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1. Introduction

Several authors studied the spectrum of an elliptic (pseudo)differential
operator on a compact Riemannian manifold with emphasis on the relation to
properties of its geodesies (see Chazarain [3], Colin de Verdiere [4],
Duistermaat and Guillemin [6], and Weinstein [18]). Under the assumption
that all the geodesies are closed, more detailed properties of the spectrum of
the Schrodinger operator H = A + V (A: the Laplace-Beltrami operator) with
the scalar potential V were investigated by Colin de Verdiere [5], Guillemin [7],
Weinstein [19], and so on. On the other hand, the Schrodinger operator with a
"vector" potential is regarded as the Laplacian on a vector bundle with a
linear connection. In our previous papers [12], [13] we studied the spectrum of
the Laplacian on the line bundle over the sphere, and clarified the relation
between the asymptotic distribution of the spectrum and the holonomies of the
connection. The present article considers a more general subject—the spec-
trum and the holonomies on the vector bundle over a C2w-manifold.

Let (M, g) be a. C2w-manifold, that is a Riemannian manifold all of whose
geodesies are closed and have a common length 2m (cf. Besse [2, Chapter 7,B]).
Let E be a C00 complex vector bundle over M with a Hermitian structure, and
let d be a linear connection on E compatible with the Hermitian structure.
With respect to a local unitary frame {ev- • •,er) of E (r = rankE), we have
dea = Ecof^, where co = (cof) is an r X r skew-Hermitian matrix with 1-forms
as its components. Associated with the connection d, let us consider a
nonnegative, second order, selfadjoint, elliptic differential operator L operat-
ing on C00 sections of £, which is called the Laplacian and locally expressed
with respect to the local frame {ea} on a local coordinate neighborhood of M
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as

y,A y,A- y,A:

V being the Levi-Civita connection defined by g, and co = Hujdxj (cf. [11]).
We will show that the asymptotic distribution of eigenvalues of L is

described by the distribution of eigenvalues of holonomies of closed geodesies
of (M, g) (§3, Theorem 3.1). In §2 we consider the so-called return operator
induced from L1, and calculate its principal symbol. In §3 we derive a main
theorem by the symbol analysis of pseudodifferential and Fourier integral
operators similarly to the arguments by Hormander [8]. We see in §4 that the
result in §3 is improved for the case of line bundles. In the final section we
consider the case where the spectrum consists of clusters of eigenvalues
contained in a sequence of intervals of constant width.

Throughout the symbol calculations of operators we regard the operators as
acting on C°°(@1/2 <8> £ ) , 0 1 / 2 being the bundle of half-densities on M.

Remark. The outlook in our previous paper [12, §6] on the case of vector
bundles (except line bundles) is somewhat incorrect. This paper (§5 in particu-
lar) plays a role of correcting it.

2. Return operator

For the Laplacian L we define the operator P = (L + c)1 / 2 according to
Seeley [16], where c is a positive constant. P is an elliptic, positive, selfadjoint
pseudodifferential operator of order 1 with the total symbol

j
7 = 0

with respect to a local frame on every coordinate patch of M, where Pi_j(x, £)
is an r X r matrix positively homogeneous of degree 1 - j in £. In particular,
the principal symbol is given by

/,. being the r X r unit matrix.
We consider the operator U(t) = exp(-/7P), especially U(2TT) on the C27r-

manifold (M, g). U(t) is a unitary operator for each t e R associated with a
Fourier integral distribution of the form

U(t\ JC, >0 = (2wyl f eW'^'^Kit; x90,y)d0
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(n = dim M) with respect to a local frame of E on each coordinate patch of
M. Here <f> is a nondegenerate phase function and the r X r matrix valued
amplitude function K is a symbol of order 0. The function K = e^K is
governed by the evolution equation

(2.1) \dtk +

and accordingly the scalar function </> = <£(/; .x, 0, y) is the solution of the
eikonal equation

(2.2) 3,* + p(x, <t>x) = 0, 4>(0; x, 0, j>) = (x - y) • 0,

(<j>x = 9V̂ >). Let gr: T*M -^ T*M be the Hamiltonian flow associated with
p(x, £), which is just the geodesic flow defined by the metric g on M. By (2.2)
the Fourier integral operator U(t) is associated to the homogeneous canonical
relation C, = {(*, & JMJ) G ( 7 * M \ 0 ) X ( 7 * M \ 0 ) ; ( x , O = ft(^i|)} for
each / G R. Hence for small |/| we have locally in(x, y):

<t>(t; xj9y) = w(t; x90)-y09

K(t;x909y)~ £ Kj(t, x,0),
7 = 0

/L ;.(/; x, 0) being positively homogeneous of degree (-j) in 0 (cf. [9, §25.3]),
and by (2.1) the Kfs satisfy the transport equations

(2.3) SKj-FjiK^K^.-^Kj.^

(F{) = 0) with the initial conditions

tfo(0; * , * ) = / „ Kj(0;x90) = 0 (j>\).

In particular, the first transport equation is given by

y3r*o + 7 ^ (

(2-4) W -

where |a| = ax 4- • • • +a n , 3^ = d£l • • • 3f" and such like for a multi-index

Consider the Lagrangian submanifold

C; = {(x,Z,y9-7i) e ( r * M \ 0 ) x ( 7 * M \ 0 ) ; (x9t9y9ri) e C , } .

For small |/| we have a local diffeomorphism T*U = [ / X R " 9 ( J C , « ) H (JC, |
= wY, ̂ , -0) G C/, and regard ^-(r; v ) a s a function of (x, £) G T*M\0.
Then the first transport equation (2.4) is written as
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where d/dt means the derivative along orbits of the geodesic flow gr We set

J{t\ JC,£) = det[a(jc,«)/a(jc,O] = det[d2w/dxd6]-\
Then, by virtue of Liouville's formula, the transport equation can be rewritten
as

(2.5) )j-t(\J\l/2K0) + osub(P)\J\1/2K0 = 0,

where osub(P) is the subprincipal symbol of P given by

oiUh{p){xA)-po(x,i)-J-.Z j£§r(x,i) = -j-. Eg'V*-
j J J 1̂ 1 j,k

The function \J\l/2K0 is just the principal symbol (with the half-density
removed) of the Fourier integral operator U(t), which is regarded as a map
(t\x9 £)-> End(£x) (the space of endomorphisms of the fiber of E over
x e M). Note that under a change of coordinates (x, 0) •-> (jc, 0) we have

(2.6)

where o = sgn[92w/902] - sgn[92iv/302]. (For a symmetric matrix A, sgaA
denotes (the number of positive eigenvalues of A) - (the number of negative
eigenvalues of A).)

Dividing the interval [0,277] as 0 = t0 < tx < • • • < tk = 2ir such that
[tj_!, tj] has sufficiently small width, we consider

U(2v)^U(tk9tk^)U(tk_l9tk_2)'" U(tx)

with U(tj, tj_x) = U(tj)U{tj_l)~
l. Here U(tj9 tj_x) is a Fourier integral opera-

tor associated with the canonical relation C(7) = {(JC, £, y, ry); (x, ̂ ) =
?/.-/. l(>'»<»?)} a nd the principal symbol \J(j)\1/2Ktf\ By virtue of the formula
concerning products of Fourier integral operators we see that U(2ir) is
associated to the canonical relation Clm = {(JC, £, JC, £); (x, £) e r * M \ 0 }
because (M,g) is a C2w-manifold, and accordingly is a classical pseudodif-
ferential operator of order 0. Let y(t) (0 < t < 2ir) be the closed geodesic with
the initial condition y(0) = JC, y'(0) = (0/|0|)# ( # : T*M ̂  TM being the
isomorphism induced by g), and put x(7) = Y(r7), £*> = y'(/_,-). Then the
principal symbol of U(27T) is given by

w; x,6) = 4

where a is a real constant due to the first factor in (2.6), and |/(7)|1/2A^7) is
the principal symbol of U(tJ,tJ_l) at (x{J), £(7)) with respect to the coordi-
nates in the open set containing the arc {y(t)',tJ_l < / < (/}. a is called the
Maslov index corresponding to the geodesic flow g, in T*M (cf. [9, §21.6]).
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Let us consider the holonomy of the linear connection d on E. Let
c = c(t) = (cx(t),' • •,cn(t)) (0 < / < T) be a closed curve in M, and let c(/)
be a parallel lift of c(t) to £ with respect to the connection d. Then there is a
unitary transformation U of £c(0) such that c(T) = £/c(0). We call £/ the
holonomy of J along c, and denote it by Qj(c). U is represented by an r X r
unitary matrix U(c(t)) \ t=T which is governed by the equation:

£u(c(t)) +( E «,(c(r))c;(/)Ji/(c(/)) = o,

C/(c(0)) = /„

with respect to a unitary frame on a neighborhood of a point on c. Comparing
this equation with (2.5), we get

where y(x, 0) denotes the closed geodesic y(r) (0 < t < 2TT) of (M,g) with
y(0) = x and y'(0) = (0/|0|)#.

We define R = evia/1U(2ir) = e^/^xpC-lwP), which is called the r^iim
operator (cf. [7]).

Proposition 2.1. /? w a unitary classical pseudodifferential operator of order 0
whose principal symbol is given by

We will see that the symbol of the return operator R gives much information
about the distribution of eigenvalues of L (or R).

3. Main theorem
Let S*M = {(*,£) e T*M; |£| = 1} be the unit cosphere bundle over M.

For the C27r-manifold (M, g) (over which every orbit of the geodesic flow gt

has the least period 2ir), each element (x, £) of S1*./̂  corresponds to a closed
geodesic y = y(O of (M,g) by y(0) = JC, Yr(0) = ^# . We set &?(*,£) =

). Let ox(x, I-),- • •, ar(x, | ) be the eigenvalues of (?j(x, ^), and set

Notice that a-(x, £) is continuous in (x, £). This fact is derived from the
continuous dependence of eigenvalues of a matrix with respect to its compo-
nents (cf. [10, Chapter II, §5]), and that of the solution of a linear ordinary
differential equation with respect to its coefficients and initial data. Thus 2 j is
a closed subset of the unit circle Sl = {elmiv\ 0 < v < 1}. We require the
following assumption:
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Suppose e1^ e S1 \ 2 j (0 < )S < 1). Set

Xk = a/4)2, Jk = l9 Xk + PCk] c R

for k = 0,1,2,- • •, where a is the Maslov index (§2) and Ck = Xk+l — Xk =
2k 4- ( a /2 ) 4- 1. Let / i ^ , - • •,/x(^) be the eigenvalues of the Laplacian L
associated with the connection J which are contained in the interval Jk. We
set points jx{jk) on Sl as

exp Ck-\

exp 277/——

(see Figure 1). Our main theorem is the following.
Theorem 3.1. Let p be a continuous function on Sl. Then

(3.1)
7 = 0

as k —> oo, where n = dim M and

I p(a,(*,0)U»(*,€),J
//ze measure on S*M induced from the canonical measure on T*M.

Roughly speaking this theorem asserts that as k -> oo the distribution of
JL{jk) on Sl asymptotically converges to that of the eigenvalues of the holono-
mies of closed geodesies.

Remark. Condition (*) is satisfied by, for example, a connection "near"
the flat one on the trivial bundle or "near" the connection which has a
clustered spectrum (see §5).

We will prove the theorem similarly to Hormander [8]. Let u(jk) be the
eigensection of L associated with the eigenvalue /i^0 . The wj^'s are also
eigensections of the operator P and the return operator R. We set

The eigenvalues jx{k) of R lie on Sl.

Ru)k) =
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FIGURE 1

Lemma 3.2. There is a constant M not depending on j and k such that

argj&y0 - argjay°| < M/k,

where arg z denotes the argument of z G Sl c C.
. Let 2TT^A ) and 277i>j/c) be the arguments of ji(jk) and fi{jk\ respec-

tively. We have for vjk) < 0,

= Ck_lv}k)+P}k)+(v}k))2 -c.
Hence,

M' .

Similarly, for vjk) > 0,

-v}k)+(v}k))2-c

holds. Thus the lemma is proved.
We will study the asymptotic behavior of YJjL\ p(fi>(jk))-
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Lemma 3.3. Let p{ei<f>) = E^=_00Pme'm<> be the Fourier series of a C°

function p on S1. Then

= E KRm

m = -co

is a pseudodifferential operator of order 0 with the principal symbol

Moreover, p(R)u(jk) = p{\i{k))u{jk) holds.
Proof. See [17, p. 300], for example.
Lemma 3.4. There exists a classical pseudodifferential operator Q of order 0

such that

(P + Q)u)k)= (k + a/4)u{jk)

hold except for finitely many ujk) 's.
Proof. We first show that there is a positive constant 8 such that the set

{el7Tiv; /} - 8 < v < ft + 8}(c 51) contains only finitely many eigenvalues of
R. Consider the operator W = e 1 " ^ 1 " 2 ^ - / . Then, by the theorem concern-
ing the norm of pseudodifferential operators of order 0 (cf. [15], [17, p. 52]) we
have

where the infimum is taken over all compact operators K in L2(E) (the space
of L2-sections of E), and || * || denotes the operator norm as a map of L2(E)
into L2(E). By virtue of assumption (*) there is a compact operator K
such that W=W' + K and \\W\\ = r'<2. Then \\W'ujk)\\ ^ r' and
limA._ocmax/.||^iijAc)|| = 0. Therefore, \\Wu(jk)\\ ^ r, r' < r < 2, except for
finitely many wjA)'s, which shows the assertion. Let T = (argz = 2TT/?'}, j8r

being sufficiently close to /?, be a ray on which there are no eigenvalues of R.
Let us define Q by Dunford's integral:

where C is a closed curve represented as Figure 2. Then by Seeley [16,
Theorem 5] Q is a pseudodifferential operator of order 0, and

Quf= _(£(*> - a/4 - k)u)k)

for large k. Hence (P + Q)u)k) = {k + (a /4)}u) k \ q.e.d.
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FIGURE 2

Now, set Po = P + Q. For a C°° function p we consider

ep(t) = Trace[p(/J)exp{-i7(P0 " ( «

A=0

A=0

where aA = L y p ^ ^ 0 ) for large A:. ( ( • , • ) is the natural inner product in
C°°(E).) The distribution 6p(t) is the Fourier transform of

A:=0

Consider the operator p(R)exp{-it(P0 - (a/4))}. The operator
exp{-/7(P0 — (a/4))} is a Fourier integral operator of order 0 for each t e R
(cf. §2). Following Hormander [8], when |/| is small, the distribution kernel of
exp{-//(P0 — (a/4))} is represented as

where p(x< ̂ ) = |{| is the principal symbol of Po,

7 = 0

qf being positively homogeneous of degree (-j) in £, and

90(0; *,*) = /„ 9 y (0 ;x ,O = 0 (y > 1).
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Therefore, the operator S(t) = p(R)exp{-it(P0 - (a/4))} is a Fourier integral
operator of order 0, whose distribution kernel is given by

for small |/|. If we put p(R) = r(x, Dx),

s(t; x, f, y) = e-W'^rix, Dx){eiHt'x^y)q{t\ x, L y)),
where <f> = \p — tp. Hence we have

00

s(t; x,^y) ~ ^ Sj(t; x,^),
7 = 0

jy . being positively homogeneous of degree (-j) in £ with

so(0; x , 0 =
(3*2) «

Now we can directly apply the arguments of Hormander [8, §4]. Set

Op(r)dv= E ak,

and let i] be a positive and rapidly decreasing function such that the support of
Tj (the Fourier transform of TJ) is contained in a small neighborhood of the
origin and f/(0) = 1. Then we have

— oc \ —oo

I
(2fl-)"

77^ T r a c e /
(ITT) Jp(x,£)*z\

n(2ir) \

where /(A) s g(A) means that /(A) - g(A) = OCA""1) as A -> oo (see [8, pp.
209-211]). Suppose p ^ 0, and 0p(/t) > 0 holds. From the above formula we
have 0p(A + 1) - 6p(A) < C(l + |A|)n-\ and accordingly



SPECTRUM OF THE LAPLACIAN 251

By virtue of (3.2) we get

(277)"" \ VM

By putting p = 1, we get the following.
Proposition 3.5. As k -> oo,

Nk = (27r)"'V vol(5'*M)A:w-1 + o(k"~l).

Noting Lemma 3.2, we have

£ p(A(/A)) " ak < CNk a rg / I^ - argA/^l = O(kn~2).
7 = 1

Thus Theorem 3.1 is proved for a C°° function p such that p > 0. We remark
that formula (3.1) is equivalent to

E
Since a nonnegative continuous function on S1 is uniformly approximated by
nonnegative C00 functions, we obtain the formula for a nonnegative continu-
ous p. Furthermore, for any real-valued (and accordingly complex-valued)
continuous p the theorem is proved by putting p = p + — p_ with p + = max(p, 0)
and p_= -min(p,0).

4. Case of line bundles

In this section we consider the case where E is a line bundle, and show that
assumption (*) is replaced by a weaker assumption.

We introduce the following assumption for a Hermitian line bundle E over
theC27r-manifold(M,g):

(**) There exists a linear connection dx on E such that 2^ =£ S1.

Theorem 4.1. Let p be a continuous function on Sl, and suppose p(e2<rTl^) = 0.
If assumption (**) is satisfied, then the asymptotic expansion (3.1) holds for any
linear connection d on E. Here /x^) is defined as in §3 for the above ft.

The proof is carried out by the method of averaged operator developed by
Weinstein [19]. Under assumption (**) we see similarly to Lemma 3.4 that
there is a pseudodifferential operator Po such that o(P0)(x, £) = |£| and the
spectrum of PQ is contained in the set (Xk = k 4- (a /4) ; k = 0,1,2,- • •}
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except for finitely many values. Let L, P, and R be the operators associated
with the connection d as in §2. Set Q = P — Po, with Q a selfadjoint
pseudodifferential operator of order 0. We define the so-called averaged
operator g a v as

C dt.
<2av is a selfadjoint pseudodifferential operator of order 0, whose principal
symbol is given by

(4-1) oiQj^^j^ gMQ)dt,

gt: T*M -> T*M being the geodesic flow (Egorov's theorem). Let Pav = Po +
0 a v , and let Rw = e™/2exp(-27nPav). Then we have

Lemma 4.2. (1) [Po, 0av] = [Po, * a v] = 0.
(2) a(* a v ) = a(H) = exp{-27r/a(eav)}.
Proof. (1) Same as Weinstein [18, Lemma 1.1].
(2) Let us set

(4.2a) R(t) = exp(-ttP)exp(itf0),

(4.2b) flav(f) = exp(-i7Pav)exp(itf0).

These are unitary pseudodifferential operators of order 0, and R = R(2ir) and
^av = R

aA
2^) h o ld. Differentiate (4.2), and we get

(4.3a) • R'(t) = i[R(t),P0]-iQR(t)9

(4.3b) R'M = i[RM,Po]-iQ«,RM-
Let r(/; JC, $) and rav(r; JC, | ) be the principal symbols of #( / ) and Ray(t),
respectively. At t = 0, r(0; x, £) = rav(0; x, ̂ ) = 1, and we have

(4.4a) dtr = -Hpr - ia(Q)r,

(4.4b) 3,rav = -Hprw - ia(gav)rav ,

where //^ denotes the Hamiltonian vector field associated with the function
p(x,£) = | | | , and Hp = dgt/dt holds. Note that a((?av) is constant on each
closed orbit of gr Integrating equations (4.4), we have

a (* a v ) = exp{-2ir/a(eav)} = exp(-ijf2w g*o(Q) dt) =

Consider the one-parameter families of operators: P(s) = Po + sQ and
Pav(s) = Po + 5^av (0 < 5 < 1). Since these families are analytic with respect
to 5, all the eigenvalues of P = P(l) and Pav = Pav(l) are those which are split
from XA. (£ = 0,1,2, V- •) (cf. [1, Lemma 3.15]). We denote the eigenvalues of P
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and Pav split from Xk by vjk) and K{jk) (j = 1,- • •, mk\ respectively. Then we
have

Lemma 4.3. There is a constant C not depending on j and k such that

\Vj Kj ^ C / / C -

Proof. Consider an analytic one-parameter family of positive selfadjoint
operators of order 1 :

Let v}k)(s) be eigenvalues of P(s) with vjk)(O) = #cj/c> and vjk\l) = v}k\ Let
(wjA)(^)} be the system of orthonormal eigenvalues of P(s) associated with
v}k\s), that is P(s)u{jk)(s) = p}k)(s)u{jk)(s). Differentiate this equation with
respect to s, and we get

dvfk) . _ . ...

where P'(s) = dP(s)/ds. We define

F = j^f^ (jT zxp(-isP0)Qexp(isP0) A ) J/.

Then we have

[p(^),JF] = [i>0 + eav + *(e-eav),^]

where G(s) is of order (-1). Hence we obtain

) = (P(s)Fuf(s) -

The operator G(s) defines a continuous map of Hl(E) into Hl+1(E), Hl(E)
being a Sobolev space with the norm \\u\\f = ||P(5)/w||L2. Therefore,

dv{k)

Cv being a constant. By this inequality and k - C's < v}k)(s) < k + Cs' we get
the required estimation.

Proof of Theorem 4.1. Let q be a positive integer satisfying ||gav | | < q.
Then

= U
l=-q
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where {icjA/); 1 <y < mk ,} is contained in the interval Jkl = (Xk+I_x + /?,
Xk + i + /?]. Define a continuous function pk on R by

(other).

By virtue of Lemma 4.3 we see modulo O(kn~2) that

7 = 1 7 = 1 i=-q 7=i

We have the following asymptotic expansion (proved similarly to Theorem
3.1):

7 = 1

= r kn~l + n( kn~l)
C 0 , / / t ' U\K, J,

where

JS*M

By Lemma 4.2(2) we have the asymptotic expansion (3.1) with

= £ cOJ=(2«rHf p(o(R))dm

JS*M

Thus the proof of Theorem 4.1 is complete.
Remarks, (i) We expect that assumption (**) is satisfied for every line

bundle. Further, we conjecture that on each line bundle the holonomies of the
harmonic connection are constant along every closed geodesic. This is proved
for every compact symmetric space G/K of rank one because every harmonic
form on it is invariant under the G-action (which is an isometric action) (cf.
[14, p. 26]).

(ii) For the case of vector bundles the method of averaged operator does not
go well because the symbols of operators are not necessarily commutative.
Egorov's theorem (4.1) does not hold, for example.

5. Cluster theorem
For points a(1\- • •, a(s) in the interval [0,1), put

\(
k

m) = \k+Cka^ (w = l
which are points in [Xk, Xk + i).
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Definition. We say that the spectrum of L makes clusters of type
{a(l\ - - •, a{ v)} if there is a positive constant M such that

/„,= 0 [X(
k
m)-M,\^+M]

A=0

contains infinitely many eigenvalues of L for each m (= 1,- • •, s), and all of
the eigenvalues of L are contained in U^=1 Im.

It is well known (cf. [18]) that the spectrum associated with the flat
connection on the trivial bundle over a C27r-manifold makes clusters of type
{0}.

Theorem 5.1. The spectrum of L on a vector bundle over a C27r-manifold
makes clusters of type {a(l\ • • •, a(s)} if and only if

(5.1) 2 j = { e 2 W V - , e W s ) } .

Proof. Assume (5.1). For small e > 0, set Iff =? (kk + a(m) - e, Xk +
a{m) + e) (k = 0,1,2, • • • ; m = 1,- • -,s), and set /e

(w) = e-wia/2&qrf2ml$)
c S1. Then we can see similarly as in the proof of Lemma 3.4 that there are
only finitely many eigenvalues of R contained in 5 '1 \U^= 1 /e

(m) for any
e > 0. Let R' = exp(-2iria(m))R. There exist small 8' > 8 > 0 such that no
eigenvalues of R' are contained in {e2<ITiv\ -8' < v < -8, 8 < v < 8'}. We
define a complex valued C00 function \OVL Sl such that

(re (-1/2,-5']

Consider the unitary pseudodifferential operator x (^0 (°f- Lemma 3.3). Set
X(fi') = / + W. Since the accumulating points of eigenvalues of W are only
zero, W is compact, and accordingly of order (-1). Define

1 1 °° M/^

and Q' is a selfadjoint pseudodifferential operator of order (-1). Let P(m) =
P — Q'. Then eigenvalues of P and P(m) are different from each other only in
Ur=o I$\ and the eigenvalues of P(m) in it are (\k + a{m\ k > 0}. Let {pjk)\
1 < y < «A.} be the eigenvalues of P in //^^ Consider a one-parameter family
of positive selfadjoint pseudodifferential operators of order 1: P (m)(j) = P ( m )

4- sQ' (0 < 5 < 1), and by the arguments in the proof of Lemma 4.3 we get

\v}k)-(\k + aim))\< C/k

for some constant C. By noticing the relation between eigenvalues of P and
L = P2 - c, we get the required assertion.
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Conversely, assume the spectrum of L makes clusters. Then assumption (*)
is satisfied by the theorem concerning the norm and symbol of a pseudodif-
ferential operator of order 0. Let pe be a nonnegative function whose support
lies in Sl\Us

m=l I{
E

m\ Then, by Theorem 3.1, E^p/j&J.**) is finite, hence
co(pe) = 0 for any e > 0. Thus 2 j c {<?2™(1),- • -, e2<rria{s)}. On the other hand,
by considering p for any e > 0 such that suppp c /e

(m), we obtain e2mia m) e 2 j .
q.e.d.

Noticing the properties of holonomies Qj(x, £), we get the following about
the type of clusters.

Proposition 5.2. Suppose the spectrum of L on the vector bundle E makes
clusters of type A = {aa\- • -,a(s)}. Then

(1) s < rank E.
(2) Ifa{m) ( * 0) belongs to A, 1 - a(m) also belongs to A.
(3) If E is a line bundle, the type A of the clusters is {0} or {1/2}. Moreover,

the type is uniquely given on a fixed line bundle.

Proof. (1) This is directly derived by the continuity of eigenvalues of
Qj(x^) with respect to (JC, £) e S*M.

(2) This is obtained by the fact that Qj(x, -£) = Qj(x9 p " 1 .
(3) The first part follows from (1) and (2). Let dx and d2 be two

connections on E whose connection forms are {u[J)} and {c4y)}, respectively,
with respect to a family of local unitary frames of E. Then /? = co^7) — o)[J) is a
globally defined (independently on j) one-form on M. Suppose spectra
associated with dx and d2 make clusters of type {0} and {1/2}, respectively.
Consider a one-parameter family d(s) (0 < s < 1) of connections defined by
the connection forms {u[J) + sft). For a point x0 on M and a 2-dimensional
subspace V of T*M let us set V1 = S?QM n V (homeomorphic with S1).
Define a map H: V1 X [0,1] -* Sl by i/(x°0, & s) = Qj(s)(x0, £). Then, (1) H
is continuous, (2) H(x0, & 0) = 1, H(x0, £; 1) = -1 for any (x0 , £) e V\ and
(3) / / (x 0 , - £; 5) = / / (x 0 , I; s)~l for any 5 e [0, 1]. Obviously, these three
conditions are contradictory, q.e.d.

Example 1 (cf. [11, §5.1], [13]). Let {Em}m<EZ be the set of equivalence
classes of line bundles over S2. On each line bundle Em there is a unique
harmonic connection dm whose curvature form is fiw = im 0 / 2 , 0 being the
natural volume form of (S2 , g0) (g0 is the canonical metric). We have

for every ( X , { ) G 5 * 5 2 . Thus, the spectrum associated with dm makes clusters
of type {0} if m is even, and of type {1/2} if m is odd.
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Example 2. Yang's S£/(2)-monopole (cf. [20]). Consider the five-
dimensional Euclidean space R5 = {(xl9 x29x39x49 x5)}. We choose coordi-
nates (Sv ?2> &> e> r) o f R5 s u c h t h a t

2 \ - l

|f I j , x5 = rcosd.

The unit sphere S4 in R5 is given by r = 1. Set for 0 < e < TT/2,
S+= { ( f i , f 2 ^ 3 ^ ) G ^ 4 ; 0 < 0 < w/2 + e} ,
o — i(y y y a\ ^. o4. /o ^̂  /3 ^ 1

Let us define sw(2)-valued 1-forms co+ on S+ and w~ on »S~ by

co + = - T ( 1 - cos^) dgg~l, <o~= ^(1 4- cos^)g"1rfg,

where

l i ^ i . „ „ _J 2 . _.O1 e S [ / ( 2 )

Let £ be the Hermitian vector bundle over S4 of rank 2 whose transition
function on S+C\ S~ is g(£,0). Then one-forms <o+ and w" induce a linear
connection dx on £. The connection d1 has the following properties:

(P.I) dl is a Yang-Mills (or harmonic) connection, that is, the functional on
the space of linear connections on E,

S2 being the curvature matrix of J, attains absolute minima for dv

(P.2) Let / : E -» E be a diffeomorphism such that (1) / maps each fiber Ex

isometrically and linearly onto one of the fiber Ey9 and (2) / : (S4, g0) -»
(S4, g0) defined by /(JC) = 7 is an isometry. Then, the pull-back connection
f*dx is gauge equivalent to dv i.e., f*dx = ^*JX for some gauge transforma-
tion \p.

It follows from (P.2) that the holonomies Qj(x,^) are constant indepen-
dently on (JC, £) e 5*54. Calculating for the equator 0 = 77/2, we can see

for every (JC, £) e S*S4. Thus the spectrum associated with Jx makes clusters
of type {1/2}.

We conclude this article by giving questions relating to the above examples.
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Questions, (i) For what kind of connections do the spectra make clusters!
(ii) Do the spectra make clusters for the Yang-Mills connections on the vector

bundles over (S'\ g0), (CPW, g0), and so on!
For the complex line bundle over (Sn, g0) it was shown in [12] that the

spectrum for the connection d makes clusters if and only if the curvature form £2 of
d is odd, i.e., T*Q = - 0 for the antipodal map r of Sn.
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