extra clean, then each ψ\F is a fibration to its image.

We now define a composition law for 1/2-densities: it is a natural

bilinear map

First, identify Ω^/2 with Ω.][2 . A 1/2-density σ. on C is thus a

family {σ.(λ)} of 1/2-densities, with o.{X) e \λ\ι/2 (\W\S denotes the

space of 5-densities on a vector space W). The exterior tensor product

(σ2 03 σχ)ψ xλ v is then an element of \λ{ x A2 |1 / 2. In a natural way, it

determines a gadget (σ2Mσ{){λ χ λ } e | ^ x A |0 |A 2 oAJ 1 / 2 , where Aj xλ 2 e
F , and where Vλ xλ is the vertical subspace of Tλ xλ F (tangent to the
fibers of ψ). Since it plays an important role in §§2-3, we give a brief
and rather plebian description of it (see [6, §5] or [11, III, §25] for more
details).

Let Sj = T{χ ξ)Xj (7 = 1 , 2 , 3 ) . Then λ{ x λ2 c S{ x S~ x S2 x S~

and Tλ xλ F is the subspace of vectors (u,υ ,v ,w). The fiber Fλ over

λe Ac oC is the set {λχ x λ2: λ2oλ{ = λ} , and its tangent space Vλ χλ is

the space of (0, υ , υ, 0) 's. Under (0, υ, v , 0) •-• v , it may be identified

with a subspace V c S2.
Let τ : At x λ2 -> 5 2 be the map τ(u9υι,υ29w) = v2 — vι. Also let

a: Tλ xλ F —• λ2 o Aj be α(w, ft, Vj, w) = (u, w). Using that Ay is

Lagrangian in 5'; x S~+ι one easily shows that V = ( i m τ ) 1 [6, §5]. So
the symplectic form ω2 of S2 defines a nonsingular pairing between V
and S y i m τ .

We now define (σ 2 Sσ 1 ) ( Λ x A } for a basis (i/, y) of ^ x λ x^2oAj. Here

i/ is a basis {(0, vi:, ^ , 0): i = 1, , e} for Vλ χλ , corresponding to
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a basis v = {v(} of V, and γ = {{ui, w ) , i = 1, , 2m} is a basis of

First, lift γ to γ = f {(w , 0 , 0 , w.)} c 7^ χ A F , so that {i/, 7} is

a basis for Tλ xλ F. Choose a partial basis /? = {(uk, v2 , vχ , wk),

fc = 1, , 2m - e} of λχ x A2 so that β = f {ϋ2 - vχ } is a basis for
i m τ . Then (v, y, β) is a basis for λχ x A2 . (σ2 El ̂ ) ( A x A J(I/ , γ, β) is
then well defined but depends on β . To cancel this dependence, we let
y* = {v*: j = 1, , e} be elements of S2 so that ω2{vi, v*) = δ^ . γ*
is uniquely determined modulo im τ . Then set:

(A1.5) Definition.

The right side is independent of /?, and defines a mixed density in | Vλ xλ |Θ

\λ2oλχ\
ll\

Finally, (σ2 °oχ)λe |A|1/2 is given by:
(A1.6) Definition. (σ2 o σχ)λ = JF^σ2 x σχ)^xλi ( A e Λ ^ ) .
Extending this composition law is a natural bilinear map (Symbol com-

position):

) o: ( Ω ^ ® MCi) x (Hi/2 ® Λ/q) - Q ^ β M ^ ,

where M is the Maslov line bundle. MA is defined precisely as in the
A c 2 o q

embedded case [9, IV], as is the identity i*(Mc El Mc ) £ ^*(M Λ ),
2 1 C2 o Cj
2 1 C2 o Cj

where /: F ^^ Λj xΛ2 is the inclusion (cf. [6, 5.3]). The resulting formula
for o is just as in (A1.6) except that σ is replaced by σ. ® r. (r. being
a Maslov factor), and σ2 x σt is replaced by (σ2 x σt) 0 /*(r2 M rχ). In
the future, σ. will denote a (1/2-density) Θ (Maslov factor), and the
formula in Definition A 1.6 will be used for principal symbol composition.
(Principal symbols are homogeneous sections of these bundles.)

Now suppose A. e I°{Mj x Af.+1, C ) is a Lagrangian kernel (7 =
1,2), and suppose C2oCχ is an extra clean composition. The composition
kernel A2 oAχ(x, y) can thus be written as a (locally) finite sum of oscil-
latory integrals Ij = / θίjeιφj, where the phase functions φ parametrize
the branches B. of C2 o Cχ. The principal symbol of / is then a section

of ΩιJ2<8>MB . These local symbols piece together to form a global section

σA OA °f the bundle Ω ' <8>M along the immersion ic oC . Hence, σA oA
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can be identified with a section of Ω1/2 ® MΓ r . The usual compo-
ΛC2oC2

 C 2 O C 1

sition formula, σA oA = σ^ o σA , then holds in the sense of Definition
A1.6 and (A1.7); indeed, it can be localized to open sets where ic oC is
an embedding, and hence can be reduced to the embedded case [11, IV,
25.2.3].

Finally, we complete the proof of Proposition 1.5:

(A 1.8) Addendum to Proposition 1.5. The symbols oJJ*u and σv+ o

σv are now well defined as sections of ΩιJ2 ® MB over Λ c o C , and
σu*u — ̂ u ° σu ^ e farther transport μχ and Δj,*M to the manifold

Λj c A(x{ x X~) of tangent planes to Δ^ M . The unitarity condition

(l.l)(ii) then implies that, as symbols along submanifolds of h(Xχ x X~),
oυ+υ = μ{. It follows that Λj is a connected component of Λ C o C ,

making 1.2(i) more precise. It also follows that ~σι

υ o aυ = μx on Λj, and

ij^ 0 ^ = 0 o n Λ c o C \Λj, making 1.2(ii) more precise. Similarly for

UU*.

2. Unitary morphisms

A canonical relation C c f*Mχ x f*M2 will be called unίtarizable
if there exists a symbol σ e (Ω^/2 ® M c ) so that supp(σ) = C and so
that (C, σ) is a unitary morphism. What kinds of C are unitarizable?
Canonical graphs Γ^ clearly are, but the Sunada intertwining relations (see
§§0 and 5) give nongraph examples. They are, however, local canonical
graphs, and one might suspect that (at least for embedded C) they have
to be.

(2.1) Proposition. Let C be an embedded {but not necessarily con-
nected) unitarizable canonical relation in T*Mχ xT*M2. Then the natural
projections

C

T Mχ T M2

are finite, ^-homogeneous covers.

Proof. L e t F b e t h e fiber p r o d u c t i n ( A 1.1) w i t h Cx= C a n d C 2 =

C' . Thus, F = {{xx, ζx, y, η: y, η, x2, ξ2): (x, , ζt, y, η) £ C} . As in
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the Appendix to § 1, F is the disjoint union | J . F. of embedded submani-

folds in CxC*, and the maps ψ\F : F. —• Λ c < o C are fibrations (Definition

A1.3).
Let FA = (ictoCoπ)~ι(Aτ*M ), where ictoC is, we recall, the immersion

Λc/oC -* Xχ x Xj~ taking a tangent plane to its point of tangency. Thus,
FA = { ( x , ξ 9 y , η:y, η , x , ζ ) : { x , ζ , y , η) e C}, a n d i t i s o b v i o u s t h a t
πχ is a finite cover if and only if / c < o C o ψ; FA -> Δ^*M is one.

Since C is unitarizable, there is a unitary symbol σ on C with supp(σ)

= C . By Addendum Al .8, the diagonal A{ is then a connected component

of Λ c , o C . Let FΔ° = y Γ 1 ^ ) , and let ψ*A = ψ\Fo. Then ψ^: FΔ° - Aj

is a fibration. The theorem clearly reduces to the
(2.2) Claims.

(i) ^ Δ is a finite cover.

(2.2)(i) A point / € FA is of the form / = ( z , z / ) e C x
C' , where z = (x, ξ, y, η) and z* = (y, η, x , ί ) . Identifying C x C*

with Λ c x Λc/ as in (A 1), such an / corresponds to a product λ0 x λ'Q ,

where ^ 0 = 7̂ ZC is a Lagrangian plane in S{ x Sj (Sι = Γ(jc ^(f*M{),

5 2 = 7(y η)(T*M2)). FA then consists of the Ao x AQ in F Δ satisfying

AQ O AO = λA, where AΔ c S{ x S2 is the diagonal plane.
As with any Lagrangian subspace λ0 c S{ x S2, there are symplectic

orthogonal decompositions Sx = Sχι Θ Sl2 and S2 = S2ι ® S22 so that
Ao = λoι ®GQΘλQ2 , with >l0 Lagrangian in 5- •, and with GQ the graph of

a symplectic linear map Sl2 -+S2l [11, IV, 25.3.6]. For λ0 x λ[ e FA , the

only possibility is that λQ = Go and A01 = λ02 = {0}. Consequently, the

vertical space Vλ xλt for ψA is {0} : indeed, it is the diagonal in λ02 x λQ2

(cf. Definition A1.3). Thus, ψA is a proper local diffeomorphism, proving

(i)
(2.2)(ii) Suppose to the contrary that FAφFA, and let λ0 xλ'o e FA\FA .

The unitary assumption on σ then implies that W* o σ must vanish on
λ0 x AQ . By Definition A1.6,

(2.3) 0 = /

for any basis γ of λ0 x λ'Q. This leads to a contradiction, for any density of

theform (σ / χσ)μ x λ< )( , γ) must be positive. Indeed, in view of Definition
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A1.5, it suffices to show that Ί? x a is a positive density on any product
λ x λ*. This possibility may be checked on any basis of λ x λ* and
of course we choose one of the form {(b, 0), (0, b*)}, with b a basis
of λ and bι the corresponding one of λ* (under the interchange map
s: *Sj x S2 —> S2 x Sx). It is immediate from the definition of σ' that
σt(bt) = σ(b) (cf. [11, IV, 25.1.15 and 25.2.2]; a% is written s V there).
Hence σ* x σ((b, 0), (0, b1)) = \σ.{b)\2 > 0, completing the proof of (2.3).

(2.4) Corollary. Let C c t*Mxx T*M2 be an embedded canonical
relation, and let σ be a unitary symbol on C. Then Supp(ίτ) is a union
of components of C.

Proof Supp(cr) is a finite, homogeneous cover of t * M{ and hence
is a closed, boundaryless submanifold of C of full dimension, q.e.d.

This corollary explains Remark 1 of §1. Henceforth, a unitary mor-
phism will be a pair (C, σ) as in Definition 1.2 with C = Supp σ .

3. Unitary intertwining morphisms

A unitary morphism C c Γ*Mj x T*M2 may be viewed as the graph,

C = Γ , of a finitely multi-valued homogeneous symplectic correspon-

dence χ: T*M{ —• t*M2 (χ = π2 ° πj~ in the notation of Proposition

2.1). The invariance condition 1.3(i) on an intertwining morphism imme-

diately translates into

(3.1) χoG'^G^oχ.

Thus, a UIM (unitary intertwining morphism) defines, up to some finite
ambiguity, a symplectic conjugacy between the flows. We now resolve this
ambiguity by passing to covers.

First, we give a more precise description of the covers π : C —> f*M(

arising in Proposition 2.1).
(3.2) Proposition. Let π: C —> f*M be a finite, homogeneous cover.

Then there exists a finite cover p: M —> M and a homogeneous cyclic
cover q: C —• T*M of Rn-bundles over M so that π factors as C - ^

T*M -?-> T*M, where p is the homogeneous cover induced by p, and q

is a diffeomorphism if dim M > 3.
Proof Let 9f be the foliation of f*M by the (vertical) cotangent

spaces f*M. The inverse image π~λ(V is then a foliation of C by homo-
geneous manifolds. For each Lm . e π~ι(T^M), π: Lm .-*T*mM must
be a homogeneous cover; so it is a cyclic of some degree d if dim M — 2
or a diffeomorphism if dim M > 3.
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Let M be the leaf space Cjπ~XcV. Since π is a homogeneous cover,
M is a compact manifold, and the natural projection q: C —• M is an
Rn -bundle. We may define p: M -> M so that the following diagram
commutes:

C —ϊ—> Γ*M

(3.3) J

M

It is easy to see that p is a cover; so it induces a homogeneous cover
p:f*M->f*M. _

Finally, we define a map #: C —• Γ*M so that the following diagram
commutes:

(3.4)
TM —^-+ TM

M —?—+ M

Precisely, for each c e C, p~\π(c)) is a finite set {(Jc , £.)} of covectors

in Γ*M with jc. / x^ for j φ k. We set ήf(c) = (jc0, ζ0), where x0 is
uniquely determined by q(c) = xQ . By construction, q is a homogeneous
cover of Rn-bundles over M. q.e.d.

When C c f*Mx x t*M^ is a unitarizable canonical relation, Propo-
sition 3.2 leads to the covering diagram

(3.5)

f*Mι f*M2
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with the q. and pt as in Proposition 3.2. Each connected component of
C gives rise to a similar diagram, so henceforth we fix one, say Co . Via

Co we then define the symplectic correspondence χ ά= q2 o q~ι: f*M{ —>

Γ*Af2 (where the #. are restricted to Co).

£ must be a diffeomorphism if dim M{ > 3 (this need not imply the

M{ are diffeomorphic [1]). χ may perhaps fail to be a diffeomorphism if

dimM; = 2. However, the Mt must be surfaces of the same genus. This

is obvious unless both surfaces have genus g > 2: For that case, we note

that the center Zz of π{(T*Mi, (JC. , ^ )) (- nx(S*M, (JC , ξ.))) is gener-

ated by the class z of the fiber (r*M z) ( ; c ξy Similarly, the center Z of

πχ{C, c) is generated by the class of the fiber of C —> M. (either projec-

tion). Since q is just unwinding the fibers of f*Mt —• M z , the induced

q. on π{ takes Z to Z z , and is an isomorphism from πχ(C, c)/Z to

πi(f*Mi, (JC. , ξi))/Zi. But it is well known that this quotient is isomor-

phic to nι(Mι, x.).

Suppose now that C is a UIM between the geodesic flows G| on f*Mr

The metrics g on Mt lift to metrics g. on M f , and hence the G\

lift to geodesic flows G\ on Γ*Λfz. Obviously, χ conjugates the lifted

flows. To put this conjugacy in a more familiar form, we slice the I n -

action by defining Q = CQΠ (5r*M1 x S*M2). Since the difference norm

f(x{, ξ{, x2, f2) = Ifjlj - | ί 2 | 2 on Γ*Λ/j x Γ*M2 vanishes on Co (Propo-

sition 1.5), Q is just the hypersurface {\ξι\ι = 1} in C o . The maps in

(3.5) therefore restrict to Q to define a diagram

(3.6)

of compact covers. Equipping 5*Λ/. with its canonical contact form

a\— ξι dxι), (3.6) determines a contact correspondence, still denoted χ,

from ^ M j —• S*M2. From (3.1) we conclude:
(3.7) Corollary. Suppose there exists a UIM C between the geodesic

flows G\ on t*Mx. Then the following hold'.

(a) If dim M > 3, ίΛere must exist finite covers pt: Mt —• Af̂  am/ a

diffeomorphism χ: S*Mχ-+ S*M2 so that χo G[oχ~ι = G'2.
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(b) If dim M = 2, there exist finite covers pt: Mt —• Mέ with Mχ « M2

(diffeomorphic). Further, there exists a common connected cover q.\ β —•

S*Mt so that qt is a bundle map of Sι-bundles over Mi and so that the

contact correspondence χ = f q2 o q~ι: S*Mχ —• S*M2 conjugates the flows

We can sharpen 3.7(b) if the metrics g. have the same area A.. First,
for simplicity we will henceforth denote Mχ by M and will fix a diffeo-
morphism φ: Mχ -> M2 . We thus get two metrics, gx and φ*g2 on Λf,
and hence two unit tangent bundles S*M and S2M (say). Replacing q2

by φoq2,we also get a pair of covers Q ^ S*M (which we will continue
to denote by q. by abuse of notation, we will also denote φ*g2 by g2).

(3.8) Proposition. Suppose the metrics gλ and g2 on M have the
same area. Then there is a contact diffeomorphism Φ: Q —• Q so that
q2 = qx o φ . Hence the flows G\ are conjugate via χ — qχo<t>oq~x.

Proof First, deg(^t) = deg(#2). Indeed, since C is homogeneous

Lagrangian, the canonical 1-forms α ( ί ) on S*M must pull back to the

same 1-form a = f ?*(a(/)) on Q. Hence, q*(a{ι) Λ da{ι)) = q*2(a{2) Λ

rfa(2)). Since fQq*(a^ Λda^) — 2πdeg(qi)Ai, equality of the Aχ implies

equality of the deg(^z).
Next, both of the q. are cyclic covers of S ̂ bundles over M. Equal-

ity of the degrees deg(^) implies that the subgroups qr(C, c) coincide.
In the standard way, we path-lift the projection q2 to an isomorphism
Φ Q -* Q of the covers. Since q2 = qχoΦ, Φ must be a contact diffeo-
morphism.

(3.9) Corollary. Let gx and g2 have the same area. Then the geodesic

flows G\ are covered by contact flows H\ on Q, with H2 = ΦoH[ o φ " 1 .

Proof The Hamilton vector fields of the norm functions |6|. of g. lift

under the qt to contact vector fields Ξ. on Q. Their flows H\ cover the

G\ and are conjugate via Φ.

4. Proofs of Theorem 4.1 and 4.2

Proof of Theorem A. \. We are given an FIO U conjugating the Lapla-
cians, and hence a UIM C intertwining the geodesic flows G\ (see Propo-
sition 1.5). The surfaces M{ therefore have a common cover M (see
Corollary 3.7(b)). Further, the induced metrics g on M must have
the same area (the Mt, being isospectral, had the same genus and area).
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Hence, the geodesic flows G\ on S*M are conjugate via a contact corre-

sponding qχoφo q~ι, where qχ: Q —• S*M is a finite cover which only

unwraps the circles SχMm , and Φ is a contact diffeomorphism of Q (see

Proposition 3.8). Alternatively, the G\ are covered by conjugate contact

flows H\ on Q (see Corollary 3.9).
Now suppose that M has genus g > 2 and that gx is a metric of

nonpositive curvature. In view of [4, Theorem A, §0], we most show
that (Mχ, g2) has no conjugate points and that Φ induces a bijection
Φ^: πχ(M) -» ftχ(M) which presents lengths of closed geodesies.

Both steps are relatively straightforward from [3, I, Lemma 3.2]. We
first observe that Φ induces an isomorphism Φ^ on πχ(M). Indeed, as
above, the fiber of Q —• M (either projection) generates the center Z of
πχ(Q). The isomorphism induced by Φ on πχ(Q) must take Z to Z ,
and hence it determines a quotient isomorphism on πx (M). It follows that
Φ+ induces a bijection on ftχ(M). We claim that it is length preserving
on closed geodesies. Indeed, let γ be a closed geodesic of length L(y) for
(Mχ, gχ). Lift it to S\M as an orbit (y, γ) of G\. Now, S*M\γ (the

unit cotangent bundle along γ) is a trivial Sι-bundle over γ. So is Q\γ

(the inverse image of S*M\γ under qχ). Further qχ: Q\ -> SχM\ is just

the standard rf-fold cover on the second factor o fyxS 1 —•yxS 1 . Hence,

Q\X(y > y) i s a s e t °f d orbits of H[ of period L(γ). Under Φ, this goes

over to a set of d orbits of H^ of period L(γ), which project to M as d

(freely homotopic) closed geodesies of length L(γ). The reverse argument

also holds, so Φ^ is a length preserving bijection of free homotopy classes

of closed geodesies.
Now, it is well known that on a manifold of nonpositive curvature,

freely homotopic closed geodesies have the same length ([3, I]). Hence
freely homotopic closed geodesies of (M, g2) must have the same length.
It follows that Φ^ identifies the marked length spectra of (AT, gχ) and

It remains to show that (AT, g2) has no conjugate points. This follows
as long as the lift γ of each geodesic γ of (AT, g2) to the universal is
minimizing [13, II, Theorem 5.7]. As in [3, Lemma 3.2] we argue that γ
is minimizing for any closed γ because γ is the shortest loop in its free
homotopy class. Further, closed geodesies for (AT, g2) must be dense in
S2M. Indeed, those for (M, gχ) are well known to be dense in SχM
and under qχ o Φo q~ι the same must hold for g2 [loc. cit]. Hence, γ
minimizing for closed geodesies γ implies γ minimizing for all γ .



706 STEVEN ZELDITCH

Proof of Theorem 4.2. By Theorem 4.1, (Mχ, gχ) and (M2, g2) have a
common finite negatively curved riemannian cover (M, g). Let p.: M —•
Mi denote the covering maps. Also let p: M —• M denote the universal
covering of M, let Isom(M) denote the isometry group of the metric
p*(g), and let Γz denote the deck transformation groups of the covers
pχ. o p: M —• Mχ,. Obviously, Γ. c Isom(M). Since the M{ must have
the same genus (by isospectrality), Γχ is isomorphic to Γ 2 . We will now
show that if Lsp(Λfj, gχ) is also simple, then Γ{ = Γ2 .

First, we recall that isospectral manifolds of negative curvature have the
same length spectrum [2]. Indeed, the wave trace formula of [6] gives:

(4.3) Trcosίλ/Δ = ] Γ —£ —δ(t - Ly) + smoother .

Here, Δ can be the Laplacian on any {M, g) whose closed geodesies are
nondegenerate, {γ} runs over the closed geodesies, L* is the primitive
length of γ (once around), mγ is the Morse index of γ, Pγ is its linear
Poincare map, and |/ - Pγ\ is short for | det(/ - Pγ)\. Since mγ = 0 for
all γ, if (M, g) has negative curvature, all terms in (4.3) are positive.
Hence, Lsp(M, g) = singsuppTrcosty/Σ. In particular, Lsp(M{, g{) =
Lsp(M2, g2).

Assuming Lsp(Mj, g{) is simple, we claim that Lsp(M2, g2) is also
simple. To see this, we first observe that (4.3) implies

( 4 4 ) Ϊ Γ T 7 ^ = Σ TΓTjn (L^iMMιtgι)),
\J ~ ra\ β : Lβ=La \2 ~ rβ\

where a is a closed geodesic of (Mχ, gχ), and β is one of (M2, g2)).
Suppose now that a is a primitive closed geodesic, i.e., not an iterate, so
that La = L*a lies in the primitive length spectrum PLsp(Mj, g{) (lengths
of primitive geodesies). Then La is also in PLsp(M2, g2). Indeed, if La

were not primitive for (M2, g2), it would equal kL* for some primitive
β . Then Lβ would occur as a length La in Lsp(M t, gχ), with Lα =

kLa . By simplicity, a — a0 , a contradiction. Hence Ln = Ln = La for

each term in (4.4), and we conclude

(4.5) \I - P Q Γ 1 / 2 = £ |7 - P^f172 (Lβ G PLsp(M1, gχ).

Next, we claim that |/ - Pa\ = \I - Pβ\ for each β in (4.5); hence, only
one term can occur. To see this, we first note that under the isometric
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correspondence pχ ° p2

l: M2 —• Mχ, each β in (4.5) must go over to

a. Indeed, pχ op~ι(β) must be a union of closed geodesies {a, , ar}

of (Mχ, gχ). Clearly, each La is a rational multiple of Lβ . Hence,

L = m.L /n. for some m . , n eN. By simplicity, α"7 = aTJf, so
^ y J d\ J J J J *•

all a. must be iterates of a simple primitive α 0 . But a0 must be α
since their lengths are rationally related, and both are primitive. Hence
P\ °PΪλ(β) = a a s s u^sets of Mχ.

Now let Te(β) be the tube of radius ε around β, and let Tε(a) be the

tube around a. We claim Te(a) is isometric to Te(β) for all β in (4.3)

and for small enough ε. Indeed, under p~ι, β splits into closed geodesies

{βχ, , βr} , and Te(β) splits into {Γe(^.)} Pick one component, say

Tε(β{), and consider the covering diagram:

(4.6) T(β)

τε{β)

These covers are cyclic and riemannian. Since La = Ln, they must have
the same degrees. Hence, the deck transformation groups of the pt are
equal. It follows that Te(a) is isometric to Te(β).

This implies \I - PJ = \I - Pβ\. Indeed, lift a (resp. β) to the cor-
responding orbit (α,ά) (resp. (β, β)) of G\ on S*M{ (resp. Gι

2 on
S*M2). Also, let Tε(a, ά) be the tube of radius ε around (α, ά) with
respect to the natural metric on S*M{ induced from the metric gχ on Mχ

and the riemannian connection and (similarly for Tε(β, /?)). The isom-
etry from Γe(α) to Γe(/f) has a natural lift to a contact diflfeomorphism
from Tε(a,ά) to Tε(β, β) which takes the generator Ξχ of Ĝ  to Ξ2

for Gι

2 . Hence the flows G\ have contact equivalent germs along the or-
bits (α, ά) (resp. ()S, yff)). In particular, the linear Poincare cusps Pa and
P^ are linearly symplectically equivalent; and so \I - Pa\ = \I - Pβ\. It
also follows that |7 - Pak\ = \I - P»k\ for any k = 1, 2, . Hence, only
one term can occur on the right side of (4.5) even if a is not primitive.
We conclude that Lsp(M2, g2) is simple.

Just as with pχ o p~ι above, we now argue that p2 o p~{(a) consists
of a single closed geodesic β of (M 2, g2) with La = Lβ. Therefore,
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- 1p2°Pι * induces a length preserving bijection between the closed geodesies
of (Mχ, gχ) and those of (M2, g2). We will see that this forces Γj = Γ2 .

Consider the following diagram of riemannian covers:

(4.7)

M2

Let γ e Γχ and let A(y) be its axis; i.e., the unique geodesic fixed by γ.

Let a(γ) = px op(A(γ)), so that a(γ) is a closed geodesic of Mχ. Under

p2 op~ι, a(γ) goes to a single closed geodesic b of the same length. It

follows first that (px op)~ι(a(γ)) = (p2 op)~ι(b). But each component

of (p2 op)~l(b) is the axis of some δ e Γ2. Hence, for all γ e Γχ

there exists δ e T2 with A(γ) = A(δ). Further, such a δ exists with the

same displacement, say d(δ), as γ. Here, the displacement d(φ) of an

isometry φ is given by

d{φ) = infd(x, φ(x)) (d = distance).

Indeed, {δf e Γ 2 : A{δ') = A(δ)} is just the centralizer (Γ2)^ of δ in Γ2 ,
and (Γ2)^ is a cyclic group, generated by a primitive hyperbolic element
δQ. Now, the quotient of A(δ) by (T2)δ is the closed geodesic b. So
d(δQ) = Lb . Similarly the quotient of A(δ) by (Γχ) is α(y). Since Lb =
L f l ( y ), the generator γQ of (Γj)^ satisfies ί/(y0) = d(δ0). It follows that
for any y eTχ there exists δ eΓ2 with Λ(y) = A(δ) and ύf(y) = rf(ί).
But an orientation-preserving hyperbolic isometry in two dimensions is
determined by its axis and displacement. Indeed, γδ~ι would fix all points
on A(δ) and therefore on all orthogonal horocircles. Hence it would fix
all of M.

It follows that Γχ c Γ2 . The reverse argument shows Γ2 C Γχ as well.

(S.I) Proposition.
are Fourier-isospectral

5. The Sunada examples

T h e S u n a d a isospectralpairs {{Mχ ,gχ), (M2,
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Proof (with A. Uribe). As discussed in §0, the M{ are assumed to fit

into a diagram like (0.1), with L2{GIHχ) ~ L2(G/H2) (isomorphic G-

modules).

As is well known, the space of intertwining operators A: L2(G/Hχ) —>

L2(G/H2) is isomorphic to the space of convolution kernels A(x~ιy) with

A e C[H2\G/Hχ] (the double coset space [14, p. 365]). For each such A,

define UA: L2(M{) -> L2(M2) by

Here, πt: M —• M. are the riemannian covers in (0.1), and T is trans-
lation by g. Since ni and T are local isometries, UA intertwines the
Laplacians Δf., and UA is clearly an FIO (cf. §0).

We now observe that A unitary implies UA unitary. To simplify,

we will view L2(Af.) as the space L2{M)Hi of /^-invariant elements of

L2(M), and UA as an operator from L2(M)Hι -> L2{Mf2. Then πr

becomes ΣheH ^h » a n c * πι* becomes the inclusion L2(M)Hi —• L2(M).

We get

Set ~gχ = hχgχh2 and change variables. Since A(h2

ι~gχh~ι) = A(g{), the
sum in (5.3) simplifies (after another change) to

(byunitarity of v4). Here, 5^ is (#H~ι) times the characteristic function

of Hχ. UAUA is thus the identity operator on L2(M)Hχ .
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