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A REMARK ON THE SYZYGIES
OF THE GENERIC CANONICAL CURVES

LAWRENCE EIN

Let C be a genus g nonhyperelliptic curve. Consider the canonical ring
R= @ H(w}).

Set V= H%w,) and let S be the polynomial ring Symm(¥). Then R can be
regarded as a graded S-module. Let C = S/p, where p is the irrelevant ideal
of S. Then C has a minimal graded Koszul resolution:

0->AV®S(-g)> - > V®S(-1)>5->C - 0.
K, ,(C) is defined to be the Koszul cohomology group K, ,(R) [1, §1] which
is isomorphic to the homogeneous degree p + g part of TorpS(R, C). Observe
that if

0-L,,—> - Li=>Ly>R~0

is a minimal graded free resolution of R, then L, ® C = Tor,(R,C).

Mark Green conjectures that if C is generic, then K,,(C) =0 for p <
[(g —3)/2], [1, 5.6]. It is elementary to show that K, (C) =0 for j> 3
(Proposition 2). Now one observes that K;,(C) = 0 is equivalent to Petri’s
theorem, which says that the homogeneous ideal of C in P(V') is generated by
quadrics. In [2], Green and Lazarsfeld showed that if the Clifford index of C is
less than or equal to m, then K, ,(C) # 0. Green conjectures that the converse
is also true [1, 5.1].

In this paper, we study the Koszul cohomologies of a generic curve by the
degeneration method. We show that if K,,(X) =0 for a curve of genus n,
then K, ,(C) = 0 for a generic curve of genus m, if m = n (mod p + 1) and
m = n.

With the aid of the computer program Macaulay, Bayer, and Stillman bhad
showed that if C is generic and g < 12, then K, ,(C) = 0 for p < [(g — 3)/2].
Using their results, we prove that K,,(C) =0 for g > 7 and K;,(C) = 0 for
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g > 9 as conjectured by Green. K,,(C) =0 is equivalent to saying that if

{41, - ,q,) is a basis for the quadrics containing C, then the relation among
the quadrics are generated by the elements of the form 1,4, + --- +1,4,=0
when 1, - - - ,1, are linear forms.

I would like to thank M. Green and R. Lazarsfeld for many helpful
discussions. I would also like to thank Bayer and Stillman for their help.
Throughout the paper, we shall work over the complex numbers.

Consider the exact sequence

0->M->V®0O.— w-— 0.
Set Q. = M.

The first two propositions are well known to the experts. But I include them
for the convenience of the readers.

Proposition 1.  Assume C is a nonhyperelliptic curve of genus g. Then

(a) There is an exact sequence,
g—2
0 w! ® Oc(D) > Mc— ), Oc(-p;) >0
1

wherep,, - - -, p,_, are general pointson Cand D = p, + p, + -+ +p,_,.
(b) If p < g — 1, then H{AP M ® w?}) = 0.
(¢) The natural map
$purs H(APP M ® o) > HY(APTV ® o)

is surjective. Hence
4
ho(/\pHQC) = hl(/\p+1MC ® “’C) > (p + 1)~
(d) K,,(C) = 0(p < g - 2) if and only if

ho(/\‘”HQC) < (p f_ 1).
Proof. (a) See 2.3 of [3].
(b) Set E = £~ 20,(-p,). Consider the sequence
0> AP 'E® w.® O.(D) > A’M, ® w2 — A’E ® w2 — 0.

One sees that HY(AP M. ® w2)=0forp <g— 1.

(c) Consider

0> AP M. ® wo = APV ® we. » AP M. ® w2 — 0.

Observe that cok ¢, = H'(A? M ® wZ). So ¢, , is surjective for p < g — 1.

The second assertion follows from the first part by Serre’s duality.
(d) Consider

¥,: HY(A?*'V ® wc) > HO(A?M-® o),  coky, =K, ,(C).
Now (d) follows from (c).
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Corollary 2. Assume C is a nonhyperelliptic curve of genus g. Then

(@ K,5(C)=0ifp+g—-2

® K, (C)=0ifg>4

Proof.  Since the homological dimension of R is g — 2, then K, (C)=0
for p > g — 2. Now assume g — 2 > p > 0. Consider

HOAP 1V 8 62) S HONP M, 8 62) > H(AP Mo ® 02).

K, 3(C) = coka = 0 by Proposition 1. Similarly X, ,(C) =0 for g > 4
Proposition 3.  Assume C is nonhyperelliptic of genus g. Consider the minimal
resolution of R,
d,—2 d
(3.1) 0-L,,—L, 3> -+ >L>L,>R-0.
Denote by L, the correspondmg locally free sheaf on P81,

(a)0—+L*®S(g—1)—>L*®S(—g-—1) e o> Ly ,®8(-g—1)
is again a minimal resolution of R.

(b) One can recover the curve C from a boundary map d,.

(©If0<p<g-2thenL,=E,®F, where E,= @Op:1(-p — 1) and
F,=@ Ope-1(—p — 2). Furthermore, rank(E,) = dlmK 1(C) and rank(F,)
=dim K, ,(C).

(d) IfK,,(C) = 0 for an integerp (p < g — 2), then K, ,(C) = 0 forj < p.

Proof. (a) Observe that

. We = 1), ifj=g-2,
Ezt1(0c,0pg—1(—g)) = {OC C( : otl'JleI'WfSC

So
L dr s 2. dp
0->L§—->Lt— - > Ly ;—L; ,—0(g+1)~0
is an exact complex of sheaves. Set N; = kerd * (2 <j < g — 1). Then
H'(N, () = H*(N,o(D) = -+ = H*>(L§(0)) = 0.
Similarly, one shows that Hl(Nj(i)) =0for2<j<g—1 Thus B1)*®

S(-g — 1) is a minimal resolution of R.
(b) Let M; = kerd,. Then

Extg_z(@c’ Ops-1(-g — 1)) = 0.(1) = E‘”tg_j“3(M‘ Ops-1(-g — 1))

(c) By Noether’s theorem and (a), we conclude that L, = Ops- and
L, ,= Ops-1(-g — 1). Since C is nondegenerate in P~ 'and K, (C)=
for j >3, L, = E, ® F, where

El = ®0pg—1(—2) and Fl = @0pg~l(—3).



364 LAWRENCE EIN

Since (3.1) is a minimal resolutioxl, K, (C)=0for g<0 and p > 1. By
Corollary 2, this implies that L,=E, ® F, (p <g—2) where E, =
®0ps-1(-p — 1) and F, = @ Ops-1(-p — 2). Furthermore, rank E, =
dim K, ;(C) and rank F, = 9im K,,(C).

@K p.2~(C ) =0, then L, = E,. Suppose for contradiction that K,_, ,(C)
#0. Then L, , = E, | ® F,_; where F,_; # 0. We can decompose d, as
f, ® 8, where f, € Hom(E,, E,_,) and g, € Hom(E,, F,_,). Since (3.1) is a
minimal resolution, g, = 0. Set B, , = cokd,. Then B, ,=F, ;@ B,_,.
Now consider

B:0=HO(Lx ,8 Opsi(—p — 1)) > H(B}, ® Opss(—p — 1)).

Observe that B is not surjective. This contradicts that (3.1)* is a minimal
resolution of R(g + 1). Thus K, ,,(C) = 0. It follows by induction that
K;,(C)=0for j < p.

Theorem 4. Let X be a nonhyperelliptic genus n curve. Assume K ,,(X) =0
for an integer p where 1 < p < n — 3. Then:

(a) If C is a general curve of genusn + p + 1, then K, ,(C) = 0.

(b) If C is a general curve of genus m, where m = n mod(p + 1) and m > n,
then K, ,(C) = 0.

Proof. (a) Consider a stable curve C; = X U Y, where Y = P! and XN Y
=q,+q,+ - +q,,, are p + 2 general points on X. Now consider a
one-parameter degeneration 7: € — T where € is a surface and T is an
affine curve. Assume that 7 is proper and flat and there is a point t, € T
such that 77Y(#,) = C,. Furthermore if ¢t # ¢, in T, then 7 }(£)=C, is a
smooth curve of genus n + p + 1. Now consider the following line bundle on
¢ L= wg,r ® Ox(X). Observe that & | = wc, for t # 1, L| x = wy, and
Lly=0u(2p + 2).

Claim 4.1. h°(Z| c,)=n+p+1and &, is generated by its sections.
Consider

(4.1.1) 0 0pi(p) > L, wx—0,

p+2

(4.1.2) 0—>wx(— Y 4| >ZLlc,~ 0p(2p+2) 0.
1

By (4.1.1), h”(,?ICO) =n+p+1, hl(,S,"]CO) =1, and HO(S’]CO) maps onto
H°(wy). Since the g,’s are general points,

hl(wx(—pZ;2 qi)) =i (Zlc,) = 1.
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Thus H(Z|,) maps onto H(Op(2p + 2)). So £ |, is generated by its
sections. After replacing T' by a smaller open set if necessary, we may assume
L= (n+p + 1)0; and p: 7*m, L~ £ is surjective. Set M, = kerp, and
Q= MZ. Observe that

Q¢lc, = Qc, O¢lx=0x®(p+1)0y,
Q¢ly=(n—p=2)0p &(2p +2)0p(1).
Claim 4.2. ®"(A*"' Q¢ ¢,) < ("3541). Consider
0> A" 1Q¢ly ® Opi(-p = 2) > AP Q¢ ¢, » AP7'Q¢| x — 0.
Observe that
hO(AP"'Q¢ly ® Opi(-p — 2)) = 0,

ptl p+1
hO(APHQwa) = Z (p +1-k ho(Aka)
k=0

=Z( p+1 )(n)z(n+p+l)
p+1—k/)\k p+1

by Proposition 1 and Proposition 3. Thus h°(A7*'Q¢| . ) < ("3A1h. Tt
follows that for generic ¢, hO(/\p+1QC,) < ("’;Tll). Thus K,,(C) =0 by
Proposition 1.

(b) This follows from (a) and induction.

Theorem 5. Let C be a general curve of genus g.

(@) K,5(C)=01ifg > 7.

(b) K3,(C)=0ifg > 9.

(¢) K;5(C)=0ifg>11andg=1o0r 2 mod5.

Proof. (a) Using the computer program Macaulay, Bayer, and Stillman had
checked that K, ,(C) =0 for p < [(g — 3)/2] if g < 12. So K,,(C) =0 for
g = 7,8, or 9. Then Theorem 4 will imply that K,,(C) = 0if g > 7. Similarly
one can prove (b) and (c).
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