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ON THE DIFFERENTIABILITY OF HOROCYCLES
AND HOROCYCLE FOLIATIONS

W. BALLMANN, M. BRIN & K. BURNS

Consider a surface S with a complete C00-metric of nonpositive curvature

and let S be the universal cover of S. Denote by yυ the geodesic with initial

tangent vector υ. Unit tangent vectors υ and w of S are asymptotic if

dist(yv(t),yw(t)) is bounded as t -> oo. Unit vectors of S are asymptotic if

they have asymptotic lifts to S.

For a unit vector υ e 7\5 define the Busemann function &„: S -> IR by

*„(?) = lim
r-» oo

This function is differentiable and -(grad bυ)(q) is the unique vector at q

asymptotic to v. The horocycle h(v) determined by v is the level set b~ι(0).

Clearly h(υ)is the limit as R -> oo of the geodesic circles of radius R centered

at yυ(R). Let W{υ) be the set of vectors w asymptotic to υ with footpoints on

The curves W(ϋ), i; e TXS, are the leaves of the horocycle foliation Wof TλS.

We project the horocycles from S into S to obtain horocycles for vectors in

TλS. Similarly we obtain the horocycle foliation of TXS again denoted by W.

An important step in E. Hopf s proof of the ergodicity of the geodesic flow

on a compact surface S of variable negative curvature was to show that the

horocycle foliation of TλS is C1. He actually proved [6] that the horocycle

foliation is C 1 under the weaker assumption that the curvature of S has

bounded derivative and is uniformly bounded away from 0 and -oo. An

immediate consequence is that the horocycles and Busemann functions in S
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are C2. In fact, since the sets W{υ) are the stable manifolds of the geodesic
flow, they and hence also the horocycles and Busemann functions are C00.
P. Eberlein showed that horocycles and Busemann functions are C2 on any
complete simply connected surface of nonpositive curvature (see [5]). It follows
easily that W(υ) is a C^-submanifold of the unit tangent bundle which
depends continuously on υ in the C^topology. In this paper we construct two
examples which show that the above results are in a certain sense sharp.

The first example (see §1) is an analytic rotationally invariant metric of
nonpositive curvature on the cylinder Sι X U such that γ = S1 X {0} is the
only closed geodesic. The curvature along γ vanishes and is negative elsewhere.
We show in Theorem 1.1 that any horocycle h perpendicular to γ is not three
times differentiable where it crosses γ. Note that h Π (Sι X (-ε, ε)) is com-
pletely determined by the geometry of Sι X (-ε, ε) = U. It is easy to construct
a compact smooth surface of nonpositive curvature containing a closed geo-
desic γ' with a neighborhood isometric to Uε. We see that a horocycle in this
surface is not three times differentiable at a point where it intersects γ'
orthogonally. Ya. Pesin (Lemma 2 in [8]) claimed that the horocycles in such a
surface would be Cr~2 if the surface were Cr. The above example shows that
this fails for r > 5.

The second example (see §2) provides complete surfaces of finite volume and
pinched negative curvature for which the horocycle foliation is not differen-
tiable or even Holder continuous. More precisely, let k(v) < 0 denote the
geodesic curvature of the horocycle h(υ) at the footpoint of v. For any
modulus of continuity m( ) (see Definition 2.1), we construct a smooth family
of complete metrics gε, ε > 0, on the torus with one puncture such that the
volume of gε is finite, the curvature of gε is pinched between -1 - ε and
-1 4- ε, and gε = g0 outside a fixed neighborhood D of the puncture. In
Theorem 2.2 we show that there is a unit vector υ0 with footpoint outside D
such that, for every m(-) and ε > 0, the function k has modulus of continuity
worse than m at υQ. A similar construction works on a surface with any
number of cusps.

For other results related to the differentiability of horocycles and horocycle
foliations see [1], [4], [7], [9].

1. Let S = Sι X U be the cylinder with the natural coordinates s e Sι

9

t e IR. For any a > 0 set Y(t) = 1 + at4. Equip S with the analytic metric

r ?)•
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Then (S, g) is a surface of revolution with the curves s = const as meridian

geodesies. The curve γ: s->(s,0) is a closed unit speed geodesic. The

Gaussian curvature is given by

v ' ' Y(t) 1 + at*'

Note that the curvature is negative except on γ, where it vanishes. Fix an

orientation for γ and let V be the field of unit vectors negatively asymptotic

to γ.

1.1. Theorem, (i) The vector field V has no second derivatives in the t-

direction at any point on γ.

(ii) Let b( ) be a Busemann function in the universal cover of S determined by

the lift γ of γ. Then b has no third derivative in the t-direction at any point of γ.

(iii) Any horocycle in S orthogonal to the geodesic γ has no third derivative at

the point where it intersects γ.

Proof. Assertions (ii) and (iii) follow easily from (i) which we now prove.

By the rotational symmetry, the oriented angle between (d/ds)(s,t) and

V(s, t) does not depend on s. We denote it by <x(t). Since K < 0 except on γ

we have with proper orientation that t a(t) > 0 for / Φ 0.

Let σ(τ) = (s(τ), t(τ)) be a geodesic in S negatively asymptotic to γ. The

Killing field Y(t) 3/3s gives rise to the Clairaut integral

(σ(τ) , Y(t(τ)) d/ds) = Y(t) cosα(ί) = const.

However,

lim dist(σ(/),γ(τ)) = 0,
T — * - 0 0

for otherwise γ would bound a flat strip (cf. Proposition 5.1 in [3]). Hence

Since the function a is odd,

a(t) = sign/ arccos -, t Φ 0,
1 + ar

and α(0) = 0. A simple calculation shows that α'(0) = 0 and

and lim —^-^- =
t\0 t tsθ t

In particular, a has no second derivative at 0, which proves assertion (i).

2. We start with an explicit construction of a hyperbolic metric on the

punctured torus. Consider the region R in the hyperbolic plane H shown

shaded in Figure 1. It is bounded by the vertical geodesies passing through the

points 0 and 1/2 and by the circles of radius y/ϊ/8 centered at the points 0,
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1/4, and 1/2. Let R' be the reflection of R with respect to the imaginary axis.
Identify the geodesies bounding R U R' as indicated in Figure 1 to obtain a
hyperbolic surface with one cusp and two boundary circles. Now glue together
the boundary circles. This produces a hyperbolic surface (S, g) diffeomorphic
to a punctured torus. The horizontal line passing through the point i in Figure
1 gives rise to a horocycle h of length 1 in S which bounds the cusp D (see
Figure 2).

FIGURE 1

FIGURE 2
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2.1. Definition. If X is a metric space and /: X -> U is a continuous

function, then the modulus of continuity of / at x e X is defined by

mfj8) = sup{ |/(x) - / ( * ' ) I: ώst(x,x') < 8).

2.2. Theorem. Let (S, g) be the hyperbolic surface constructed above and let

v0 be a unit normal to the horocycle h that points into D. Suppose m: R +—> IR + is

a continuous monotone function for which m(δ) —> 0 as δ —>0.

Then there is a smooth 1-parameter family of C°°-metrics gε,0 < ε < 1/10, on

S such that g0 = g and for each ε:

(i) 8ε

 = 8 o n t n e ίneighborhood of S\D;

(ii) the curvature Kε ofgε satisfies

-1 - ε ^ Kε < -1 + ε;

(iii) there is a smooth curve of unit vectors v8 starting at v0 such that vs Φ v0

for δ > 0 and

\k(vs) -k(vo)\> m(dist(ϋ β ,ϋ 0 )),

where k(v) is the geodesic curvature of the horocycle h(v) defined in the

introduction.

Proof. Let γ be the geodesic ray with γ(-2) = υ0 and σ be the geodesic ray

opposite to γ in D (see Figure 2). Cut the cusp D along σ to obtain the region

in the hyperbolic plane shown in Figure 3. The geodesic rays σ~ and σ + are

asymptotic. Consider Fermi coordinates (s, t) along γ so that (0,0) = γ(0), / is

FIGURE 3
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the arclength along γ, and the curves t = const are unit speed geodesies
perpendicular to γ.

Suppose m(δ) is defined if 0 < δ < δ0, δ0 > 0. By increasing m(δ) if
necessary, we can assume without loss of generality that m(-) is C°° except at
0 and that m(δ) > δ. Let M(δ) = /m(10δ). For δ e (0,80] set

(2.1) φ(«) = - i lnM(δ) .
Note that φ is monotone and φ(δ) -> oo as δ -> 0. For t > - | l n Af(δ0)
define

fo(t) = ±φ-\2t)e^.

Since M(δ) > δ, (2.1) implies that fo(t) < ^"16730, ί > 0, and hence /0

decreases faster than the distance between γ and σ+ or σ~. Therefore there
exists a monotone C°°-function /: IR -> (0,1) with the following properties:

(2.2) there is tQ > 0 such that /(/) = \qΓι(2t)et/2 for t ^ t0:

, v the points (±/(r), 0, t ^ -1/2, are in the region bounded by
σ~, σ+ and the horocycle Λ shown in Figure 3.

Let q: U -> [0,1] be a monotone C°°-function such that <?(/) = 0 if t < -1/2,
and ήf(/) = 1 for / > 0. Choose an even C°°-function a:R -> [0,1/2] such that
έi(0) = 0, a"{ϋ) = 1, -1/2 < Λ'XJC) < 1 for all x, and a(x) = 0 if |JC| > 1.

In the (5, ̂ -coordinates, the hyperbolic metric g is given by

Consider the one-parameter family of metrics

where

Y(s, t) = cosh. + ε q(t)

Note that g0 = g and the curves s -> (., t) are unit speed geodesies with
variation field Y for any ε > 0. By our choice of a, q, and /,

(2.4) gε(s,t) = So('M) for/< -1/2 or \s\ >f(t).

In particular, by (2.3), σ~ and σ+ remain asymptotic geodesies and the metrics
gε give rise to a one-parameter family of metrics on S which satisfies statement
(i) of the theorem. Part (a) of the following lemma shows that (ii) holds.

2.3. Lemma, (a) -1 - ε < Kε(s, / ) < - ! + «;
(b) Kε(0, t) = -1 - ε for t ^ 0.
Proof. By the Jacobi equation,

_
ds2 cosh. + ε q(t) a(s/f(t)) f2(t) '
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The left inequality in (a) holds, since

ε • q(t) • a"(s/f(t))
coshs

Since/(/) < 1,

-K(s, t)
cosh s - ε/2

Γ — — ^

cosh s + ε/2
- ε.

This proves (a). To prove (b) note that a(0) = 0 and a"(0) = 1. q.e.d.
Let ws be the unit vector with footpoint at γ(0) = (0,0) which makes the

angle 8 > 0 with γ(0) = vv0 (see Figure 4). Denote by ys the geodesic with
initial velocity ws. Let γδ(τ(δ)) and ys(T(δ)) be the points where y8 intersects
the curves s = f(t) and σ+ respectively.

2.4. Lemma. Suppose the right triangle shown in Figure 5 lies in a simply

connected surface with curvature pinched between -1 - ε and -1 + ε. If d and δ

are small enough and t is large enough, then

7δ(-2) (0,-2)

FIGURE 4
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Proof. By comparing with the surfaces of constant curvature -1 - ε and
-1 4- ε, we get

tanh}J\ — εd > sinh/L — ε / tanδ,

tanh]/l + ε J < sinh ]/l + ε / tanδ.

2.5. Lemma. // δ w ίma// enough, then T(δ) > - } lnδ - 2.

Proof. Parametrize σ+ by arclength so that dist(γ(/), σ+(/)) -> 0 as / -> oo.

Recall that h has length 1. By comparing with a surface of constant curvature

-1 — ε, we see that the arc of the horocycle connecting γ(/) and σ+(t) has

length at least i e-v 1 + ε( 2+O Let b(t) be the length of the geodesic segment

s —» (s, t) between γ and σ+. Since the curvature is uniformly bounded, small

enough pieces of horocycles are uniformly (^-approximated by geodesic

segments. Hence for / large enough

(2.5) b(t) > \e-^1+'\

Denote by t{δ) the /-coordinate of yδ(T(δ)) in the (s, /)-coordinates. By

Lemma 2.4 and (2.5), we have

* - i lnδ - 2.
2vΊ + ε

Since the curvature is negative, Γ(δ) > /(δ).

2.6. Lemma. // δ is small enough, then τ(δ) < φ(δ).

Proof. Let θ(δ) be the /-coordinate of γ s(τ(δ)) (see Figure 4). By Lemma

2.4,

f(θ(δ))
and so by (2.2),

FIGURE 5
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Since φ is decreasing, φ(δ) > 20(δ). Note now that τ(δ) < θ(δ) + /(0(δ)) <

2θ(δ) for δ small enough, q.e.d.

Now we are ready to prove (iii). Consider the Riccati equation

Since the curvature is negative, there are solutions of this equation that are

defined for all t. Let u~(v, •) be the smallest and u+(v, •) the largest such

solutions. Recall that the curvature k(υ) of the horocycle h(v) is u~(v,0) (cf.

The solution of the initial value problem

(2.6) u'κ + u\ - κ2 = 0, uκ(0) = λ,

is given by

, . ^ ,t\ _ / v

λ cosh(fcp + K - sinh(/c/)

λ sinh(κί) 4- K cosh(/c/) '

By assumption, M(δ) > δ. Therefore, by Lemmas 2.5 and 2.6,

(2.8) T(δ) - τ(δ) > -}lnδ - 2 - φ(δ)

> -}lnδ - 2 + ilnAf(δ) > - ^ l n δ - 2.

Let υ = -γδ(Γ(δ)) (see Figure 4). Since Kε > -1 - ε, we have

(2.9) M+(ί;,0) < i/l + ε.

Indeed, if w is a solution of the Riccati equation u' + u2 + AΓε(γι;(/)) = 0 with

u(t0) > }/l + ε for some /0, then w(/) -• oo in finite times as t decreases from

'o

By construction, Kε(y8(t)) = -1 for τ(δ) < t < Γ(δ). Hence, using (2.7)

with K = 1, (2.8), and (2.9) we get

vTTT coshtf + sinhί

/I + ε sinh0 + coshί

where 0 = - yjlnδ - 2. Therefore

(2.10)

if δ > 0 is sufficiently small.

Our estimates on the solutions of the Riccati equation will use the following

lemma.

2.7. Comparison Lemma. Let ut{t), i = 0,1, be the solutions of the initial

value problems
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Suppose λλ > λ0, Kλ(t) < K0(t) for t e [0, t0], and uo(to) is defined. Then

«i(O>«o(O forte[0,t0].

Proof. The difference Δw(/) = uλ(t) - uo(t) satisfies the linear equation

Δw' = -(u0 + wjΔw 4- K0(t) - Kλ(t). q.e.d.

Now we estimate u+(υ, T(δ)) = -u~(ws,0). Since # ε > -1 - ε everywhere,

we can use Lemma 2.7 to compare u+(v, /), Γ(δ) - τ(δ) < / < Γ(δ), with the

solution wκ of (2.6) with K = A + ε and λ = 1 + ε/10. By Lemma (2.6),

(2.7), and (2.10) we obtain

I (1 + ε/10)coshη 4- /ΠfTsinhη

(1 4- ε/10)sinhη + i/l + εcoshη '

where η = /l + £ φ(δ). Note that u~(wo,O) = - / H e , by Lemma 2.3(b).

Therefore

|w-(wβ,0) - w~(wo,O)| =|v/l + ε + u-(wδ90)\

i ( / ! + £ - ! - ε/10) e " η

(2.11)

provided M(δ) < 1. This shows that k(-) = w~( ,0) fails to have modulus of

continuity m at w0. However the footpoint of w0 lies in the region where the

metric g was changed to obtain gε.

Let v8 = γδ(-2). Since -1 - ε < Kε < 0, the norm of the differential of the

time 2 map for the geodesic flow of gε is bounded by e2+ε < 10 (see e.g.

Lemma 5.1 in [2]). Therefore

(2.12) dist(ϋβ,ι;0) < 10dist(wδ,w0) = lOδ.

For a unit vector w of the metric gε and a number λ < 0 denote by ψ(w, λ)

the value at / = -2 of the solution of the initial value problem

u' + u2 + K(yw(t)) = 0, w(0) = λ.

Consider the map Ψ: Γ ^ X [-2,0] -> Γ ^ X [-2,0] given by

* ( w , λ ) = (γ w (-2) ,ψ(w,λ)) .

Equip ΓX5 X [-2,0] with the product metric. Since Ψ is a diffeomorphism

onto its image and all of the vectors wδ are in the same compact fiber of

there is a constant c > 0 such that for all λ, λ 0 e [-2,0]

(2.13) dist(Ψ(w89 λ), *(w 0 9 λ 0 )) ^ c dist((wδ9 λ) , ( W o , λ 0 ) ) .
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Now by the triangle inequality,

dist((wδ,λ), (wo,λo)) > dist(wδ,w0)

and

dist(Ϋ(wβ, λ), Ψ(w0, λ 0)) < dist(γδ(-2), γo(-2)) + |ψ(wδ, λ) - ψ(w0, λ 0 ) |

< 10dist(wδ,M;0) +|ψ(w β ,λ) - ψ(w o ,λ o ) |

by (2.12). Since u~(υδ,0) = ψ(wβ, ιr(wβ,0)), it follows from (2.13) and (2.11)
that

|κ-(ϋβ,0)-fr(ϋo,0)|

> c dist((wβ,ι/-(ivβ,0)),(wo,ι|-(wo,0))) - 10 dist(u;δ,wo)

> c\u~(ws,0) - M"(W O ,0) | - 10dist(wδ,w0) > c^M(δ) - 10S.

Recall that M(δ) = /m(10S) > /ΪOδ , and so for any small enough δ,

\u'(v8,0) -u-(υo,O)\ > cj/m(10δ) - 10δ > m(10δ)

> w(dist(ϋβ,ϋ0))

by (2.12). This completes the proof of the theorem.
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