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ON ISOMORPHIC CLASSICAL
DIFFEOMORPHISM GROUPS. II

AUGUSTIN BANYAGA

Abstract

We prove that the geometric structures defined by a volume form or a
symplectic form (with a mild additional condition) on smooth manifolds
are determined by their automorphism groups. This is a contribution
to the Erlangen Program of Klein.

1. Introduction

The goal of this paper is to prove that the geometric structures defined by
a volume form or a symplectic form (with a mild additional hypothesis) on
smooth manifolds are determined by their automorphism groups. This is a
contribution to the Erlangen Program of Klein [7].

We draw heavily on Filipkiewicz's paper [6] in which he proves that the dif-
ferentiable Cr structures on manifolds are determined by their automorphism
groups, i.e., the group Diffr(M) of Cr diffeomorphisms of M for 1 < r < oo,
Filipkiewicz in turn draws heavily on Whittaker's paper [12], where the above
result is established for r = 0, i.e., for homeomorphisms. In order to handle
the differentiate case, Filipkiewicz had to avoid the infinite patching meth-
ods used by Whittaker in [12]: he developed the necessary new machinery
essentially in §2 of his paper.

Unfortunately, his new arguments fail in the volume preserving case and, a
fortiori, in the symplectic case. Indeed, a key lemma (his Lemma 2.1) seeks,
Vα E (0,1], a diffeomorphism (which is a product of commutators) which has
the property to take a ball of radius 1 into a ball of radius α. Obviously,
this cannot happen in our case. Besides, all the results of §2 are based on
this lemma and on Epstein's theorem [5]. However, it is clear that Epstein's
axioms are not satisfied in our cases.

The starting point of the investigations reported here was the observation
that, nevertheless, some of his conclusions (for instance the conclusion of
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Theorem 2.2) are still true in the symplectic and volume preserving cases:
due to deep theorems on the structure of volume preserving diffeomorphisms
[11] and symplectic diffeomorphisms [1]. We call herein "condition V the
conclusions of Theorem 2.2 of [6].

Our second main observation was that "condition L" is the crucial condition
to impose on groups of diffeomorphisms Gi(Mi), i — 1,2, of smooth manifolds
Mi for a group isomorphism (of abstract groups) φ: G\(M\) —• £2(^2) to
be induced by a bijection w: Mi —• M2, i.e. so that φ(h)(y) = whw~1(y)
VΛeGi(Mi), yeM2.

We have put this result in a general setting (Theorem 2) and proved it,
mainly using a judicious reorganization of Filipliewicz's and Whittaker's ideas.
The main point is that using condition L and some standard facts, we recover
the useful facts of §2 of Filipkiewicz, without using the "bad" Lemma 2.1.

It follows from the first part of this paper [2] that if Gi(Mi) are the auto-
morphism groups of the geometric structures considered above, the bijection
w: Mi —> M2 is a C°°-diffeomorphism which exchanges the structures. The
main results announced then follow.

It would be interesting to point out more structures determined by their
automorphism groups. For instance we "believe" that a contact structure is
determined by its automorphism group; we cannot prove it at present due to
our ignorance of its algebraic structure: more precisely, we are not able to
verify "condition Ln.

2. The main results

Recall that a volume form on a smooth n-dimensional manifold M is a
nowhere vanishing n-form on M, and a symplectic form on a smooth 2n-
dimensional manifold M is a closed 2-form a such that an = α Λ Λ α (n
times) is a volume form on M. To formulate the result on symplectic diffeo-
morphisms, we need to recall the definition of the symplectic pairing [4]. If a
is a symplectic form on a smooth 2n-dimensional manifold M, the symplectic
pairing (determined by a)

(where Hl(M, R) is the first de Rham cohomology of M with compact sup-
ports) is defined as follows: if α, b G H] (M, R) are represented by two closed
1-forms with compact support ωi,α;2? then

(a,b)= f
J M
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If a is a smooth p-form on a smooth manifold M, we denote by Diff^(M)

the group of all C°°-diffeomorphisms ft: M —• M such that ft*α = a. Let

Diff£°(M)c be the subgroup formed by those ft € Diff^(M) with compact
supports and Diff£°(M)o the subgroup of Diff£°(M)c formed elements which
are isotopic to the identity through Diff£°(M)c.

The following is our main result.

Theorem 1. Let (M{,ai), i = 1,2, be two paracompact connected
smooth manifolds of dimension n equipped with volume forms or symplec-
tic forms α^. Assume furthermore that if oti are volume forms, n > 2, and

if OLi are symplectic forms, either Mi are compact or the symplectic pairings

of ai are identically zero. Let G{Mi) be either Diff^(M i ),Diff^(M ί ) 0 . //

φ: G{M\) —* G(M2) is a group isomorphism, then there exists a unique C°°-

diffeomorphism w: Mi —• M2 such that φ(f) = wfw~ι V/ € G(Mχ) and

w*ct2 = λαi for some constant number X.

Corollary. Let (M, a) be a compact connected smooth manifold of di-

mension n > 2 equipped with a symplectic form or a volume form a. If φ is

an automorphism o/Diff^(M), then φ2 is an inner automorphism.

Proof. By Theorem 1, there is a C°°-diffeomorphism w: M —> M and a

constant number λ such that w*a = λa. Consider first the case where a is

a volume form on M. If the diffeomorphism w is orientation preserving, the

formula of change of variables gives

/ w*a = / a.
JM JM

Since fM w*a = λ fM a and fM a ψ 0, λ = 1, i.e., w € Diff^(M) and φ(f) =

wfw~ι V/ E Diff^(M). Therefore 0, and hence </>2, are inner automorphisms.

If w is orientation reversing, then fMw*a = — fM OL- In this case λ = — 1,

i.e., w*a = —a. Therefore (u>2)*α = α, i.e., w2 — w w G Diίf^D(M) and

Φ2{f) = w2f(w2)~1, i.e., φ2 is an inner automorphism. Suppose now a is a

symplectic form on the 2n-dimensional manifold M, then an is a volume form

and w*an — (w*a)n = λnan. The argument above shows that λ n is 1 or - 1 ,

hence λ is 1 or — 1. This implies that φ2 is an inner automorphism.

3. The general theory

1. Definitions and examples. By a smooth manifold, we will mean a

paracompact connected finite dimensional C°° manifold without boundary.

Let Diffr(M), 1 < r < 00, be the group of all Cr-diffeomorphisms of

a smooth manifold M. Any subgroup G(M) of DifΓ(M) is called a group
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of Cr-diffeomorphisms of M. Here we list a few examples of groups of Cr-
diffeomorphisms.

(i) The group Diff£(M) of Cr-diffeomorphisms with compact supports. Re-
call that the support of a transformation ft: M —• M is the closure of the
subset {x G M I h(x) φ x).

(ii) If G(M) is a group of Cr-diffeomorphisms of M, we can consider the
following subgroups:

(a) GC{M) = G{M) Π Diff^M).
(b) Let U C M be an open set of M, we can consider the subgroup Gχj{M)

of G(M) formed by elements ft G G(M) which have compact supports in U.
(c) For each x G M, we denote by SXG(M) the isotropy subgroup of the

point x, i.e., {ft G G(M) such that ft(x) = x}.
(d) G(M)-isotopies: A G(M)-isotopy is a map ft: [0,1] —• G(M) with

ft(0) = e (identity diffeomorphism) and such that the associated evaluation
map H: [0,1] x M -> M: (ί,x) ^ ft(ί)(x) is C r . An element h G G(M) is
said to be G(M)-isotopic to the identity if there is a G(M)-isotqpy h: [0,1] —•
G(M) with ft(l) = ft. We will consider the group G(M)0 formed by all
elements in G(M) that there are G(M)-isotopic to the identity.

(e) The commutator subgroup [G(M),G(M)] of a group of Cr-diffeo-
morphisms is the subgroup of G(M) generated by commutators fgf~1g~1,
f,geC(M).

The class 9$M and the general result. A group of Cr-diffeomorphisms G(M)
of a smooth manifold M belongs to the class Q$M if the following two condi-
tions are satisfied.

C o n d i t i o n A [the path transitivity). Given x,y G M, x φ y, and a path

c: [0,1] —• M joining x to y, i.e. c(0) = x , c ( l ) — y, there exists ft G G(M)

such that h(x) = y and supp(ft) is contained in an arbitrarily small open

neighborhood of(Jte<Q ^ c(t).

An opon subset U C M is called an open ball centered at XQ G U if there
is an embedding e: D™ —• M of the open n-disk in Rn, centered at 0 G R n

with radius p > 0, into M and U = e(D%) for some σ < p and e(0) — xo
Condition B. For any small open ball U in M centered at x0 G U there

is an ft G G(M) such that

Fix(ft) = [M -U)Ό{XQ}.

Here Fix(ft) = { I E M | h(x) — x) is the fixed set of ft.
Definition. Let G{M) be a group of 6>r-diffeomorphisms of a smooth

manifold M. A subgroup F C G{M) is said to have the property L (locality)
if whenever [Gr/^MJoiG^MJo] C F for every open ball 11 % belonging to an
open cover ^ = {Ui)ieJ of M, by balls ΓΛ, then [GC{M)O,GC{M)O} C F.
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The main result of this section is the following.

Theorem 2. Let φ: G(M) —• G{N) be a group isomorphism between

two groups of diffeomorphisms of smooth manifolds M and N. If G(M)

and G(N) are nonabelian and belong to the classes 2M and 3J^, and Fn =

φ-^SnGiN)) and Fm = φ(SmG(M)) have the property L for all m G M,

n G N, then there exists a unique homeomorphism w: M —> N with φ{f) =

wfw~x V/GG(M).
2. More conditions on diffeomorphism groups.
Definition. A group of diffeomorphisms G(M) of a smooth manifold M

satisfies condition C if for any nonempty open connected subset U C M and

x E U there exists h E G(M)h ψ e with supp(/ι) C £/, x G Int(supp (h)).

Definition. G(M) is said to be n-fold transitive or to satisfy the condi-

tion Γ(n), n > 1, if given any two sets {zi,Z2, , z n } , {yi,2/2, ,2/n} of

nonrepeating points, there is an h G G(M) such that h(xi) = ŷ , i = 1, , n.

G(M) is said to be α -transitive if T(n) is satisfied for each n G N. The

following fact is obvious.

Proposition 1. If a group of diffeomorphisms satisfies the Condition A

(path transitivity), then it satisfies C and T(n) Vn provided d imM > 1.

In the subsequent sections, the property T(n) (n-fold transitivity) will play

a central role.

L e m m a 1. Let G(M) and G(N) be two groups of diffeomorphisms sat-

isfying T(l) and condition C. If φ: G(M) —> G(N) is a group isomorphism

such that there exists XQ G M andyo G TV with φ(SXoG(M)) = SyoG(N), then

there exists a homeomorphism w: M —• N and φ(f) = wfw~ι. Moreover if

G(M) and G(N) satisfy T(2), then w is unique.

Proof. The condition T(l) implies that the maps

Exo : G(M) - M : EXo(g) = g(x0), g G G(M),

Eyo : G(N) - N : Eyo(h) = h(y0), h G G(N),

are onto with "kernels" SXo = SXoG{M) and Syo = SyoG{N). Therefore if

φ takes SXo into Syo, it induces a well-defined map w: M —• N. We may

define it as follows: for x G M, choose g G G(M) with ^(xo) — ^ Define

ti (χ) = φ(g)(yo) G TV. This is a good definition, since if g' G G{M) and

</(z0) = x = 0(xo), then ^ " ^ G SXQ and 0 ( ^ - ^ ) = ^ / - 1 ) 0 ( ( / ) € SyoG{N),

i.e.,

Clearly w is one-to-one. Since xi,X2 ^ A/ and w(xι) = 1̂ (2:2) there are

0i,02 € <7(M) with ^i(xo) = z i , 02(xo) = ^2, Φ{gi){yo) = Φ{g2){yo),

i.e. φ{(ji)φ{g2)~l = Φ((Jι92l) belongs to S^, i.e. ί/i^ 1 G SX ϋ, hence ^ ( x 0 ) =

02(^0) so ^1 = ^2 The map is onto: Let y E N, choose /ι G G(N) with
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A(j/o) = y and set x = φ-ι(h){x0). Then w(x) = Φ{ΦΉh)){yo) = % o ) = y.
Therefore w is a bijection.

Let us show that it induces φ: Let y G N and ft G G(iV) with ft(ί/o) = 2Λ
Let x = 0-1(ft)(a;o) Then w(x) = 2/. Let / G G(Λf) and choose g G G(Λf)
with 0(xo) = f(x). Then f^gixo) = x = 0"1(Λ)(xo)- Thus

Hence φ{g)-l'φ{f)'h G Sy o, i.e. φ(f)'h(y0) = Φ{g){y0). But Λ(y0) = !/ = w(x)
and φ(g){y0) = w(f{x)) since ^(x0) = /(x). So

φ(f){w(x)) = w(f(x)), i.e., 0(/) ow = wof,

since w is a bijection,
</>(/) = IL> o f ow~ι.

We now show that w is a homeomorphism: Let j / = {Fix(/) | / G G(M)},
where Fix(/) = {x G M | /(x) = x} and 3S = {B = M - A, A es/}.

The condition C implies that 38 is a basis for a topology on M which is
easily seen to coincide with the usual topology of M. Since φ{f) = wfw~ι,
FΊx(φ(g)) = w(Fix(g)). This implies that w and w~ι take basic open sets
into basic open sets, therefore they are both continuous, i.e., w is a homeo-
morphism (see also [2], [6]).

We now prove the uniqueness of w: Suppose there is another homeomor-
phism w': M —+ TV inducing 0, i.e.,

φ(f) = w / . w~ι = w' / w'-1 V/ G G{M).

Setting p = tx;'"1 u>, we see

Suppose p / e. Then there exists x E M with y = ρ(x) φ x. Let z E M,z φ
x,z φ y. Since G(M) is 2-fold transitive, there is / G G(M) with /(x) = x
and f(y) = z. Therefore

pfp~1{y) = pf(χ) = p{χ) = y, f(y) = zφy-

Hence pfρ~ι φ /, a contradiction. Therefore p = w'~ι w is the identity
map, i.e., w' = w.

3. Characterization of isotropy subgroups of points. The follow-
ing result is due to [6]. Its proof uses only the 3-fold transitivity and the
condition C.

Lemma 2 (Filipkiewicz [6, Lemma 3.2]). Let G(M),G(N) be two groups
of diffeomorphisms of smooth manifolds M and N, satisfying the condi-
tions T(3) and C, and let φ: G(M) —• G(N) be a group isomorphism. Let
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F = φ-^Sy) C G{M) {Sy = SyG{N) for some y G N). Suppose there exists
a nonempty proper closed subset A C M such that f(A) = AVf £ F. Then
A = {x} and F = SX = SX(G(M)).

Remark. This lemma and Lemma 1 imply that to prove the main theo-
rem, we need only construct a nonempty proper closed subset invariant under
F = φ-1(8y).

Existence of a proper closed subset invariant under F. Let φ: G(M) —>
G(N) be an isomorphism between G{M) and G(N). Following Filipkiewicz,
for n G ΛΓ, we let Wn be the set of all open balls U of M with

[Gt/(M)o,Gί/(M)o] C Fn = φ'HSn), Sn = SnG(N).

Likewise we define the set 9$m for m G M, as the set of all open balls V in N
such that

[Gv(N)o,Gv(N)o] C F ; = φ(Sm), Sm = SmG(M).

A priori, the sets Wn and 9$m may be empty. Let Cn = M — \Jve^ v.Dm =

Proposition 2. The subsets Cn and Dm are closed subsets of M and
N, respectively. Moreover f{Cn) = Cn V/ G F n , g{Dm) = Dm Vg G F^.
Assuming that G(M) and G(N) are nonabelian groups, transitive {i.e. have
the property T(l)) and that Fy> resp. F'x, have property L Vx,y, then Cn,
resp. Dm, are nonempty.

Proof, (a) It is clear that Cn and Dm are closed subsets.
(b) Let U G ffn and / G Fn. Set V = f{U). Clearly, GV{M) =

fGϋ{M)Γi. Therefore

[6V(M)o,6V(M)o] = f[Gu{M)o,Gu{M)o\Γl C / F , / " 1 C F n ,

i.e. V € ^ , . It follows that f(Cn) = Cn. The same considerations show that
g(Dm) = DmVge F'm.

(c) Suppose now Cn is empty. This means that Ψn is an open cover of M
by balls {Ua)a€A such that

[GUn (M)o, 6VO (M)o] C F n Vα e Λ.

Let y be an arbitrary point in N. Since Cί(iV) is transitive, there is an / e
G(N) such that f(n) = y. Then

Fy - 0~1(ί?w) = φ~ι(f • Sn • Γ 1 ) = φ-\f) • φ-ι{Sn) • φ-'iΓ1) = pFnp-\

where Fn = φ~ι(Sn) and p = φ~ι(f). Let ψ = {Va = p(Ua)JJa 6 Wn}.
This is an open cover of M by balls Va and

[GvJM)ihGvAM)0] = plG
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Hence
\GVa(M)0,GVa(M)0}CFy.

For each Va G ̂ . By property L,

[Gc(M)o,Gc(M)o]CFy.

Therefore φ{[Gc(M)0,Gc(M)0}) C Sy Vy e N. Hence

Φ([Gc(M)0,Ge(M)0]) C f | Sy = {i
y€N

Since ^ is one-to-one

[Gc(M)o,Gc(M)o] =

This is impossible since GC{M)Q is nonabelian. Thus Cn is nonempty. The
same argument shows that Dm is nonempty, q.e.d.

The next result shows when Cn, resp. Dm , are proper subsets.
Lemma 3. Suppose G{M) andG(N) satisfy T(3) and Condition B. Then

either Cn is a proper subset or there exists m G M such that Dm is a proper
subset.

Conclusion. Given φ: G(M) —• G(N) satisfying the hypothesis of the main
theorem, starting with any point yo G TV, then either A = Cyo is a proper
nonempty closed subset invariant by Fyo = Φ~1{SVoG(N)) (by Lemma 2 then
Cyo — {xo} and Fyo = SXoG(M)), or there exists zo £ M such that DZo is
a nonempty closed subset invariant by φ(GZQ(M)) — F'ZQ. Lemma 2, applied
to φ = φ~ι: G(N) —• G(M) shows that DZι is a single point {^o}5 ^o € -W*
and F^o = SUQG{N). In any case 0 takes the isotropy subgroups SmoG(M)
of some point mo E M into the isotropy subgroups Sno(G(N)) of some point
no G iV. Therefore the hypothesis of Lemma 1 is satisfied. Hence, Lemmas 1,
2 and 3 yield a complete proof of the main theorem.

The following result is proved by Filipkiewicz [6, Lemma 3.3].
Sublemma. Let G(M),G(N) be two groups of diffeomorphisms of

smooth manifolds M and N and φ: G{M) —> G(N) is a group isomorphism.
Suppose that G{M) satisfies Condition B. Let F = φ-1(SyG{N)), y G N.
There exists f G F, f φ e such that Int(Fix(/)) φ 0.

Proof of Lemma 3. Our proof follows Filipkiewicz closely but we carefully
avoid the "bad" result of his §2. Since Condition B holds, we may apply the
sublemma: 3g0 φe,goeFn = φ-1(SnG{N)) with

A = Int(Fix(0o)) φ 0.

The set B = Fix(φ(g0)) φ 0 since n€B. Let

H = φ~ι{h G G{N) with h{B) = B},

K = φ~λ{h G G{N) with B C Fix(Λ)}.
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Then K is a normal subgroup of H. Since K contains go, H and K are

nontrivial groups. If ft G φ{K), h(n) = n since n G B C Fix(ft): this

means that φ{K) C Sn = SnG(N), i.e. K C Fn. We now analyze these two

possibilities:

(a) Either, \/x G 4, Vfc G # , fc(z) = x, i.e. VxGiί , AC Fix(fc),

(b) or, Ξxo G A, A o G /Γ such that A o(zo) 7̂  xo-

Case (a). Let ft G GN-B{N) (ft has compact support in the open set

N - B). Then 5 C Fix(ft), i.e. φ~ι{h) G K. By (a), Vz G A,φ-χ{h){x) = x,

i.e. φ~1(h) G 5 X or ft G φ{Sx). We thus have shown

GN-B{N)Cφ(Sx) VZGA

Let V be any open ball 7 c i V - R Then

[Gv{N)o,Gv{N)o] C Gv(7V)0 c GN-B(N)0 C 0(5X) Vx G A.

By the definition of ^ x , we have therefore shown that Vx G A, any open ball

V C N -B belongs to ̂  Therefore if (a) holds, 3fxφ0\/xeA. We want

now to show that under Condition (b) (the negative of (a)), then Wn φ 0.

We will then have proved: If Dy is not a proper subset for some y G A then

Cn is a proper subset. This proves the lemma.

Let us investigate (b): First, show (exactly like in [6] that GA{M) C H.

Indeed let g G G^(M), g φ e. (This exists by condition C.) Then ggo9~x = Qo

Indeed if x G Fix(^0) — A = 3(Fix(<70)), then g~1{x) = x, go{%) = x =>

99oQ~l{x) = 9o{x) =x I f « ί Fix(#0), then g(xQ) £ FΊx(g0). Since supp(^) C

A, g~x{x) = x, go^""1^) = ffoW and ^ o G Γ 1 ^ ) = ί/(^o(«)) = 0o(z). For
1 !^) = a: = SΌ(^) Therefore

Φ(g)Φ(go)Φ(gΓ1 = Φ{go),

B = FΊx(φ(g0)) = Fix(φ(g) φ(g0)

i.e. g = φ-1{φ{g))eH.
We have shown that G?Λ(M) C i/. Now (b) tells us there exists XQ G A

and ko E K such that A o(^o) / a o Let U C M be an open ball contained

in A with XQ G £/. We may assume that ko(xo) G U. Indeed, if not, choose

any / G GV(M) C G Λ ( M ) C ff with t/0 = f{xo) Φ xo and y0 e U (use

transitivity for x 0 and y0 given in f/), /""1fco(a;o) — ̂ o(^o) since fco(a o) ^ U

and supp(F) = supp(/~ 1) c U. Hence

^o(^o) = A ί 1 / " % ( * ( ) ) = /(xo) = 2/0.

Then ^o(a:o) ^ ^0, M^o) = 2/0 E f/ and A;o = (Aό"1/""1) ' ko € K since A; is
normal in if and f £ H.
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We now want to show that K acts transitively on U. Indeed, let y G U;

by Condition A, 3p G Gu{M) with p(y) = x0, p(y0) == yo. Remember that

€ U. Then

ρko(xo) = ko{xo), k

i.e.,
P~1IQ1 pko{xo) =y.

g = (p-ifcόVjίto G X since k0 e K, p e GV{A) C G A ( M ) C ff, and

<7(z0) = 2/, i e., /f acts transitively on U. Therefore given zi,X2 G [/, Xi /

x2, zo Φ xi, xo Φ X2 there are gχ,g2 G /f with &(z 0) = ^i, « = 1,2.

Let [To be a small open ball containing XQ with C/o, ί?iEAh ^2^0^

9\1UQ, Q21UQ all mutually disjoint, and UQ U ̂ IC/O U 02^0 U ̂ f xί7o U Q^UQ

contained in U.

An easy argument of Thurston shows that if Λi,/i2 ^ Gf/0(M), then

[Λi,Λ2] = [Ci,C 2], where C% = [hι,gι] = {hιgih-ι)g-λ G K. This proves

that

[GUo(M)o,GUo.(M)o] QKCFn = φ-^Sn),

i.e., [/0 G fn, and hence Wn φ 0 .

4. Classical difFeomorphism groups

1. Properties A and B. In this section, we show that the classical

diffeornorphism groups considered in the main theorem satisfy the hypothesis

of Theorem 2.

It is a classical fact that Diff£(M)o has the path transitivity property (see

for instance Milnor [9]). The following result is also well known.

Theorem (Doothby [3], see also [8]). If a is a volume form or a symplec-

tic form and β is a contact form on a smooth manifold M, then (Dirf£°(M)c)o

and Diff£°(M,/5)o have the path transitivity property, where Diff£°(M, β) is

the group of C°° -diffeomorphisms of M which preserves β up to a function.

Remark. The statement above of Boothby's theorem is in the proof of

the n-fold transitivity (see [3] or [8]).

We now investigate Condition B for volume or symplectic forms. Condition

B holds also for contact form, but we will not present it here.

By Darboux's theorem, there is an open neighborhood Vx of each point

x G M arid a diffeomorphism φx: D™ —• Vx, where D™ is the open disk in R n

(n — dimension of M) with radius ε > 0 with φx(0) — x and φ*n{θί \vx) is the

standard volume or symplcctic form on R n (n — 2m in the symplectic case),

restricted to D£. For ()</>< ε, let U = φx{D^) C Vx.
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In R n , n > 2, introduce the coordinates (r, #,23, £4, ,x n ), where (r, θ)

are the polar coordinates in the plane (xi, X2). The standard symplectic form

on R 2 m (2m = n) takes the aspect:

α = rdr Λdθ -\- dx% Λ dx^ + h dx2m

and the standard volume form on R n becomes

a = rdr Λ dθ Λ ̂ £3 Λ d#4 Λ Λ

Let λ: R —* R be a smooth function with

λ{x) > 0, λ(x) > 0 for 0 < x < p,

X(x) = 0 forx < 0, x > p.

Define

h(r, 0, X3, , xn) = (r, ̂  + λ(r), x3, , x n).

It is easy to see that h*a = a, where a is one of the standard form above. The

diffeomorphism h moves the points of Dn — {0} and fixes the boundary of D™.

Using the chart φx, we make this h into a diffeomorphism h € Diff^(M) such
that Fix(ft) = (M - U) U {x}. Hence we have proved that volume preserving
diίfeomorphisms and symplectic diffeomorphisms belong to the class 3JM

Perhaps the most subtle property is the property L. Filipkiewicz handled

it in the differentiable case Diff£(M), 1 < r < 00, using Epstein's theorem [4]

and a "compression" lemma (Lemma 2.1 or p. 160) which obviously cannot be

true in the volume and symplectic cases. However, we still have the following:

Lemma 4. Let (M, α) be a smooth manifold of dimension n > 2

equipped with a volume form a. Then any subgroup F o/Diff£°(M) has the

property L.

Proof. Recall that the statement of the lemma means the following: Given

an open cover ^ = (ΓΛ)ie/ °f M by balls and if Ga(Ui) is the set of h e

Diff~(M) with compact supports in Uτ and if [Gα(C/t )o,Gα({/i)o] C F V ^ G

^ , then we must have

There is a homomorphism V, called the flux homomorphism from

(Diff~(M)c)o into a quotient of H^'^M.R) (see for instance [1]). A deep

theorem due to Thurston [11] says that the kernel of the flux homomorphism

Ker V is a simple group. In particular

[(DiC(M)c)o, (DifC(M) c) 0] = Ker V.

One step in the proof of this result is the fact that KerV has the "fragmen-

tation" property, i.e. if h G KerF and 0/ = (U{) is any open cover of M,
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then h = hi hr where hi G KerV, supp(fti) C t/^, in fact hi G Ga(Ui).

Moreover if Ui are balls, then Ga(Ui)o are simple; in particular, Ga(Ui)o =

[Ga(Ui)o,Ga{Ui)o]. Therefore each

h G KevV = [(Diff~(Λf ) c ) 0 , (Diff~(M) c)0]

can be written h = h\ Ar, where ^ G Ga{Ui)o = [Ga{Ui)o,Ga{Ui)o] which

is contained in F by hypothesis. Hence each hi £ F, therefore / G F and the

lemma is proved.

The symplectic case is more subtle.

L e m m a 5. Let (Λf, a) be a smooth manifold equipped with a symplec-

tic form a. Assume that either M is compact or the symplectic pairing is

identically zero. Then any subgroup F o/Diff^°(M) has the property L.

Proof There is an analogous homomorphism S from (Diff^°(M)c)o into

a quotient of H^(M, R) (see [1] or [4]). If M is compact, KerS is a simple

group and it is equal to [(Diff~(Λf)c)0, (Diff£°(M)c)0]. If Λf is not compact,

KerS is no longer simple and there is a surjective homomorphism 31 from

Ker5 to a quotient of R. The group K e r ^ is a simple group. These facts

constitute the main theorem proved in [1]. If U is a contractible open subset

of Λf, we let 3lυ be the restriction of 31 to Ga(U) C KerS. The main

step in proving the results of [1] mentioned above is to show that Ker&u

is perfect, i.e. Ker3?u = [Kerc^t/,Ker^y where U is an open ball in M.

Another important fact (much easier to prove than the later) is that Ker S

(in case M is compact) and K e r ^ have the following fragmentation property:

if % — (K)z€/ is a n open cover of M by balls, then any h G Ker 5 (if M is
compact) or h G K e r ^ (if M is not compact) can be written h = h\ hr

where hi G K e r R ^ . If Λf is compact, then [(Diff~(Af)c)0, (Diff~(Af)c)0] =

KerS. Therefore, if h G [(Diff~(M) c) 0,(Diff~(M) c) 0], h = hλ hr with

hi G Ker&u. = [ K e r ^ K e r ^ J , i.e., each h% G \GOL{Uι),GOί{JJι)\ C F,
then h G F. If M is noncompact and the symplectic pairing is trivial, then

[(DiflF~(M)c)o,(Diff~(Λf)c)o] = K e r ^ [10] and each h G K e r ^ can be

written h = hι -hr, with hi G K e r ^ ^ = [Ker 3ίui;, Ker 3ϋ\ji ]. As above,

h G F. We have completed the proof of the lemma.

Remark. If the symplectic pairing is nontrivial, K e r ^ is an example of

a subgroup of Diff£°(M) which does not have the property L. Let % — (Ui)iei

be an open cover of Λf by open balls. Then [GQ(E/i)o, Ga(Ui)o] C K e r ^ for

each i. Indeed, if h,g G (Diff^(M)c)o, one has the following formula [10] (see

also [1]):

where ( , ) is the symplectic pairing and [h,g] is the commutator hgh~1g~1.

[Ga{Ui)o,Ga{Ui)o] C Ker^? since V/ G G?α(Vi)0,S(/) - 0. Since ( , ) is



ON ISOMORPHIC CLASSICAL DIFFEOMORPHISM GROUPS 35

nontrival, let α,6 G iί*(M,R) with (α, 6) ^ 0. Since S is surjective, let
h,ge (Diff^(M)c)0 with S{h) = α, Sfo) - 6. Then &{[h,g)) = n(a,b) φ 0,
i.e. [(Diff£°(M)c)0, (Diff~(Λf)c)0] is not contained in K e r ^ . As an example
consider the torus T 2 with one point removed and the natural symplectic
form. The pairing is nontrivial (see [10]).

5. End of the proof of Theorem 1

Let φ: G(M\) —• G(M2) be an isomorphism between the groups of volume
preserving diffeomorphisms and symplectic diffeomorphisms in the statement
of Theorem 1.

We have just shown that the hypothesis of Theorem 2 is satisfied. Therefore
there is a bijection w: Mi —• M^ such that φ(f) — wfw~x V/ E G(M\).
By Theorem 1 of [2], w must be a C°°-diffeomorphism which exchanges the
structures.
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