ON THE SINGULARITIES OF THE SURFACE RECIPROCAL TO A GENERIC SURFACE IN PROJECTIVE SPACE

FELICE RONGA

1. Introduction

Let $S=S_{f}=\left\{\left[z_{0}, z_{1}, z_{2}, z_{3}\right] \in P^{3} \mid f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be a smooth surface in the complex projective space, where f is a homogeneous polynomial of degree n. Let $P^{\prime 3}$ denote the space of hyperplanes in P^{3}, and $X_{f}=\{(a, h) \in$ $\left.S_{f} \times P^{\prime 3} \mid a \in h\right\}$, and define $p=p_{f}: X_{f} \rightarrow P^{\prime 3}$ to be the natural projection. Denote by $\Sigma(p)$ the points of X_{f} where the derivative of p is not surjective. Among all the planes through $x \in S$ those tangent to S are special, so there should be no surprise that $\Sigma(p)=\left\{(a, h) \mid h=T S_{a}\right\}$, where $T S_{a}$ denotes the tangent plane to S at a, and therefore that $p(\Sigma(p))$ is the surface reciprocal (or dual) to S.

Let A_{n} denote the vector space of homogeneous polynomials in three variables with complex coefficients, and P_{n} the projective space associated to A_{n}. Our purpose is to prove that for f in a nonempty Zariski open subset U_{n} of A_{n} the corresponding map p_{f} is excellent, which means that it has all the transversality properties required for these dimensions (Corollary 2.6). As a consequence, one has a complete description of all possible singularities of the surface reciprocal to S. Also, the fact that p is excellent provides global informations on the various singular loci, which have been exploited in [5] in order to justify some formulas of enumerative geometry found by G. Salmon [6] (the main proofs missed in [5] are provided here). Some work in the same direction was already done in [2], [3] and [4]. I am indebted to Clint McCrory for pointing out to me several mistakes in the first version of this paper.

We shall adopt the notation of [5]. In particular, given a smooth map $F: X \quad \rightarrow \quad Y$ and singularity types $\Sigma_{1}, \cdots, \Sigma_{k}$ applied to F, we set $M_{k}\left(\Sigma_{1}, \cdots, \Sigma_{k}\right)=\left\{x_{1} \in X \mid\right.$ there are $x_{2}, \cdots, x_{k} \in X, x_{i} \neq x_{j}$ for $i \neq j$ and $\left.f\left(x_{i}\right)=f\left(x_{j}\right)\right\}$, and $N_{k}\left(\Sigma_{1}, \cdots, \Sigma_{k}\right)=f\left(M\left(\Sigma_{1}, \cdots, \Sigma_{k}\right)\right)$. We shall denote by $J_{0}^{k}\left(\mathbb{C}^{m}, \mathbb{C}^{n}\right)$ the space of jets of order k of maps sending the origin to the origin.

2. The map F is excellent

Given a germ of a map $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$, recall that an unfolding of f is a map $F:\left(\mathbb{C}^{n+h}, 0\right) \rightarrow\left(\mathbb{C}^{p+h}, 0\right)$ such that if $x \in \mathbb{C}^{n}$ and $t \in \mathbb{C}^{p}$, then $F(x, t)=\left(F_{1}(x, t), t\right)$ and $F_{1}(x, 0)=f$.

Definition. Let r be an integer and $\Sigma=\left\{\Sigma_{h}\right\}_{h \geq 0}$ be a sequence of singularity types of order k, with $\Sigma_{h} \subset J_{0}^{k}\left(\mathbb{C}^{h} ; \mathbb{C}^{r+h}\right)$. We shall say that Σ is a u-stable singularity type (for unfolding-stable) if for every germ of unfolding $F:\left(\mathbb{C}^{n+h}, 0\right) \rightarrow\left(\mathbb{C}^{n+r+h}, 0\right)$ of $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n+r}, 0\right)$ the following hold:
(i) $j_{0}^{k}(f) \in \Sigma_{n}$ if and only if $j_{0}^{k}(F) \in \Sigma_{n+h}$,
(ii) $j_{0}^{k}(f)$ is a transversal to Σ_{n} if and only if $j_{0}^{k}(F)$ is transversal to Σ_{n+h}.

It is usual to write Σ instead of Σ_{h} for some unspecified h. It follows easily from [1, Theorem 7.15] that all Thom-Boardman singularity types are u-unstable; in their case r, as well as h, is unspecified.
2.1 Proposition. Let Σ be a u-stable sequence of singularity types. Consider the commutative diagram:

and assume that p_{X} and p_{Y} are germs of submersions. Denote by X_{t} and Y_{t} the fibers over t of p_{X} and p_{Y} respectively, and let $F_{t}=F \mid p_{X}^{-1}\left(t_{0}\right): X_{t_{0}} \rightarrow Y_{t_{0}}$. Then the following hold:
(i) If F_{t} is Σ-transversal at $x \in X_{t}$, then so is F itself.
(ii) Let F be Σ-transversal at $x \in X_{t}$. Then F_{t} is Σ-transversal at x if and only if t is a regular value of the germ of $p_{X} \mid \Sigma(F)$ at x. This occurs only when

$$
\operatorname{dim}\left(T \Sigma_{x} \cap T\left(X_{t}\right)_{x}\right) \leq \operatorname{dim}\left(T \Sigma_{x}\right)-\operatorname{dim}(X)+\operatorname{dim}\left(X_{t}\right)
$$

(i.e., codimension is preserved; in fact inequality is equivalent to equality).
(iii) Let $\Sigma_{1}, \cdots, \Sigma_{m}$ be u-stable singularity types, and F be multitransversal to them at $x \in X_{t}$. Then F_{t} is multitransversal to the same at x if and only if t is a regular value of the germ at x of the restriction of p_{X} to $\Sigma_{1}(F) \cap \cdots \cap$ $\Sigma_{m}(F)$.

The proof is straightforward and is left to the reader.
We introduce now some notation. Let $X=\left\{([x],[\alpha],[f]) \in P^{3} \times P^{3} \times P_{n}\right.$ $\mid \alpha(x)=0, f(x)=0\}, Y=P^{3} \times P_{n}$, and $F: X \rightarrow Y$ be the natural projection. We shall write $[x, \alpha, f]$ for an element of X, and $[\alpha, f]$ for an element of Y. Let $\left[x_{0}\right] \in P_{3}, H_{\infty}$ be a hyperplane in P^{3} not containing [x_{0}], and $V=P^{3}-H_{\infty}$. Let E_{0} and E_{1} be affine subspaces of V of dimension 2 and 1 respectively such that $E_{0} \cap E_{1}=\left\{\left[x_{0}\right]\right\}$; we will choose $\left[x_{0}\right]$ as the origin in E_{0} and E_{1}, so that they become vector spaces. Choose $x_{\infty} \in H_{\infty}$ and L to be a nonzero
linear form on \mathbb{C}^{4} whose kernel is H_{∞}. Set $B_{n}=\left\{f \in A_{n} \mid f\left(x_{\infty}\right)=0\right\}$; we have an isomorphism $B_{n} \times \mathbb{C} \rightarrow A_{n}$ sending (f, c) to $f-c \cdot L^{n}$. Denote by $A_{1}\left(E_{0}, E_{1}\right)$ the space of affine maps from E_{0} to E_{1}. Let U be the subset of $E_{0} \times A_{1}\left(E_{0}, E_{1}\right) \times B_{n}$ consisting of triples (x, α, f) such that $(f(x+\alpha(x)), f)$ is nonzero in $\mathbb{C} \times B_{n}$, and let W be the subset of $A_{1}\left(E_{0}, E_{1}\right) \times \mathbb{C} \times B_{n}$ consisting of triples (α, c, f) such that (c, f) is nonzero. Define $\Phi: U \rightarrow W$ by

$$
\Phi(x, \alpha, f)=\left(\alpha, f(x+\alpha(x)) / L^{n}(x+\alpha(x)), f\right)
$$

The group \mathbb{C}^{*} of nonzero complex numbers acts freely on U and W by z. $(x, \alpha, f)=(x, \alpha, z \cdot f)$ and $z \cdot(\alpha, c, f)=(\alpha, z \cdot c, z \cdot f)$, and Φ is equivariant for these actions. We have a commutative diagram:

$$
\begin{array}{cccccc}
U & \rightarrow & U^{\prime} & =U / \mathbb{C}^{*} & \xrightarrow{h} & X \\
\Phi \downarrow & & F^{\prime} \downarrow & & & \downarrow F \\
W & \rightarrow & W^{\prime} & =W / \mathbb{C}^{*} & \xrightarrow{H} & Y
\end{array}
$$

where h sends the class of (x, α, f) in U^{\prime} to

$$
\left[x+\alpha(x), \operatorname{graph}(\alpha), f-L^{n} \cdot\left(f\left(x+\alpha(x) / L^{n}(x+\alpha(x))\right]\right.\right.
$$

and H sends the class of (α, c, f) to $\left[\operatorname{graph}(\alpha), f-c \cdot L^{n}\right]$ and $\operatorname{graph}(\alpha)=$ $\left\{x+\alpha(x) \mid x \in E_{0}\right\}$. It is readily verified that h and H are coordinate charts on X and Y respectively, and that the diagram commutes.
2.2 Proposition. F is Σ-transversal to all u-stable singularity types of order not exceeding n.

Proof. The partial map Φ_{α} sends $(x, f) \in E_{0} \times B_{n}$ to $(f(x+\alpha(x)), f) \in$ $\mathbf{C} \times B_{n}$, and is therefore obviously transversal to any u-stable singularity type of order not exceeding n. It follows from $2.1(\mathrm{i})$ that Φ itself is transversal to the same kind of singularities. Since Φ is \mathbf{C}^{*}-equivariant and the action is free, it follows from 2.1(ii) that F^{\prime} and hence F have the same transversality property.

For the next proposition we shall use a slightly different local description of X, Y and F. Let $\left\{x_{0}\right\} \in P^{3}, V, H_{\infty}, E_{0}$ and E_{1} be as before, and set

$$
\begin{gathered}
S=\left\{(x, \alpha, f) \in V \times A_{1}\left(E_{0}, E_{1}\right) \times\left(A_{n}-\{0\}\right) \mid f(x+\alpha(x))=0\right\}, \\
T=A_{1}\left(E_{0}, E_{1}\right) \times\left(A_{n}-\{0\}\right) .
\end{gathered}
$$

The group \mathbb{C}^{*} acts on S and T by multiplication on $A_{n}-\{0\}$. Define $\Phi: S \rightarrow T$ by $\Phi(x, \alpha, f)=(\alpha, f)$. We have a commutative diagram

$$
\begin{array}{ccccc}
S & \rightarrow & S / \mathbb{C}^{*} & \xrightarrow{h} & X \subset P^{3} \times P^{\prime 3} \times P_{n} \\
\Phi \downarrow & & \downarrow F^{\prime} & & \downarrow F \\
T & \rightarrow & T / \mathbb{C}^{*} & \xrightarrow{H} & Y=P^{\prime 3} \times P_{n}
\end{array}
$$

where h sends $(x, \alpha,[f])$ to $([x], \operatorname{graph}(\alpha),[f])$, which we shall denote by $[x, \alpha, f]$, and H sends $(\alpha,[f])$ to $[\alpha, f]=(\operatorname{graph}(\alpha,[f]) . \quad H$ and h are diffeomorphisms onto open subsets of Y and X respectively, and we shall write $[\underline{x}, \underline{\alpha}, \underline{f}]$ and $[\underline{\alpha}, f]$ for elements of the tangent spaces of X and Y respectively. For example, taking the derivative of the equation defining S, we obtain:

$$
\begin{align*}
T X_{a}=\left\{[\underline{x}, \underline{\alpha}, \underline{f}] \mid d f_{x}\left(\underline{x}+\alpha(\underline{x})-\alpha\left(x_{0}\right)\right)+\right. & d f_{x}(\underline{\alpha}(x)) \tag{1}\\
& +\underline{f}(x+\alpha(x))=0\}
\end{align*}
$$

where $a=[x, \alpha, f]$, from which it follows that

$$
\operatorname{ker}\left(d F_{a}\right)=\left\{[\underline{x}, 0,0] \mid d f_{x}(\underline{x}+\alpha(\underline{x})-\alpha(x))=0\right\}
$$

and hence that $[x, \alpha, f] \in \Sigma^{2}(F)$ if and only if $\operatorname{ker}\left(d f_{x}\right)=\operatorname{graph}(\alpha)$.
2.3 Proposition. Let $a=[x, \alpha, f] \in X$ and assume that $\left.a \in \Sigma^{2}(F)\right)$. Then the following hold:
(i) $\operatorname{Im}\left(d F_{a}\right)=\left\{[\underline{\alpha}, \underline{f}] \mid d f_{x}(\underline{\alpha}(x))+\underline{f}(x+\alpha(x))=0\right\}$.
(iia) a is an $\Sigma^{2,1}(\bar{F})$ if and only if there exists a line l_{0} in E_{0} such that $d^{2} f_{x} \mid E_{0} x l_{0}=0$. In this case we have
(iib) $\operatorname{Im}\left(d\left(F \mid \Sigma^{2}(F)\right)_{a}\right)=\left\{[\underline{a}, \underline{f}] \in \operatorname{Im}\left(d F_{a}\right)\left|d \underline{f}_{x}\right| l_{0}+d f_{x}\left(\underline{\alpha} \mid l_{0}\right)=0\right\}$.
(iiia) $a \in \Sigma^{2,1,1}(F)$ if and only if $a \in \Sigma^{2,1}(\bar{F})$ and $d^{2} f_{x} \mid E_{0} \times l_{0} \times l_{0}=0$.
In this case we have
(iiib)

$$
\begin{aligned}
& \operatorname{Im}\left(d\left(F \mid \Sigma^{2,1}(F)\right)_{a}\right) \\
& \quad=\left\{[\underline{\alpha}, \underline{f}] \in \operatorname{Im}\left(d\left(F \mid \Sigma^{2}(F)\right)_{a}\right)\left|d^{2} \underline{f}_{x}\right| l_{0} \times l_{0}+2 d^{2} f_{x}(\underline{\alpha},) \mid l_{0} \times l_{0}=0\right\}
\end{aligned}
$$

The following corollary is a consequence of the very definition of ThomBoardman's singularities.
2.4 Corollary. If $a \in \Sigma^{2,0}(F), \Sigma^{2,1,0}(F)$ or $\Sigma^{2,1,1,0}(F)$, then the images by $d F_{a}$ of the tangent spaces to these strata are described by (i), (iib) and (iiib) above respectively, that is:
(i) $T\left(F\left(\Sigma^{2,1,0}\right)\right)_{b}=\left\{[\underline{\alpha}, \underline{f}] \mid d f_{x}(\underline{\alpha}(x))+\underline{f}(x+\alpha(x))=0\right\}$.
(ii) $T\left(F\left(\Sigma^{2,1,0}\right)\right)_{b}=\left\{[\underline{\alpha}, \underline{f}] \in \operatorname{Im}\left(d F_{a}\right)\left|d \underline{f}_{x}\right| l_{0}+d f_{x}\left(\underline{\alpha} \mid l_{0}\right)=0\right\}$.
(iii)

$$
\begin{aligned}
& T\left(F\left(\Sigma^{2,1,1,0}\right)\right)_{b} \\
& \quad=\left\{[\underline{\alpha}, \underline{f}] \in \operatorname{Im}\left(d\left(F \mid \Sigma^{2}(F)\right)_{a}\right)\left|d^{2} \underline{f}_{x}\right| l_{0} \times l_{0}+2 d^{2} f_{x}(\underline{\alpha},) \mid l_{0} \times l_{0}=0\right\}
\end{aligned}
$$

where $a=[x, \alpha, f]$ and $b=[\alpha, f]$.
Proof of 2.3. We shall work near the point a and will assume for simplicity that $E_{0}=\operatorname{graph}(\alpha)$. If $a \in \Sigma^{2}(F)$, then $\operatorname{ker}\left(d f_{x}\right)=E_{0}$ and (i) follows from equality (1). As we have already seen in the proof of Proposition 2.2, the map
F can be seen as an unfolding of the function $f \mid E_{0}$. Since Thom-Boardman singularities are u-stable, (iia) and (iiia) follow at once.

We have that $\Sigma^{2}(F)=\left\{[x, \alpha, f] \mid d f_{x}\left(1_{E_{0}}+\alpha\right)=0\right\}$, where $1_{E_{0}}: E_{0} \rightarrow V$ denotes the inclusion, and the equation takes place in $L\left(E_{0}, \mathbb{C}\right)$. Taking derivatives we get

$$
\begin{equation*}
T \Sigma^{2}(F)_{a}=\left\{[\underline{x}, \underline{\alpha}, \underline{f}] \in T X_{a} \mid d^{2} f_{x}\left(1_{E_{0}}, \underline{x}\right)+d \underline{f}_{x}\left(1_{E_{0}}\right)+d f_{x}(\underline{\alpha})=0\right\} \tag{2}
\end{equation*}
$$

The presence of the term $d \underline{f}_{x}$ in (2) shows that the equation is of maximal rank. If $a \in \Sigma^{2,1}(F)$, then $d^{2} f_{x}: E_{0} \rightarrow L\left(E_{0}, \mathbb{C}\right)$ vanishes exactly on l_{0}. Therefore, if $\underline{\alpha}$ and \underline{f} are such that $d \underline{f}_{x} \mid l_{0}+d f_{x}\left(\underline{\alpha} \mid l_{0}\right)=0$, then there exists exactly one \underline{x} such that (2) is satisfied, (iib) is proved.

We need now the equation of $\Sigma^{2,1}$ in Σ^{2}; let l_{1} be a supplementary subspace of l_{0} in E_{0}. Consider the space $X^{\prime}=\Sigma^{2}(F) \times L\left(E_{0}, E_{1}\right) \times L\left(l_{0}, l_{1}\right)$ and the natural projection $P: X^{\prime} \rightarrow \Sigma^{2}(F)$, and define $\Sigma^{\prime} \subset X^{\prime}$ by the equation

$$
\begin{equation*}
d^{2} f_{x}\left(\theta_{1}, \theta_{2}\right)=0 \tag{3}
\end{equation*}
$$

where $\theta_{1}=\left(1_{E_{0}}+\alpha\right) \cdot\left(1_{l_{0}}+\beta\right), \theta_{2}=\left(1_{E_{0}}+\alpha\right) \cdot\left(\beta \cdot \pi_{0}+\pi_{1}\right), \pi_{0}, \pi_{1}$ are the projections of E_{0} onto l_{0} and l_{1} parallel to l_{1} and l_{0} respectively, $\alpha \in$ $L\left(E_{0}, E_{1}\right), \beta \in L\left(l_{0}, l_{1}\right)$ and $\left[x^{\prime}, \alpha, f\right] \in \Sigma^{2}(F)$. Let $l=\operatorname{Im}\left(\theta_{1}\right), E=\operatorname{Im}\left(\theta_{2}\right)$; note that l is included in E. The product $\theta_{1} \times \theta_{2}$ induces an isomorphism from $l_{0} \times E_{1}$ to $l \times E$, which is symmetric on $l_{1} \times l_{1}$, thanks to the complicated expression for θ_{2}. If $([x, \alpha, f], \beta, l)$ satisfies (3), then $d^{2} f_{x} \mid l \times E=0$ and hence $[x, \alpha, f] \in \Sigma^{2,1}(F)$. Taking the derivative of (3) at $[x, 0,0]$ we get

$$
\begin{align*}
& d^{3} f_{x}\left(\underline{x}, 1_{E_{0}}\right)+d^{2} \underline{f}_{x}\left(1_{E_{0}}, 1_{l_{0}}\right)+d^{2} f_{x}\left(\underline{\alpha} \cdot 1_{l_{0}}, 1_{E_{0}}\right) \\
& \quad+d^{2} f_{x}\left(\underline{\beta}, 1_{E_{0}}\right)+d^{2} f_{x}\left(1_{l_{0}}, \underline{\alpha}\right)=0 . \tag{4}
\end{align*}
$$

Because of the term $d^{2} \underline{f}_{x},(4)$ is of maximal rank; also, if $d^{2} f_{x}\left(\underline{\beta}, 1_{E_{0}}\right)=0$ then $\underline{\beta}=0$ since we are on $\Sigma^{2,1}$ and not on $\Sigma^{2,2}$. It follows that $P \mid \Sigma^{\prime}$ is a diffeomorphism on some open set of $\Sigma^{2,1}(F)$, that

$$
\begin{equation*}
T \Sigma^{2,1}(F)_{a}=\left\{[\underline{x}, \underline{\alpha}, \underline{f}] \in T \Sigma^{2}(F) \mid \text { there is } \beta \text { satisfying (4) }\right\} \tag{5}
\end{equation*}
$$

and that if $\underline{\alpha}$ and \underline{f} are such that

$$
d^{2} f_{x}\left(1_{l_{0}}, 1_{l_{0}}\right)+d^{2} f_{x}\left(\underline{\alpha} \mid l_{0}, 1_{l_{0}}\right)+d^{2} f_{x}\left(1_{l_{0}}, \underline{\alpha} \mid l_{0}\right)=0,
$$

then there exist unique $\underline{\beta}$ and \underline{x} such that (3) is satisfied, and (iiib) is proved.
2.5 Proposition. Let $n \geq 3$; then the map $F: X \rightarrow Y$ is multitransversal to the following singularity types:
(i) $M_{k}\left(\Sigma^{2,0}, \cdots, \Sigma^{2,0}\right)$, provided $n \geq k$.
(ii) $M_{2}\left(\Sigma^{2,0}, \Sigma^{2,1,0}\right)$.
(iii) $M_{3}\left(\Sigma^{2,0}, \Sigma^{2,0}, \Sigma^{2,1,0}\right)$.
(iv) $M_{2}\left(\Sigma^{2,1,0}, \Sigma^{2,1,0}\right)$.
(v) $M_{2}\left(\Sigma^{2,0}, \Sigma^{2,1,1,0}\right)$.

Proof. If $a_{1}=\left[x_{1}, \alpha, f\right] \in \Sigma_{1}(F), \cdots, a_{k}=\left[x_{k}, \alpha, f\right] \in \Sigma_{k}(F)$ (and so $\left.F\left(a_{1}\right)=\cdots=F\left(a_{k}\right)=[\alpha, f]=b\right)$, we shall write $T_{i}=\operatorname{Im}\left(d\left(F \mid \Sigma_{i}\right)_{a_{i}}\right) \subset T Y_{b}$. With no further mention, the sequences $\Sigma_{1}, \cdots, \Sigma_{k}$ and a_{1}, \cdots, a_{k} will be those appearing in the case under consideration. The symbols h_{*} will denote elements of $A_{1}-\{0\}$, i.e., nonzero linear forms on \mathbb{C}^{4}.
(i) Let $H_{i}, i=1, \cdots, k$, be such that $h_{i}\left(x_{j}\right)=0$ if and only if $i=j$. Set $\underline{f}_{i}=h_{1} \cdots \cdot h_{i-1} \cdot h_{i}^{(n-i+1)}$. It follows from 2.3(i) that $\left[0, \underline{f}_{i}\right] \in T_{1} \cap \cdots \cap T_{i}$ but $\underline{f}_{i} \notin T_{i+1}$.
(ii) Here we have a line $l \subset E=\operatorname{ker}\left(d f_{x_{1}}\right)$ such that $d^{2} f_{x_{1}} l l \times E=0$. Let h_{1}, h_{2} be such that $h_{1} \mid l=0$ and $h_{2}\left(x_{1}\right)=0, h_{2}\left(x_{2}\right) \neq 0$. Set $\underline{f}=h_{1} \cdot h_{2}^{n-1}$; then by $2.3[0, \underline{f}] \in T_{2}-T_{1}$.
(iii) We already know by (ii) that T_{2} and T_{3} meet transversally, and hence it suffices to prove that $T_{2} \cap T_{3} \neq T_{1}$. Let $l \subset E$ be for x_{3} be what it was under (ii) for x_{2}, and let h_{1} and h_{2} be such that $h_{1}\left(x_{1}\right) \neq 0, h_{1}\left(x_{2}\right)=0$, $h_{2}\left(x_{1}\right) \neq 0, h_{2}\left(x_{3}\right)=0$, and set $\underline{f}=h_{1} \cdot h_{2}^{n-1}$. Then $d \underline{f}_{x_{3}} \mid l=0$ since $n \geq 3$, and so $[0, f] \in T_{2} \cap T_{3}-T_{1}$.
(iv) Let h_{1} and h_{2} satisfy $h_{1}\left(x_{1}\right)=0, h_{1}\left(x_{2}\right) \neq 0, h_{2}\left(x_{1}\right) \neq 0, h_{2}\left(x_{2}\right)=0$. Then $\left[0, h_{1} \cdot h_{2}^{n-1}\right],\left[0, h_{2}^{n}\right] \in T_{2}-T_{1}$ (since $n \geq 3$) and are linearly independent.
(v) Let h satisfy $h\left(x_{2}\right)=0, h\left(x_{1}\right) \neq 0$; then $\left[0, h^{n}\right] \in T_{2}-T_{1}$.

It is certainly no coincidence that the above proof is based on the geometry of points, lines and planes.

From 2.5 and 2.1(ii) and (iii) it follows:
2.6 Corollary. For f in some Zariski open dense subset U_{n} of A_{n}, the partial map $F_{f}=p_{f}=p: X_{f} \rightarrow Y_{f}=P^{\prime 3} \times\{f\}$ is excellent (i.e., transversal and multitransversal to all possible Thom-Boardman singularities-in these dimensions only $\left.\Sigma^{2}, \Sigma^{2,1}, \Sigma^{2,1,1}, M_{2}\left(\Sigma^{2}, \Sigma^{2}\right), M_{2}\left(\Sigma^{2}, \Sigma^{2,1}\right), M_{3}\left(\Sigma^{2}, \Sigma^{2}, \Sigma^{2}\right)\right)$.

We will now recall and justify the geometric description of the set U_{n} given in [5, Proposition 2.1]. Let $f \in A_{n}$ define a nonsingular projective surface $S_{f}=S$.
2.7 Proposition. The map p_{f} is excellent if and only if for any $x \in S_{f}$ the intersection of $T S_{x}$ with S is a curve with singularities of the following types only:
(a) one ordinary double point;
(b) two ordinary double points;
(c) three ordinary double points, not lying on a same line;
(d) one ordinary cusp;
(e) one ordinary double point and one double point, not lying on the line tangent to the cusp;
(f) one ordinary tacnodal point.
(See [2, Example 1.5b], or [5, Proposition 2.1] for the interpretation of these singularities in terms of singularities of p_{f} and $S^{\prime}=p_{f}\left(\Sigma^{2}\left(p_{f}\right)\right)=$ the surface reciprocal to S.)

Proof. Step 1: Monotransversality. It is easily checked that the curve $S \cap T S_{x}$ has ordinary double points, cusp or tacnodal points at x if and only if $x \in \Sigma^{2,0}(p), \Sigma^{2,1,0}(p)$ or $\Sigma^{2,1,1,0}(p)$ respectively. It remains to show that at those points, p is transversal to the corresponding Thom-Boardman strata.

Let us show first transversality to Σ^{2} and $\Sigma^{2,1}$. Consider the commutative diagram:

Since p_{X} and p_{Y} are submersions and F is transversal to Thom-Boardman singularities of order $\leq n$, we can apply Proposition 2.1(ii). Let $a=[x, \alpha, f] \in$ $\Sigma^{2}(F)$. Let T_{1} be the tangent space of X_{f} at $[x, \alpha]$, and T_{2} be the tangent space to $\Sigma^{2}(F)$ at a. Consider the natural projection $P: T_{1} \cap T_{2} \rightarrow T P^{3}$ sending $[\underline{x}, \underline{\alpha}]$ to $[\underline{x}]$. From (1), (2) and the fact that $\Sigma^{2,2}(F)=\varnothing$ it follows that P is injective, so that $\operatorname{dim}\left(T_{1} \cap T_{2}\right) \leq \operatorname{dim}\left(E_{0}\right)=2$, and hence p is Σ^{2} transversal by 2.1(ii). Assume now that $a \in \Sigma^{2,1}(F)$, and let T_{3} be the tangent space to $\Sigma^{2,1}(F)$ at a. From (5) and the fact that $\Sigma^{2,2}(F)=\varnothing$ it follows that $P\left(T_{1} \cap T_{3}\right)=l_{0}$, and so by 2.3 (ii) we are done again. From [1, Theorem 7.15] follows easily a general fact, about Thom-Boardman singularities, that a Σ^{2} transversal map $g: X^{n+1} \rightarrow Y^{n}$ is automatically $\Sigma^{2,1}$-transversal at points of $\Sigma^{2,1,0}(g), \Sigma^{2,1,1}$-transversal at points of $\Sigma^{2,1,1,0}(g)$, and so on. Therefore Step 1 is complete.

Step 2: Multitransversality. It follows from 2.4 that:

$$
\begin{gathered}
T\left(p\left(\Sigma^{2}(p)\right)\right)_{[\alpha]}=\left\{[\underline{\alpha}] \in T P_{[\alpha]}^{\prime 3} \mid \underline{\alpha}(x)=0\right\}, \\
T\left(p\left(\Sigma^{2,1}(p)\right)\right)_{[\alpha]}=\left\{[\underline{\alpha}] \in T P_{[\alpha]}^{\prime 3} \mid \underline{\alpha} \cdot 1_{l_{0}}=0\right\}, \\
T\left(p\left(\Sigma^{2,1,1}(p)\right)\right)_{[\alpha]}=\left\{[\underline{\alpha}] \mid \underline{\alpha} \cdot 1_{E_{0}}=0\right\}=\{0\} .
\end{gathered}
$$

In other words, these three tangent spaces can be intrepreted respectively as the two planes in projective space passing through x, the two planes containing l_{0}, and the two planes tangent to S_{f} at x (note that our description of $T P^{\prime 3}$ at x depends on the choice of E_{0} and E_{1}, but the above description does not). From this the end of the proof follows immediately.

Remark. As C. McCrory pointed out to me, the methods used in this paper can be used to handle the case of hypersurfaces contacting planes of any
dimension (rather than hyperplanes only) in projective spaces of any dimension. However, the degree of the hypersurface might put some limits on the excellency of the analogues of the map F. For example, in the case of hypersurfaces of degree n and hyperplanes in P^{k}, the singularity type $\Sigma^{k-1,1, \cdots, 1}$, with 1 occurring $k-1$ times, appears generically; this is a singularity of order k, and therefore probably one should require that $n \geq k$ in order to make sure that F is excellent (a similar but erroneous-as C. McCrory noticedstatement was made in [5, Remark 2.3(ii))].

References

[1] J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. 33 (1967) 383-419.
[2] J. W. Bruce, The duals of generic hypersurfaces, Math. Scand. 49 (1981) 36-60.
[3] V. S. Kulikov, Calculation of singularities of embeddings of generic algebraic surfaces in projective space P^{3}, Funktsional. Anal. i Prilozhen 17 (1983), No. 3, 15-27.
[4] C. McCrory \& T. Shifrin, Cusps of the projective Gauss map, J. Differential Geometry 19 (1984) 257-276.
[5] F. Ronga, On the planes triply tangent to a surface in projective space, Proc. Canad. Math. Soc. Conference 6 (1984) 389-395.
[6] G. Salmon, On the degree of the surface reciprocal to a given one, Trans. Irish Acad. 23 (1855) 461-488.

Université De Genève

