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ON THE SINGULARITIES OF THE SURFACE
RECIPROCAL TO A GENERIC SURFACE

IN PROJECTIVE SPACE

FELICE RONGA

1. Introduction

Let S = Sf = {[20,21,22,23] 6 ^3 |/(^o,2i,22,23) = 0} be a smooth
surface in the complex projective space, where / is a homogeneous polynomial
of degree n. Let P ' 3 denote the space of hyperplanes in P 3 , and Xj = {(α, h) £
Sf x P / 3 |α G Λ}, and define p = pf.Xf —• P ' 3 to be the natural projection.
Denote by Σ(p) the points of Xf where the derivative of p is not surjective.
Among all the planes through x E S those tangent to S are special, so there
should be no surprise that Σ(p) = {(α, h)\h = TSa}, where TSa denotes the
tangent plane to S at α, and therefore that p(Σ(p)) is the surface reciprocal
(or dual) to S.

Let An denote the vector space of homogeneous polynomials in three vari-
ables with complex coefficients, and Pn the projective space associated to An.
Our purpose is to prove that for / in a nonempty Zariski open subset Un of
An the corresponding map pf is excellent, which means that it has all the
transversality properties required for these dimensions (Corollary 2.6). As
a consequence, one has a complete description of all possible singularities of
the surface reciprocal to S. Also, the fact that p is excellent provides global
informations on the various singular loci, which have been exploited in [5] in
order to justify some formulas of enumerative geometry found by G. Salmon
[6] (the main proofs missed in [5] are provided here). Some work in the same
direction was already done in [2], [3] and [4]. I am indebted to Clint McCrory
for pointing out to me several mistakes in the first version of this paper.

We shall adopt the notation of [5]. In particular, given a smooth map
F:X -» Y and singularity types Σi, ,Σ/t applied to F, we set
M/fc(Σi, ,Σfc) = {xi 6 X\ there are x2, ,Xk € X, x% Φ Xj for i φ j
and f[Xi) = /(xj)}, and Nk{Σu • , Σfc) = /(M(Σ 1 ? , Σk)). We shall de-
note by JQ (Cm, Cn) the space of jets of order k of maps sending the origin to
the origin.
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2. The map F is excellent

Given a germ of a map /: (Cn,0) —* (Cp,0), recall that an unfolding of

/ is a map F: (Cn + / ι,0) -+ (Cp+Λ,0) such that if x E C n and t G Cp, then

F(x,t) = (Fi(x,0»0 a n d * i ( M ) = /.
Definition. Let r be an integer and Σ = {Σh}h>o be a sequence of

singularity types of order fc, with Σh C Jjf (CΛ; C r + / ι ). We shall say that Σ is
a u-stable singularity type (for unfolding-stable) if for every germ of unfolding
F: (Cn + Λ,0) -> (C n + r + h ,0) of /: (Cn,0) — (C n + r,0) the following hold:

(i) jξ(f) G Σn if and only if j*(F) G Σ n + Λ ,
(ii) Jo(f) is a transversal to Σ n if and only if jfi(F) is transversal to Σn+h>
It is usual to write Σ instead of Σh for some unspecified h. It follows

easily from [1, Theorem 7.15] that all Thom-Boardman singularity types are
w-unstable; in their case r, as well as h, is unspecified.

2.1 Proposition. Let Σ be a u-stable sequence of singularity types.
Consider the commutative diagram:

(x,x0) $ (y,y0)

and assume that px and py are germs of submersions. Denote by Xt and Yt

the fibers overt ofpχ andpy respectively, and let Ft = F\pχX (to): Xt0 —> Yt0-
Then the following hold:

(i) If Ft is Σ-transversal at x E Xt, then so is F itself.
(ii) Let F be Σ-transversal at x G Xt- Then Ft is Σ-transversal at x if

and only ift is a regular value of the germ of pχ\Σ(F) at x. This occurs only
when

dim(TΣx Π T(Xt)x) < dιm{TΣx) - dim(X) 4- dim(Xt),

(i.e., codimension is preserved; in fact inequality is equivalent to equality).
(iii) Let Σi, , Σ m be u-stable singularity types, andF be multitransversal

to them at x E Xt- Then Ft is multitransversal to the same at x if and only if
t is a regular value of the germ at x of the restriction of px to Σχ(F) Π Π
Σ m ( F ) .

The proof is straightforward and is left to the reader.
We introduce now some notation. Let X = {([z], [α], [/]) e P3 x P / 3 x Pn

\a(x) = 0, f(x) = 0}, Y = P ' 3 x P n , and F: X -> Y be the natural projection.
We shall write [x, α, /] for an element of X, and [α, /] for an element of Y. Let
[XQ] G P3, HQO be a hyperplane in P 3 not containing [x0], and V = P 3 — HQQ.
Let EQ and E\ be affine subspaces of V of dimension 2 and 1 respectively
such that EoΠ Eι = {[xo]}; we will choose [xo] as the origin in Eo and Eι,
so that they become vector spaces. Choose XQQ G ϋfo© and L to be a nonzero
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linear form on C4 whose kernel is HQO. Set Bn = {/ G An\f(xoo) = 0}; we
have an isomorphism Bn x C —* An sending (/, c) to / — c Ln. Denote by
Aι(Eo,Eι) the space of affine maps from Eo to E\. Let U be the subset of
EoxAι(Eo,E\)xBn consisting of triples (x, α,/) such that (/(x+α(x)),/) is
nonzero in C x B n , and let W be the subset of A\(£?o,Eι)xCxBn consisting
of triples (α, c, f) such that (c, /) is nonzero. Define Φ: U —• W by

Φ(x, α, /) = (α, /(x + α(x))/Ln(x 4- α(x)), /) .

The group C* of nonzero complex numbers acts freely on U and W by z
(x, α, /) = (x, a,z f) and 2 (α, c, /) = (α, 2 c, 2 /), and Φ is equivariant
for these actions. We have a commutative diagram:

u -+ u' =u/c* ± x
Φl F'l IF

w -+ w =w/c* -S y
where h sends the class of (x, α, /) in ί/' to

[x + α(x), graph(α), / - Ln (/(x + a(x)/Ln(x + α(x))],

and // sends the class of (α,c,/) to [graph(α),/ — c Ln] and graph(α) =
{x + α(x)|x G Eo} It is readily verified that h and H are coordinate charts
on X and y respectively, and that the diagram commutes.

2.2 Proposition. F is Σ-transversal to all u-stable singularity types
of order not exceeding n.

Proof The partial map Φα sends (x, /) £ Eo x Bn to (/(x + α(x)),/) €
C x 5 n , and is therefore obviously transversal to any lί-stable singularity type
of order not exceeding n. It follows from 2.1(i) that Φ itself is transversal to
the same kind of singularities. Since Φ is C*-equivariant and the action is
free, it follows from 2.1(ii) that F' and hence F have the same transversality
property.

For the next proposition we shall use a slightly different local description
of ΛΓ, y and F. Let {x0} G P 3 , V, ifoo, Eo and Ex be as before, and set

5 = {(x,α,/) € V x AxiEoiEx) x (An - {0})|/(x + α(x)) = 0},

T = A1(E0,El)x(An-{0}).

The group C* acts on 5 and T by multiplication on An — {0}. Define
Φ: S —* T by Φ(x, α, /) = (α, /) . We have a commutative diagram

Λ X c P 3 x P ' 3 x P n

| F
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where h sends (x,α, [/]) to ([x], graph(α), [/]), which we shall denote by
[x, α,/], and i ί sends (α, [/]) to [α, /] = (graph(α, [/]). H and h are dif-
feomorphisms onto open subsets of Y and X respectively, and we shall write
[x, α, /] and [α, /] for elements of the tangent spaces of X and Y respectively.
For example, taking the derivative of the equation defining 5, we obtain:

(1) TXa = {[x,aj]\dfx(x + a(x) - a(x0)) + dfx(a(x))

where a = [x, α, /], from which it follows that

ker(dFa) = {[xΛ0}\dfx(x + a(x)-a(x))=0h

and hence that [x, α, /] G Σ2(F) if and only if ker(dfx) = graph(α).
2.3 Proposition. Let a = [x, α, /] G X and assume that a e Σ 2(F)).

T/ien the following hold:
(i) Im(dFβ) = {{aj}\dfx(φ)) + ttx + a(x)) = 0}.
(iia) a is an Σ2 > 1(F) if and only if there exists a line /o in EQ such that

d2fx\Eoxlo = 0. In this case we have
(iib) lm(d(F\Σ2(F))a) = {[aj] e Im(dFα)|d/J/0 + d/,(a|/0) = 0}.

(iiia) a G Σ 2 ' 1 ' 1 ^ ) t/ and only if a G Σ 2 ' 1 ^ ) am/ d2/x |ί;o x /0 x /o = 0.
/n this case we have

(iϋb)

ϊm(d(F\Σ2'\F))a)

= {[a,/] € Im(d(ίΊΣ 2 (F)) a ) |d 2 / χ μ 0 x <o + 2d2/χ(«, )|/o x Ό = 0}.

The following corollary is a consequence of the very definition of Thom-
Boardman's singularities.

2.4 Corollary. If a e Σ 2 °(F), Σ 2 1 °(F) or Σ 2 - 1 ' 1 - 0 ^ ) , then the im-
ages by dFa of the tangent spaces to these strata are described by (i), (iib) and
(iiib) above respectively, that is:

(i) T(F(Σ^'°))b = {[aj)\dfx(φ)) + l(x + a(x)) = 0}.
(ii) T(F(Σ^'°))b = {[a,β € Iπi(dFα)|<f/jZ0 + cf/*(α|Z0) = 0}.

(iii)

T(F(Σ a 1 1 °)) t

= {[α,/] € Im(d(F|Σ 2(F))o)|d 2/JZ 0 x l0 + 2d2/x(α, )|/0 x /0 = 0},

where a = [x, α, /] and 6 = [a, / ] .
Proo/ o/2.3. We shall work near the point a and will assume for simplicity

that £Ό = graph(α). If a G Σ 2(F), then ker(dfx) = £ 0 and (i) follows from
equality (1). As we have already seen in the proof of Proposition 2.2, the map
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F can be seen as an unfolding of the function f\Eo. Since Thom-Boardman

singularities are u-stable, (iia) and (iiia) follow at once.

We have that Σ 2 (F) = {[x,a,f]\dfx{lEo + a) = 0}, where lEo:Eo -+ V

denotes the inclusion, and the equation takes place in L(Eo, C). Taking deriva-

tives we get

(2) TΣ2(F)a = {[z,α,/] eTXa\d2fx(lEo,x)+dlχ(lEo)+dfx(a) = 0}.

The presence of the term d£χ in (2) shows that the equation is of maximal

rank. If a e Σ 2 ' 1 ^ ) , then d2fx:E0 — L{E0,C) vanishes exactly on Zo.

Therefore, if a and / are such that dj_ |/o -f dfx(a\lo) = 0, then there exists

exactly one x such that (2) is satisfied, (iib) is proved.

We need now the equation of Σ 2 ' 1 in Σ 2 ; let I i b e a supplementary subspace

of Zo in EQ. Consider the space X' = Σ 2 (F) x L{EQ,EI) X L{lo,h) and the

natural projection P:X' —• Σ 2 (F), and define Σ' C X1 by the equation

(3) d2fx(θuθ2)=0,

where θx = {lEo + α) (l/0 + β), θ2 = {lEo -f α) {β - π 0 + 7Γχ), π 0 , π x are

the projections of Eo onto IQ and Zi parallel to l\ and /o respectively, a E

L(£b,^i), /? € L(/0,/i) and [x',α,/] G Σ 2 (F) . Let I = Im(fli), £ = Im(02);

note that Z is included in E. The product θ\ x 2̂ induces an isomorphism

from IQ XEI to Z x £, which is symmetric on Zi x Zi, thanks to the complicated

expression for 02 If ([^α,/],/?,Z) satisfies (3), then d2fx\lxE = 0 and hence

[x,α,/] G Σ 2 ' 1 ^ ) . Taking the derivative of (3) at [a:,0,0] we get

d3fx(x, lEo) + d2lχ(lEo, llo)+d2fx(a

Because of the term d2f_χ, (4) is of maximal rank; also, if d2 fx(^ lEo) = 0

then β = 0 since we are on Σ 2 ' 1 and not on Σ 2 ' 2 . It follows that P\Σf is a

diffeomorphism on some open set of Σ 2 ) 1 (F) , that

(5) T Σ 2 ' 1 ( F ) O = {[x,α,/] € T Σ 2 ( F ) | there is β satisfying (4)},

and that if a and / are such that

d2fx(llo, h0) + d2fx(a\l0, Uo) + d2/χ(lio^|ίo) = 0,

then there exist unique β and x such that (3) is satisfied, and (iiib) is proved.

2.5 Proposition. Let n > 3; ίAβn the map F:X -+Y is multitransver-

sal to the following singularity types:

(i) M f c(Σ 2 ' 0, , Σ 2 ' 0 ) , provided n>k.

( i i )M 2 (Σ 2 ' ° ,Σ 2 ' 1 ' 0 ) .
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Proof. If αi = [xua,f] G Σ^F),- .- ,ak = [xk,a,f] G Σk{F) (and so
F(αi) = = F{ak) = [α, /] = 6), we shall write Γ< = Im(d(F|Σ»)β<) C ΓYfe.
With no further mention, the sequences Σi, , Σfc and αi, ,ak will be
those appearing in the case under consideration. The symbols h* will denote
elements of A\ — {0}, i.e., nonzero linear forms on C4.

(i) Let Hi, i = 1, , k, be such that hi(xj) = 0 if and only if i = j . Set

/. = hi Λt_i h j n ~ i + 1 ) . It follows from 2.3(i) that [0,/.] eTιΠ"

(ii) Here we have a line Z C E = ker(d/Xl) such that d2/X l |Z x £̂  = 0. Let
fti,ft2 be such that hx\l = 0 and h2{xι) = 0, /ι2(x2) 7̂  0. Set / = hi h j " 1 ;
thenby 2.3 [0,/] E T 2 - T i .

(iii) We already know by (ii) that T2 and T3 meet transversally, and hence
it suffices to prove that T2 Π T3 φ TΊ. Let Z C £ be for £3 be what it was
under (ii) for X2, and let hi and h2 be such that hi(xi) φ 0, hi(x2) = 0,
h2(xi) Φ 0, MZ3) = 0, and set / = hi h^" 1 . Then df^ \l = 0 since n > 3,
and so [0,/] eT2ΠT3-T1.

(iv) Let hi and h2 satisfy hi(xi) = 0, hι(x2) φ 0, h2(xi) φ 0, h2(z2) = 0.
Then [0, hi -hj"1], [0, hj] G T 2 -Ti (since n > 3) and are linearly independent.

(v) Let h satisfy h(x2) = 0, h(xi) Φ 0; then [0, hn] G T2 - Γi.

It is certainly no coincidence that the above proof is based on the geometry
of points, lines and planes.

From 2.5 and 2.1(ii) and (iii) it follows:

2.6 Corollary. For f in some Zariski open dense subset Un of An, the
partial map Ff = pf = p:Xf —• Yf = P ' 3 x {/} is excellent (i.e., transversal
and multitransversal to all possible Thom-Boardman singularities—in these di-
mensions onlyΣ2, Σ 2 ' 1 , Σ 2 ' 1 ' 1 , M 2 (Σ 2 ,Σ 2 ) , Af2(Σ2,Σ2 1 ) , M 3 (Σ 2 ,Σ 2 ,Σ 2 )) .

We will now recall and justify the geometric description of the set Un given
in [5, Proposition 2.1]. Let / G An define a nonsingular projective surface
Sf = S.

2.7 Proposition. The map pj is excellent if and only if for any x G Sf
the intersection of TSX with S is a curve with singularities of the following
types only.

(a) one ordinary double point;

(b) two ordinary double points;

(c) three ordinary double points, not lying on a same line;

(d) one ordinary cusp;
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(e) one ordinary double point and one double point, not lying on the line

tangent to the cusp:

(f) one ordinary tacnodal point.

(See [2, Example 1.5b], or [5, Proposition 2.1] for the interpretation of these
singularities in terms of singularities of pf and Sf = p/(Σ2(p/)) = the surface
reciprocal to S.)

Proof. Step 1: Monotransυersality. It is easily checked that the curve
S Π TSX has ordinary double points, cusp or tacnodal points at x if and only
if x E Σ2'°(p), Σ2ϊ l'°(p) or Σ 2 1'1'°(p) respectively. It remains to show that at
those points, p is transversal to the corresponding Thom-Boardman strata.

Let us show first transversality to Σ 2 and Σ 2 ' 1 . Consider the commutative
diagram:

X £ Y
Px\ SPY

Pn
Since px and py are submersions and F is transversal to Thom-Boardman
singularities of order < n, we can apply Proposition 2.1(ii). Let a = [x, α, /] G.
Σ2(F). Let T\ be the tangent space of Xf at [z,α], and T2 be the tangent
space to Σ 2(F) at a. Consider the natural projection P:TX ΠT2 -> TP3

sending [z,α] to [x). From (1), (2) and the fact that Σ 2 ' 2 (F) = 0 it follows
that P is injective, so that dim(TΊ ΠT2) < dim(i?o) = 2, and hence p is Σ2-
transversal by 2.1(ii). Assume now that a E Σ 2 ' 1 (F), and let T3 be the tangent
space to Σ 2 ) 1 (F) at α. From (5) and the fact that Σ 2 ' 2(F) = 0 it follows that
P{T\ ΠT3) = Zθί and so by 2.3(ii) we are done again. From [1, Theorem 7.15]
follows easily a general fact, about Thom-Boardman singularities, that a Σ2-
transversal map g: X n + 1 —• Yn is automatically Σ2'1-transversal at points of
Σ2'1'°(gf), Σ2'M-transversal at points of Σ2'1'1'°(^), and so on. Therefore Step
1 is complete.

Step 2: Multitransυersality. It follows from 2.4 that:

T(p(Σ2(p)))[Q] = {[a] e TPfa\a(x) = 0},

T(p(Σ^(p)))[a] = {[a] € TP^a • lio = 0},

ΓίpίΣ2-1-1^))),^ = {[a]\a • lEo =0} = {0}.

In other words, these three tangent spaces can be intrepreted respectively as
the two planes in projective space passing through x, the two planes containing
Zo, and the two planes tangent to Sf at x (note that our description of TPfS

at x depends on the choice of EQ and JCi, but the above description does not).
From this the end of the proof follows immediately.

Remark. As C. McCrory pointed out to me, the methods used in this pa-
per can be used to handle the case of hypersurfaces contacting planes of any
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dimension (rather than hyperplanes only) in projective spaces of any dimen-
sion. However, the degree of the hypersurface might put some limits on the
excellency of the analogues of the map F. For example, in the case of hyper-
surfaces of degree n and hyperplanes in Pk, the singularity type j]*""1 '1 '""'1,
with 1 occurring k — 1 times, appears generically; this is a singularity of order
k, and therefore probably one should require that n > k in order to make
sure that F is excellent (a similar but erroneous—as C. McCrory noticed—
statement was made in [5, Remark 2.3(ii))].

References

[1] J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Etudes Sci. Publ.
Math. 33 (1967) 383-419.

[2] J. W. Bruce, The duals of generic hyper surfaces, Math. Scand. 49 (1981) 36-60.
[3] V. S. Kulikov, Calculation of singularities of embeddings of generic algebraic surfaces in

projective space P3, Funktsional. Anal, i Prilozhen 17 (1983), No. 3, 15-27.
[4] C. McCrory & T. Shifrin, Cusps of the projective Gauss map, J. Differential Geometry

19 (1984) 257-276.
[5] F. Ronga, On the planes triply tangent to a surface in projective space, Proc. Canad.

Math. Soc. Conference β (1984) 389-395.
[6] G. Salmon, On the degree of the surface reciprocal to a given one, Trans. Irish Acad. 23

(1855) 461-488.

UNIVERSITE D E GENEVE




