J. DIFFERENTIAL GEOMETRY
34 (1991) 571-580

GEOMETRIC CONSTRUCTION OF HOLONOMY
COVERINGS FOR ALMOST FLAT MANIFOLDS

PATRICK GHANAAT

1. Introduction

In this paper we give a new and conceptually rather simple proof of
Gromov’s theorem on almost flat Riemannian manifolds ([7], [2], [12],
[3]). The proof yields a generalized version of the result which can be
stated as follows.

1.1. Theorem. There is a positive constant &(n) depending only on n
such that the following is true. Let (M, g) be a compact connected n-
dimensional Riemannian manifold, d its diameter, and V a connection
on TM compatible with the metric g . If the curvature and torsion tensors
R and T of V satisfy

(1.1.1) (IRIl, + ITI%,) d° < e(n),

then M is diffeomorphic to an infranilmanifold N = A\ G.

Here || - ||, denotes the maximum norm on tensors. Infranilmanifolds
are defined in §1.2. The constant ¢(n) is effective, but no explicit bound
will be given. The nilpotent group structure on G is determined by the
fundamental group A of M (see [1]).

The case T = 0 is Gromov’s theorem as sharpened by Ruh [12]. The
case R = 0 yields a generalization of [5]. Finally, the locally homogeneous
case R =0 and VT = 0 is essentially due to Kazhdan-Margulis (see [11],
[4D.

Previous proofs required a detailed study of what is known as the local
fundamental pseudogroup of M (see [7], [2], [3]). The present proof uses
results obtained in [5], [6], and is based on a description of the structure
of distance balls in the bundle P of orthonormal frames on M , making
essential use of the fact that P is parallelizable with torsion bounded
in terms of the Cartan curvature. The holonomy covering space I' \ G
(see §1.2) associated with a flat connection with parallel torsion on M is
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constructed as a perturbation of a local soul manifold S C P in the sense
of [6].

1.2. We recall facts on infranilmanifolds. Let G be a Lie group.
There is a flat connection D with parallel torsion tensor on G defined
by DX = 0 for all left invariant vector fields X. The group of affine
automorphisms of D is equal to a semidirect product G - Aut(G), where
an element (a, ¢) € G- Aut(G) actson b € G by (a, 9)b = ap(h).
An infranilmanifold is then defined to be a closed connected manifold
N = A\ G whose universal covering space is a nilpotent Lie group G, and
whose fundamental group A is a subgroup of G - Aut(G), required to be
a finite extension of a discrete cocompact subgroup I' = ANG of G. If
I'=A, then A\ G is called a nilmanifold.

It follows from this description that the connection D on G descends
to a flat connection on A\G, also denoted by D, whose holonomy bundles
can be identified with the nilmanifold-covering I'\ G of N . The finiteness
assumption on the linear holonomy group I'/A of D implies that there
are left invariant Riemannian metrics g, on G that descend to N .

The statement of 1.1 can now be sharpened as follows.

1.2.1. There exist a quotient g, of a left invariant metric on G and a
diffecomorphism f: M — N such that |f'g, — gl., < & and
If*"D -Vl d<3d.

Here 6 depends only on 7 and on (||R| +|IT llgo)a'2 and converges
to zero when the latter converges to zero.

1.3. Although it will not be used in the sequel, we remark that, accord-
ing to a result of Wilson, infranilmanifolds can be characterized as closed
space forms of simply connected nilpotent Lie groups G equipped with
left invariant Riemannian metrics g,. More precisely, if M is a closed
Riemannian manifold, whose universal covering is isometric to such a
(G, &), then m,(M) acts by affine automorphisms of D (see [13]) and,
according to L. Auslander’s Bieberbach theorem [1], is a finite extension
of a lattice in G.

1.4. We give an outline of the proof of 1.1. After multiplying the
metric g by a constant, one can assume that d’ < a(n)l/ ? and IRl +

||T||§o < e(n)l/ 2. The bundle P of orthonormal frames of (M, g) carries
a natural Riemannian metric depending on the connection. We study
certain distance balls in P whose radius is large compared to d, but
small when compared to the diameter of the fiber O(n). The proof is
motivated by the fact that for an almost flat metric on an infranilmanifold,
neighborhoods of that size are tubular neighborhoods of holonomy bundles
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for the canonical flat connection D. Therefore, in the general case one
can hope to find at least a perturbation of such a holonomy bundle by
looking for “collapsed” directions in P.

The construction in [6] yields a nilmanifold S C P imbedded with
fairly large normal injectivity radius. If the metric on M was scaled
suitably, then the bundle projection n: P — M restricted to .S turns out
to be a submersion and, therefore, a locally trivial fiber bundle. The fiber
is shown to be zero dimensional. This essentially follows from the fact
that a skew symmetric nilpotent matrix is zero. As a consequence, S is a
finite regular nilmanifold covering of M almost tangent to the horizontal
distribution of V.

In order to show that the group of deck transformations acts by affine
automorphisms of suitable Maurer-Cartan coframe, S is perturbed into a
principal subbundle Q C P. Then the deck group acts by affine isometries
of the coframe obtained by pulling back the canonical one-formto Q. Asa
result of [5], this coframe can be deformed into a nilpotent Maurer-Cartan
coframe preserving these affine isometries, and the proof is complete.

2. Coframes

We review facts on coframes that will be used in the proof.

2.1. Let M" be a closed manifold. A coframe on M is an R"-valued
one-form n: TM — R" such that for each m € M, n(m): M- R"
is a vector space isomorphism. The components n' of n are defined
by n = Z;;n 7 e® e;, where e; denotes the ith standard basis vector of
R". n is called a Maurer-Cartan coframe if there are constants c,'.‘j 1<
i,Jj,k <n) such that dnk = ic ; cfjni A nj . A Maurer-Cartan coframe
is called nilpotent if the Lie algebra defined by the structural constants c,’.‘j
is nilpotent. S

A coframe # defines a Riemannian metric g, = >°7_ 7' ® n' on M
as well as a flat connection D" determined on T*M by D"y’ =0 (i =
1,---,n). Using these, the space of square integrable R"-valued forms
on M can be split as

L*A'T"M @ R") = ker(D") @ ker(D")",

and we let pr, denote the orthogonal projection onto the second factor.
A diffeomorphism ¢: M — M will be called an affine isometry of n if
@*n = a-n for some constant orthogonal matrix a; equivalently, if ¢
preserves D" and g,
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We give a reformulation of a result obtained in [5]. Let 4 denote
the diameter diam(M, g,) and « = ldnll,, » the norm being taken with
respect to g, .

2.2. Theorem. There is a constant & (n) > 0 such that the following
is true. If (M",n) satisfies kd < &,(n), then there exists a nilpotent
Maurer-Cartan coframe n' on M such that

dlIn=1'llg + Idn —dn'll, < e(n, kd)lpr, dnl, -
If M — M, is a regular covering whose group & of deck transforma-
tions acts by affine isometries of n, then n' can be chosen such that &
acts by affine isometries of n'. In particular, M, is diffeomorphic to an
infranilmanifold.

Here the function ¢ = ¢(n, kd) is bounded on {n} x [0, &(n)] for
each n.

Proof. We refer to [5]. The estimate follows from equations 8.2.(1),
(7.4.1), (7.3.2) and Lemma 6.4 in that article. The equivariance follows
from the invariance of (7.2.1) under affine isometries of w and the fact
that the solution w, of that equation is unique under the constraint w, —
w € ker(D®)* .

2.3. Finally, we recall from [5] the following estimates for the expo-
nential map Exp: T, M — M of D" . The length distortion is estimated
by
(2.3.1) -y < |dExp, Y| < M)y
for X € T, M and Y € T, T M = T, M. The difference between Eu-
clidean parallel translation in 7,, M and D"-parallel translation in M is
bounded by
(2.3.2) ldExp, W (0) - W(1)]| < (! — DIw (O)]],
where W is a D"-parallel vector field along the curve Exp(tX).

3. Local structure of the frame bundle
3.1. Let (M, g, V) satisfy the hypothesis of the theorem. We can as-
sume that HRIIOOH]THf,o < e(n)l/2 and d* < s(n)l/z. Let 7: P - M de-
note the bundle of orthonormal frames of (M, g). The connection form
w: TP — so(n) of V. together with the canonical one-form 6: TP — R"
yields a coframe n = 6 & w, whose exterior derivative is given by the
Cartan structure equations

(3.1.1) do=-0oNw+Q, dd=-wN6+86,
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where Q and © are the curvature and torsion forms of V on P. The
standard Euclidean inner product on R" and the negative of the Cartan-
Killing form on so(n) induce, via 7, a Riemannian metric g, on P. If
R, denotes the right action of a € O(n) on P, then the equations

* -1 * -1
(3.1.2) R,w=Ad(a o, Rb=a 6

show that R is an affine isometry of (P, 7).
3.2. For p, € P let Exp: ];,OP — P denote the exponential map

of D". The space of D"-parallel vector fields on P is spanned over R
by fundamental and standard horizontal vector fields. Integral curves of
standard vector fields project to geodesics on M . Therefore, if H =
ker(w) denotes the horizontal subbundle and exp the exponential map of
V, then

(3.2.1) m o Exp|, = expor, | .

By definition of &y T is an isometry on horizontal vectors. Since the
deviation of dEprY for X eT, P and Y € H < T P I, T, P
from being horizontal is bounded by (2.3.2), we obtam from (2.3. 1) and
(2.3.2) a rough estimate

(3.2.2) 2 - e"Nw| < |dexp, w] < e Nw],
v

where x = ||dn||, <4+ 28(”)1/2 ,and v, we TmoM, my = n(p,) .

3.3. In §3.5 we will rescale the metric on M suitably and then apply
the local soul construction described in [6] to a distance ball B(p,, R)
of suitable radius in the corresponding bundle of orthonormal frames P.
Recall ([6]) that if ||dn||, <5, say, then there exists &,(n) > 0 such that
for any &, < ¢,(n) there is a radius R, &; < R < (100n)"¢,, with the
following properties.

There is a closed submanifold p, € § C B(p,, R) of diameter < R
such that the restriction of Exp to the subset v, = {X € v: | X| <
10R} of the normal bundle v < TP|S of S maps v, diffcomorphically
onto a neighborhood of B(p,, R). S is obtained as S = Exp(S) for a
submanifold S C B(0, 50R) C TpoP that is C'-close to a linear subspace
V of TpoP in the following sense.

3.3.1. For submanifolds N and N’ of a Riemannian manifold M de-
fine the C*-distance

d«(N, N'):=inf{d o (f, 1) + d i T3
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where 1,,: N — M denotes the inclusion and the infimum is taken over
all imbeddings f: N — M such that f(N) = N'. As usual, the infimum
of the empty set is defined to be oo.

3.3.2. For subbundles E, E' with the same fiber dimension k of
a vector bundle F — M carrying a fiber metric, define the distance
dist(E, E') := sup{dist(E,,, E, ): m € M}, where dist(E, , E,) denotes
the distance function on the Grassmannian manifold of k-planes in F,,
canonically induced from the fiber metric.

333. S satisfies d.i(S,B(0,50R) N V) < &,(e5,n), where
hms ~09;(¢5, n) = 0. By §2.3 this implies that TS is d,-close (see
§3.3. 2) to the subbundle of TP|S obtained by D"-parallel translation of
V', where lim, _,9,(¢;, n)=o0.

3.3.4. The subspace V' has the following property: The set I'={X €

B(0, 50R): Exp(X) = p,} iscontained in {X € TpoP: angle(X, V) < 45},
where again lim, _,J; = d;(e;, n) =o. T is contained in S and S may
be viewed as mterpolating I.

34. Let 0<eg;<¢g(n) and a>0. If

e(m)'/* <1007, L =(100/a)",

then there exists a p,, 100"‘::3 < py < &, such that there is a basis
v, ,v, for T, M with the following properties: exp(v;,) = m,
po/2 < |v| < 3p0/4 the angle between v; and v, is at least n/4 for
i # j, and the linear holonomy rot(v,) of the geodes1c loop 7, :[0, 1] —
M, y, (t) = exp(tv;) satisfies dist(rot(v,), 1) <. "

Probf Because of (3.2.2), the pigeonhole argument given in [2, p. 37]
applies without change. We recall the proof for convenience.

By (3.2.2) exp is nearly a local isometry on B(0, ¢;). Therefore,
exp (mo) is at least 2d-dense in B(0, 83) and d < e(n)'/*.

One of the numbers r, =100"" 83 (i= ,L—1),callit p,, has
the following property: For any v’ € B(0, ri) n exp'l(mo) - TmOM there
exists v € B(0, r,,,)Nexp™ ' (m,) such that dist(rot(v'), rot(v")) < /2.
This is true because there are at most L elements in O(n) with pairwise
distance > a/2. Choose v, -+ , v, € T,, M such that exp(v;) = m,,
0.6p, < |v;| < 0.7p,, and such that the angle between v; and v/ is at
least n/3 for i # j. By choice of p, there are v;' € B(0, p,/100) such
that dist(rot(v;), rot(v;)) < a/2. Define v, to be the endpoint of the
curve obtained by lifting yv_’yl to TmoM with initial point v;. Then, up
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to homotopy error bounded in terms of e(n) , Tot(v;) equals the linear
holonomy of the loop Yo! yvu , which is at distance less than a/2 from the
identity. Therefore, d1st(rot(v ), ) <a.

3.5. Rescale the metric g on M by multiplying it with the factor
(&5/ p0)2 . The new metric will still be denoted by g, and P is the corre-
sponding bundle of orthonormal frames. Now &,/2 < |v,| < 3¢,/4 while
rot(v;) is as before and the diameter has increased by a factor of at most
100" . We will use §3.4 with o = ¢; .

3.6. Apply the construction in §3.3 to P. For &, small enough, §
will turn out to be covering space of M, C !_close to a reduction of the
bundle P to a finite subgroup of O(n).

4. S is a covering space

4.1. In the rest of the proof, ¢ will denote several constants (e, , n)
depending only on &; and n such that hme ~00(&5,n)=0

4.2. The horizontal subbundle H restricted to S has distance (see
§3.3.2) less than & to a subbundle of TS. In particular, n|S is a sub-
mersion.

Proof. It suffices to show thatH is J-close to a subspace of
V, where V is as described in §3.3. Let v, , U, denote the hori-
zontal lifts of v,,---,v, to TOP Then 83/2 < |7, £ 3e,/4 and
dist(Exp(7,), p,) < @ = &. By (2.3.1) there are Y, € T, P such that
Exp(Y;) = p, and dist(Y;,7;) < ng. In particular, Y; € I' (see §3.3.2)
and is nearly horizontal. The claim follows.

4.3. We describe a suitable nilmanifold structure on S. By §§3.3
and 4.2, TS is J-close (see §4.1) to a subbundle of TP|S spanned by
parallel vector fields and containing H|S. Choose orthonormal bases
E ,E, for R" andE , E, of so(n) such that the compo-

RS TREE
nents nl = 01, oo nn = en, cee, nn+1 cee "k of n = Et{\;lni ®El
pull back to a coframe 7 on S, d-close to an orthonormal coframe for
the submanifold metric on S. By Theorem 2.2 and since diam(S) < R,
there is a nilpotent Maurer-Cartan coframe 7, with components ﬁl =

g ,...,7=6", 7", ..., 7 on S such that
4.3.1)  diam(S) ™' |[7ig — 7l + d7ig — dngll,, < cllor, dngll,, ,

where ¢ = c¢(n, ||dnglldiam(S)) is as in 2.2. Pulling back (3.1.1) to S
we obtain ||pr, dngll, <
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4.4. Since n|S: S — M is a submersion and S is compact, n|S is
a locally trivial fiber bundle. We claim that the fiber Smo = (nlS)'l(mO)
has dimension zero. As a consequence, S is a covering space of M .

Proof. The idea of the proof is to compare the nilpotent structure on
S to the group of Euclidean motions encoded in the structure equations
(3.1.1). Suppose the vertical unit vector X(p) € TpP was tangent to S'.
Extend X(p) to a D"-parallel (i.e., fundamental) vector field X on P.
Also, extend X(p) to a DﬁS-parallel vector field X on S. The equation
df = —w A0 +© implies 1,df = —w(X)0. Here w(X) is a skew
symmetric matrix of norm one. Since 7 is nilpotent, (ixd )kﬁ =0 for
k = dim(S). By (4.3.1), we have

107 4)0 - (1, )01, <6

on §. This implies ||w(X)*|| < & and, diagonalizing w(X) over C,
lw(X)|| < 6%, in contradiction to ||w(X)||=1.

5. Reduction of the structure group

In §4 it was shown that M is covered by a nilmanifold S C P, almost
tangent to the horizontal subbundle H of V. By §4.3, a Maurer-Cartan
coframe 7 can be obtained as a small perturbation of the pullback of the
canonical one-form 6 to S.

S51. Let u,,u, € S and a € 0(n) such that R,u, = u,. Since
R, leaves H invariant, d.i(S, R,(S)) < J. In particular, the fiber Sm0
satlsﬁes d(S,, , R,(S 0)) < dg, for all a such that S, N R (S 0) #
. The followmg lemma implies that, after identifying ( , 1’0) with
(O(n), 1), mo is close to a finite subgroup A of O(n).

5.1.1. Forany &> 0 there exists € > 0 such that the following holds.
Let A be a finite subset of O(n) with the properties (1) 1 € A, (ii) for all
a, a € A either a = a' or dist(a, d’) > ¢, and (iii) for all a € O(n)
such that AanA # & we have d+(4a, A) < ¢'. Then there exists a finite
subgroup A, < O(n) such that doo(4, 4;) < 10¢’.

Proof Define a multiplication on A4 by setting a xa’ = a” , where a”
is the unique element of A4 closest to aa’. Then (A4, ) is a group, and
the inclusion 1,: 4 — O(n) is an almost-homomorphism in the sense of
[8]. Therefore, there is a homomorphism y: (4, ) — O(n) close to 1.
Define 4, = y(4).
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5.2. By the construction of A, each element a € A satisfies
deo(S, R (S)) < de;. Since S has normal injectivity radius > 10e,,
this implies that A is isomorphic to the group of deck transformations of
the covering 7|S, and the covering is regular. More precise information
is given by

5.3. There is a A-principal subbundle Q C P such that d(Q, S) <
Og, and dist(TQ, H|Q) <4.

Proof. Consider the bundle P/A — M with fiber O(n)/A =: F . Since
the points of A are at least 9¢, apart in O(n), F has large injectivity
radius. Let pr: P — P/A denote the canonical projection. Then pr(S) is
what might be called a dé;-reduction of the structure group: For m € M
the image of the fiber pr(S,,) is a finite subset of (P/A), of de;-small
diameter, and pr(S,) depends smoothly on m in the sense that it is
locally the image of finitely many sections o,, -+ , 0,: M — P/A. Take
the center of mass (see [9]) in each fiber (P/A),, to obtain a global section
0: M — P/A and define Q =pr Yo(M)).

54. Let Iy Q — P denote the inclusion. Then Iy "6 is an orthonor-
mal coframe on Q with respect to the lifted metric g (z|Q)" g, and
diam(Q, ) < 2diam(S) . The equation R1,0 = a'lzae for a € A shows
that the deck group A acts by affine isometries on (Q, 156) . By 2.2, 1&0
can be deformed into a nilpotent Maurer-Cartan coframe 6, such that A
acts by affine isometries of 6. This concludes the proof of 1.1.

5.5. Wenote that Q, as a subset of P, is in general not yet a holonomy
bundle of a flat connection with parallel torsion. However, such a bundle
can be obtained by reimbedding Q into the bundle L(M) D P of all linear
frames as follows. Let X ?, e, X 3 denote the frame on Q denoted by

OO(X?) =e,;. Define f: Q — L(M) by

0 0
flg)=(n,X(q), -, nX,(q)).
Then f(Q) is the required holonomy bundle.
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