ON THE TOPOLOGY OF POSITIVELY CURVED 4-MANIFOLDS WITH SYMMETRY

WU-YI HSIANG & BRUCE KLEINER

1. Introduction

A positively curved manifold is, by definition, a complete Riemannian manifold M with everywhere positive sectional curvature. The work of Gromoll and Meyer [6] gives a thorough understanding of noncompact positively curved manifolds, so we consider only compact positively curved manifolds, henceforth denoted CPCM's. Synge's theorem [10] asserts that an even dimensional, orientable CPCM is simply connected. This theorem together with the topological classification of compact surfaces implies that a 2-dimensional, orientable CPCM is homeomorphic to S^2 . Three dimensional CPCM's have been determined by Hamilton [7]; they are diffeomorphic to space forms. However, very little is known about the topology of 4-dimensional CPCM's. The known examples are homeomorphic to S^4 , $\mathbb{R}P^4$, and $\mathbb{C}P^2$, while the well-known problem of Hopf remains unsolved:

Does $S^2 \times S^2$ admit a positively curved Riemannian metric?

The three known examples of compact 4-manifolds which admit positively curved metrics all admit *homogeneous* positively curved metrics, i.e. metrics with a lot of symmetry. Therefore it is natural to ask the following question: Which compact 4-manifolds admit positively curved Riemannian metrics with at least one infinitesimal isometry, in other words, a nontrivial Killing field? The main result of this paper answers this question.

Theorem 1. Let M be a 4-dimensional orientable CPCM. If M has a nontrivial Killing vector field, then M is homeomorphic to S^4 or $\mathbb{C}P^2$.

Corollary 1. Let M be a 4-dimensional nonorientable CPCM. If M has a nontrivial Killing vector field, then M is two-fold covered by S^4 .

Corollary 2. $S^2 \times S^2$ does not admit a positively curved Riemannian metric with a nontrivial Killing field.

Technically speaking, the existence of a nontrivial Killing vector field on a compact Riemannian manifold M is equivalent to the existence of a nontrivial S^1 -action on M. Let $F(S^1, M)$ be the fixed point set of such an S^1 -action on

Received January 4, 1988.

M. Then it is easy to prove that the Euler characteristic of $F(S^1, M)$ is equal to that of M, i.e. $\chi(F(S^1, M)) = \chi(M)$, and each connected component of $F(S^1, M)$ is automatically a totally geodesic submanifold. In the special case where M is a 4-dimensional orientable CPCM, we will prove in Lemma 2 that

$$F(S^1, M) = \left\{ \begin{array}{l} \chi(M) \text{ isolated points,} \\ \text{or } S^2 \cup (\chi(M) - 2 \text{ isolated points).} \end{array} \right.$$

The major task in the proof of Theorem 1 is proving that $\chi(F(S^1, M))$ can be at most 3.

Actually, most of the techniques of this paper are equally applicable to the nonnegatively curved case. We believe that the following results are within reach:

Conjecture 1. A 4-dimensional CPCM with a nontrival Killing vector field should be diffeomorphic to S^4 , $\mathbb{R}P^4$, or $\mathbb{C}P^2$.

Conjecture 2. A compact, simply connected, nonnegatively curved 4-manifold with a nontrivial Killing vector field should be diffeomorphic to either S^4 , $\mathbb{C}P^2$, $\mathbb{C}P^2\#\pm\mathbb{C}P^2$, or $S^2\times S^2$.

Of course, it is possible that these theorems would remain true without the assumption on infinitesimal symmetry, but then their proofs would require completely new ideas and techniques.

2. The orbital geometry of S^1 -Riemannian manifolds

An S^1 -Riemannian manifold is, by definition, a Riemannian manifold with a given isometric S^1 -action. In this section we will establish some properties of the orbital geometry of a given S^1 -Riemannian manifold (S^1, M) , especially in the case that M is a 4-dimensional orientable CPCM.

Lemma 1. Let (S^1, M) be a compact S^1 -Riemannian manifold and let F be its fixed point set. Then:

- (i) The Euler characteristic of F is equal to the Euler characteristic of M
- (ii) Each connected component of F is a totally geodesic submanifold of even codimension.

Sketch of proof. (For more details, see [8, Theorems 5.3 and 5.6].) (i) Let \mathbb{Z}_p be the unique cyclic subgroup of S^1 of prime order p and let $F(\mathbb{Z}_p, M)$ be the set of fixed points of \mathbb{Z}_p in M. It follows from the long exact sequence of the pair $(M, F(\mathbb{Z}_p, M))$ and the additivity of the Euler characteristic that

$$\chi = \chi(F(\mathbf{Z}_p, M)) + \chi(M, F(\mathbf{Z}_p, M))$$

$$\equiv \chi(F(\mathbf{Z}_p, M)) \pmod{p}.$$

It is easy to see that $F(\mathbf{Z}_p, M) = F$ for all sufficiently large primes. Hence $\chi(F) \equiv \chi(M)$ (mod p) for all sufficiently large primes p, so $\chi(F) = \chi(M)$.

(ii) Let Y be a connected component of F and let $v \in T_yY$ be an arbitrary tangent vector of Y at $y \in Y$. Then v is fixed under the induced S^1 -action on TM. Hence from the existence of a unique geodesic with initial velocity v it follows that such a geodesic is pointwise fixed under the S^1 -action, and hence belongs to Y. This proves that Y is a totally geodesic submanifold in M. Since all nontrivial irreducible orthogonal representations of S^1 are two-dimensional, the codimension of Y is necessarily even. q.e.d.

From now on we will always assume, without further specification, that (S^1, M^4, g) is a 4-dimensional, orientable CPCM with a given effective S^1 -action and metric tensor g.

Lemma 2. Let (S^1, M, g) be as above and let F be its fixed point set. Then F is nonempty and

$$F = \begin{cases} \chi(M) \text{ isolated points,} \\ \text{or } S^2 \cup (\chi(M) - 2 \text{ isolated points).} \end{cases}$$

Proof. Synge's theorem [10] asserts that such an even dimensional manifold is always simply connected. Therefore,

$$H_1(M) = 0$$
 and by duality $H_3(M) = 0$,
 $\chi(M) = 2 + \dim H_2(M) \ge 2$.

Hence by Lemma 1, $\chi(F) \geq 2$ so F is nonempty. Moreover, Frankel's theorem [4] implies that F can have at most one 2-dimensional connected component.

Suppose F contains a 2-dimensional component Y. The normal bundle of Y is oriented by the S^1 -action, so Y is orientable. Being totally geodesic as well, Y is positively curved and must therefore be homeomorphic to S^2 . q.e.d.

Next let us consider the geometry of the *orbit space* $\overline{M}=M/S^1$. We will equip \overline{M} with the orbital distance metric: the distance between two elements of \overline{M} is the distance between the corresponding orbits in M. Let M_0 be the union of all the principal S^1 -orbits in M and let $\overline{M}_0=\pi(M_0)$ where $\pi\colon M\to \overline{M}$ is the canonical surjection. We give \overline{M}_0 the unique smooth structure which makes $\pi\colon M_0\to \overline{M}_0$ a submersion, and the unique smooth Riemannian metric \overline{g} for which $\pi\colon (M_0,g)\to (\overline{M}_0,\overline{g})$ is a Riemannian submersion.

Lemma 3. Suppose $F = S^2 \cup \{\text{isolated points}\}$. Let $\overline{S^2} = \pi(S^2) \subset \overline{M}$. Then the Riemannian structure $(\overline{M}_0, \overline{g})$ extends to a Riemannian structure on $N = \overline{M}_0 \cup \overline{S^2}$ with totally geodesic boundary $\overline{S^2}$. The distance function on N induced by this Riemannian structure coincides with the restriction of the orbital distance metric on \overline{M} to $N \subseteq \overline{M}$.

Proof. The local geometry of \overline{M} near a point $\pi(y) \in \overline{S^2}$ is determined by the geometry of the local representation at $y \in S^2$. This representation is equivalent to

$$\phi: S^1 \times \mathbb{C}^2 \to \mathbb{C}^2; \qquad e^{i\theta}(z_1, z_2) = (z_1, e^{i\theta} z_2),$$

where $z_1, z_2 \in \mathbb{C}$, so the local structure of \overline{M} at $\pi(y)$ is of the type

$$\mathbf{C}^2/S^1 \approx \mathbf{C} \times (\mathbf{C}/S^1) \simeq \mathbf{R}^2 \times \mathbf{R}_+ = \text{ a half space,}$$

i.e., $N = \overline{M}_0 \cup \overline{S^2}$ has a boundary structure near \overline{S}^2 .

Geodesics in $N = \overline{M}_0 \cup \overline{S^2}$ are the projections of geodesics in M which are perpendicular to the S^1 orbits, so it follows that \overline{S}_2 is totally geodesic in \overline{M} .

The distance function induced on N by the Riemannian structure coincides with the orbital distance metric on the dense subset \overline{M}_0 , so it coincides with the orbital distance metric on all of N. q.e.d.

Let $y \in M$ be an isolated fixed point. The slice representation at y is orthogonally equivalent to

$$\phi_{k,l} \colon S^1 \times \mathbf{C}^2 \to \mathbf{C}^2; \qquad e^{i\theta}(z_1, z_2) = (e^{ik\theta}z_1, e^{il\theta}z_2),$$

where $z_1, z_2 \in \mathbf{C}$ and $k, l \in \mathbf{Z}$ with g.d.c(k, l) = 1. Let $S^3(1) \subseteq \mathbf{C}^2$ be the unit sphere and let $d: S^3(1) \times S^3(1) \to \mathbf{R}$ be given by $d(v, w) = \angle(v, w) =$ the angle between v and w. Let (X_{kl}, d_{kl}) be the orbit space of $(\phi_{k,l}, S^3(1), d)$ with orbital distance metric $d_{k,l}$.

Lemma 4. If x_1, x_2, x_3 are arbitrary points in $X_{k,l}$, then

$$d_{k,l}(x_1,x_2) + d_{k,l}(x_2,x_3) + d_{k,l}(x_3,x_1) \le \pi.$$

Proof. The two great circles in $S^3(1)$ given by $z_1 = 0$ and $z_2 = 0$ are orbits of $\phi_{k,l}$ for all k,l with g.c.d.(k,l) = 1. Let $\tilde{X}_{k,l} = K_{k,l} \setminus \{\text{these two orbits}\}$. $\tilde{X}_{k,l}$ consists of principal orbits, so we give it the Riemannian submersion metric coming from the canonical Riemannian metric on $S^3(1)$. We will be using the fact that this Riemannian submersion metric induces the distance function $d_{k,l}$ on $\tilde{X}_{k,l}$.

In the special case where k=l=1, the projection $\pi\colon S^3(1)\to X_{1,1}$ is the Hopf fibration and it is easily checked that $X_{1,1}$ is isometric to a $\mathbb{C}P^1$ with diameter $\pi/2$, i.e., $X_{1,1}$ is isometric to $S^2(1/2)\subseteq \mathbb{E}^3$. Hence the inequality $d_{1,1}(x_1,x_2)+d_{1,1}(x_2,x_3)+d_{1,1}(x_3,x_1)\leq \pi$ is obvious.

We now fix $(k, l) \neq (1, 1)$. The isometric T^2 -action

$$T^2 \times S^3(1) \to S^3(1); \qquad (e^{i\theta_1}, e^{i\theta_2}) \cdot (z_1, z_2) = (e^{i\theta_1} z_1, e^{i\theta_2} z_2)$$

induces an isometric S^1 -action on the Riemannian manifold $\tilde{X}_{k,l}$. $\tilde{X}_{k,l}$ is a connected noncomplete surface of revolution with diameter $\pi/2$, so it admits

a coordinate system $(r,\theta)\colon \tilde{X}_{k,l}\to (0,\pi/2)\times S^1$ such that the metric in these coordinates is $ds^2=dr^2+(f(r))^2\,d\theta^2$ where $d\theta$ is the standard 1-form on S^1 . By replacing r with $\pi/2-r$ if necessary, we can arrange that the latitude circle r=c corresponds to the orbit space of the torus $T^2(c)=T^2(\cos c,\sin c)\subseteq S^3(1)$. All the $\phi_{k,l}$ orbits in $T^2(c)$ have the same length and the function f(r) is determined by

$$2\pi f(c)$$
 (the length of a $\phi_{k,l}$ orbit in $T^2(c)$) = $4\pi^2 \cos c \sin c$.

The orbits of $\phi_{k,l}$ all have length $\geq 2\pi$, so $f(c) \leq \cos c \sin c = \frac{1}{2} \sin 2c$. Hence there is a *length nonincreasing* bijection of $\tilde{X}_{1,1}$ onto $\tilde{X}_{k,l}$ which assigns points in $\tilde{X}_{1,1}$ to points in $\tilde{X}_{k,l}$ with the same coordinates in $(0, \pi/2) \times S^1$. The inequality

$$d_{k,l}(x_1, x_2) + d_{k,l}(x_2, x_3) + d_{k,l}(x_3, x_1) \le \pi$$

for $x_1, x_2, x_3 \in \tilde{X}_{k,l}$ now follows from the corresponding inequality already proved for (k, l) = (1, 1). Since $\tilde{X}_{k,l}$ is dense in $X_{k,l}$, Lemma 4 follows.

Lemma 5. If dim F = 2, then the local representation of S^1 at every isolated fixed point must be equivalent to $\phi_{1,1}$.

Proof. Let Y be the 2-dimensional component of F. Then from the local representation of S^1 on T_yM , $y \in Y$, it follows that there exists a tubular neighborhood of Y, say U, such that the isotropy group is trivial for all $x \in U \setminus Y$.

Suppose there exists an isolated fixed point $p \in F$ such that the local representation of S^1 on T_pM is equivalent to $\phi_{k,l}$, g.c.d. (k,l)=1 and k>1. Then $F(\mathbf{Z}_k,M)$ contains at least two connected components of dimension 2. This contradicts the theorem of Frankel [4] which asserts that two such totally geodesic surfaces in M cannot be disjoint.

3. The proof of Theorem 1

Let M be a 4-dimensional orientable CPCM. Then by Synge's theorem [10] M is simply connected. We will exploit the orbital geometry of the given S^1 -action to prove that $\chi(M)$ is at most 3. It then follows directly from the work of Freedman [5] that M is homeomorphic to either S^4 or $\mathbb{C}P^2$. By Lemmas 1 and 2, $\chi(M) = \chi(F)$ and

$$F(M) = \begin{cases} \chi(M) \text{ isolated points,} \\ \text{or } S^2 + (\chi(M) - 2) \text{ isolated points.} \end{cases}$$

Therefore the proof of the theorem reduces to proving that F consists of at most three isolated points or S^2 plus at most one more isolated point. We

will divide the proof into two cases according to $\dim F = 0$ or 2 and we will prove each case by contradiction.

Case 1, dim F=2. Suppose $F=S^2$ plus at least two isolated fixed points. Let p,q be two isolated fixed points and let γ be a minimizing geodesic segment in M joining p to q. Let η be a minimizing geodesic segment from S^2 to $S^1(\gamma)=$ the S^1 orbit of γ ; hence length $(\eta)=$ dist $(S^2,S^1(\gamma))$, and η has endpoints $A\in S^2$ and $B\in S^1(\gamma)$. The isotropy group of the S^1 -action does not vary along the interior of the minimizing segments γ and η , since otherwise they could be replaced with broken geodesic segments of the same length. Hence it follows from Lemma 5 that the interiors of γ and η lie in $M_0=$ union of principal orbits in M.

Suppose B=p. By Lemma 5 the local representation of S^1 at p is equivalent to $\phi_{1,1}$. Hence $e^{i\theta} \cdot \gamma$ is perpendicular to η at p for all $e^{i\theta} \in S^1$. The second variation formula can now be applied to the geodesic segment η as in the proof of Frankel's theorem [4] to show that length(η) > dist($S^2, S^1(\gamma)$). This contradicts the assumption that length(η) = dist($S^2, S^1(\gamma)$). The same argument rules out B=q.

Now suppose B lies in the interior of γ . Then the isotropy group of B is trivial, forcing $\eta \subseteq M_0 \cup S^2$. Let $\overline{\gamma} = \pi(\gamma \setminus \{p,q\}) \subseteq \overline{M}_0$, and $\overline{\eta} = \pi(\eta) \subseteq \overline{M}_0 \cup \overline{S^2} = N$. By Lemma 3, N is a smooth Riemannian manifold with totally geodesic boundary, and since Riemannian submersions are always curvature nondecreasing (see [4]), N has sectional curvature everywhere $\geq \delta$ for some $\delta > 0$. An application of the second variation formula to the geodesic segment $\overline{\eta} \subset N$ shows once again that length(η) $> \operatorname{dist}(S^2, S^1(\gamma))$, contradicting length(η) = $\operatorname{dist}(S^2, S^1(\gamma))$. Hence F can contain at most one isolated fixed point in addition to the S^2 .

Case 2, dim F=0. Suppose F contains at least four isolated points, p_i , $1 \leq i \leq 4$. Let $l_{ij} = \operatorname{dist}(p_i, p_j)$ and let $C_{ij} = \{\gamma \colon [0, l_{ij}] \to M | \gamma \text{ is a minimizing geodesic segment from } p_i \text{ to } p_j\}$, $1 \leq i, j \leq 4$. For each triple $1 \leq i, j, k \leq 4$ set

$$\alpha_{ijk} = \min\{\angle(\gamma_j'(0), \gamma_k'(0)) | \gamma_j \in C_{ij}, \gamma_k \in C_{ik}\}.$$

Note that the minimum exists because M is compact.

Lemma 6. For each triple of distinct integers $1 \le i, j, k \le 4$,

$$\alpha_{ijk} + \alpha_{kij} + \alpha_{jki} > \pi$$
.

Proof. Let us assume, for notational simplicity, that (i,j,k)=(1,2,3). Set $1/R^2=\delta=$ minimum of sectional curvature of M. Choose x_1,x_2,x_3 on $S^2(R)$ such that the spherical triangle $\Delta(x_1,x_2,x_3)$ has l_{12},l_{23},l_{31} as its three lengths. Applying Toponogov's theorem [11] to an arbitrary triangle

with $\gamma_{12} \in C_{12}$, $\gamma_{23} \in C_{23}$, $\gamma_{13} \in C_{13}$ as its three sides, one gets

$$\angle(\gamma_{12}'(0),\gamma_{13}'(0)) \ge \angle(\overline{x_1}\overline{x_2},\overline{x_1}\overline{x_3}),$$

and hence, by the definition of α_{123} , that $\alpha_{123} \geq \angle(\overline{x_1x_3}, \overline{x_1x_3})$. Therefore $\alpha_{123} + \alpha_{312} + \alpha_{231} \geq$ the sum of interior angles of $\Delta(x_1, x_2, x_3) > \pi$. q.e.d. From the above lemma it follows easily that

$$\sum_{1 \le i \le 4} \sum_{\substack{1 \le j < k \le 4 \\ i, k \ne i}} \alpha_{ijk} > 4\pi.$$

But, on the other hand, from Lemma 4 it is easily seen that

$$\sum_{\substack{1 \le j < k \le 4 \\ i, k \ne i}} \alpha_{ijk} \le \pi \quad \text{ for each } 1 \le i \le 4,$$

which gives a contradiction. Therefore F can have at most three isolated points when dim F = 0. This completes the proof of the theorem.

References

- [1] J. Cheeger, Some examples of manifolds of nonnegative curvature, J. Differential Geometry 8 (1973), 623-628.
- [2] J. Cheeger & D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975.
- [3] S. S. Chern, Differential geometry, its past and future, International Congress of Mathematicians, Nice, 1970.
- [4] T. Frankel, Manifolds with positive curvature, Pacific J. Math. 11 (1961), 165-174.
- [5] M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982) no. 3, 357-453.
- [6] D. Gromoll & W. Meyer, On complete open manifolds of positive curvature, Ann. of Math. (2) 90 (1969) 45-90.
- [7] R. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982) no. 2, 255-306.
- [8] S. Kobayashi, Transformation groups in differential geometry, Springer, New York, 1972.
- [9] B. O'Neill, The fundamental equations of a submersion, Michigan J. Math. 13 (1966), 459-469.
- [10] J. L. Synge, On the connectivity of spaces of positive curvature, Quart. J. Math. Oxford Ser. 7 (1936), 316-320.
- [11] V. A. Toponogov, Riemannian spaces with curvature bounded below, Uspehi Mat. Nauk. 14 (1959) no. 1, pp. 87-130.

UNIVERSITY OF CALIFORNIA, BERKELEY