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CONSTRUCTION OF CONNECTION INDUCING
MAPS BETWEEN PRINCIPAL BUNDLES. PART I

G. D'AMBRA

0. Introduction

Consider two C°°-sinooth principal bundles, say X -> V and Y -> W, with
the same structure group G and with C°° connections Γ on X and Δ on Y,
respectively. We look for a C°°-map /: V -> W such that the induced bundle
f*{Y) over V with the induced connection /*(Δ) is isomorphic to (X, Γ). This
means that / can be covered by (or lifted to) a morphism of bundles, F:
X -> Y, inducing Γ from Δ, which is expressed by F*(Δ) = Γ.

0.1. The problem of inducing connections was first studied by Narasimhan
and Ramanan [3] who proved that for a given compact Lie group G and an
integer n = 0,1, , there exists a (universal) bundle (Y, Δ) over some (classi-
fying) compact manifold W, such that every G-bundle X over an n-
dimensional manifold V with an arbitrary C00-connection Γ can be induced by
a C00-morphism F: X -> Y. Furthermore, they give a precise description of the
universal connection Δ for the unitary and the orthogonal groups. Namely, if
G = U(p) they take the Grassmann manifold Gτp(Cq) for W and use the
standard connection Δ on the canonical bundle Y -> Gτp(Cq) (here Y is the
Stiefel manifold of orthogonal /?-frames in Cq). The dimension q for which
they prove the existence of F is q = (n + 1)(2« + I)/?3, where n = dimF.
Similarly, for G = O(p), their method provides a connection inducing map
into the real Grassmann manifold Gτp(Rq), again for q = (n + l)(2n + I)/?3.

0.2. The result by Narasimhan-Ramanan was improved for G = O(p) by
Gromov (see 2.2.6 in [1]) who showed the existence of a connection inducing
map /: V -> Gτp(Rq) for q = max(/?(« + 1), p(n + 2) + n). Furthermore, if
the manifold V is parallelizable and the bundle X -> V is trivial, then
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q = p(n 4- 2) suffices for the existence of a map /: V -> Gr^R*7) inducing a

given connection on X The improvement was achieved by using the theory of

topological sheaves (instead of a partition of unity argument used in [3]) to

build the (global) map / out of local (connection inducing) maps.

0.3. In this paper, we study connection inducing maps between arbitrary

bundles. In particular, in §2 we prove the following:

Theorem. Let Γ be an arbitrary connection on a trivial O(p)-bundle over a

stably parallelizable manifold V. If q > p(n 4- 3)/2, then there exists a connec-

tion inducing map V -» Gτp(Rq).

0.4. Remarks. (A) One may, in principle, apply the Theorem to a nontrivial

bundle X over a nonstaHy parallelizable manifold V. Namely, take the trivial

2/?-dimensional bundle X' -> V' => V, where V is a (In - l)-dimensional

parallelizable manifold which is the total space of the normal bundle of V and

where X' contains X as a subbundle. With this, one easily obtains the

existence of the inducing connection map to Gτp(Rq) for q = 2p(n 4- 1). Of

course (compare 0.2), this bound on q is too crude and it will be improved in

Part II of this paper.

(B) The construction of a connection inducing map F between principal

G-bundles X and Y amounts to solving a certain system of a = ά\mV X dimG

partial differential equations imposed on β = dim W 4- dimG unknown func-

tions (see 1.1). Therefore (see [2]), for a fixed Δ and for a > β a generic

connection Γ cannot be induced (even locally) from Δ. This means that

inducible connections Γ form a meager subset (depending on Δ) in the space

of C°° connections on V. In particular, if Y is the canonical O(/?)-bundle over

Gr^R*), then

Hence, a generic connection on V cannot be induced from this Y unless

q > (P + l )/2 + n - (p — l)/2. This bound on q asymptotically (for p,n ->

oo) agrees with the inequality q > p(n 4- 3)/2 in the above Theorem. In fact,

the existence of a (local) connection inducing map for a real analytic connec-

tion is established in §2 for q ^ p(n + l)/2.

(C) If q ^ p(n 4- 1), then the P.D.E. system for connection inducing maps

/: V -> Gτp(Rq) can be reduced to an algebraic system (see [2], [1]). But such a

reduction hardly is possible for q » pn/2. Moreover, an appropriate regularity

(see Ω-regularity in §1.2) condition on / makes the linearized P.D.E. equations

algebraically solvable. This allows us to apply Nash's implicit function theorem

for local study of such maps / and to use the theory of topological sheaves for

obtaining global results. (Compare 2.2, 2.3 in [1]).
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1. General criteria for the existence of connection inducing maps

1.1. Let us consider the (first order) differential operator Sf = ^ Δ which

relates to each morphism (i.e. a bundle homomorphism) F: X -> Y the

induced connection F*(Δ) on X for a fixed C°°-connection Δ on Y. We view

morphisms X -> Y as sections of the bundle Z -> V associated to the principal

bundle X -> V with the fiber = Y for the action of G on Y. This Z naturally

fibers over V X W with the fiber Xυ X Yw/G canonically isomorphic to the

space of G-equivariant maps Xv -> Yw. On the other hand, every Cr+^smooth

bundle homomorphism F: X -> Y by definition is given by a C r + 1 -map /:

V -> W and a family of G-equivariant maps Fυ: Xυ -> ϊy ( ϋ ) which are C r + 1 -

smooth in v e K Thus i 7 becomes a C r +^section F -> Z covering the graph

F -> W oi f. The range of the operator F -> F*(Δ) consists of the space of

C '-connections in X These are C-sections of the fibration H -> V whose

fiber Hυ <z H for υ ^ V can be described as follows. Denote by X] the space

of 1-jets (or differentials) of germs of sections V -> X at ϋ. Namely, X]

consists of linear maps Tυ{V) -> T(X) which project to the identity Id:

Tυ(V) <^ by the differential (of the projection map) of the fibration X -> V.

The group G naturally acts on X] and the fiber Hυ equals X]/G.

Observe that dim Hυ = a = dimF X dimG and dim Zv = β = dimW +

dimG. Therefore, the connection inducing equation 2^{F) = Γ amounts to a

equations in /? unknown functions.

Our next objective is to describe an open subset A in the space of 1-jets of

germs of sections V -> Z, such that the connection inducing operator ^ Δ :

F •-» F*(Δ) becomes infinitesimally inυertible on A First, recall the pertinent

definitions from [1, 2.3.1]. Let 2 be a nonlinear first order differential

operator between spaces of sections of two arbitrary fibrations Z and H over

V. The operator 3) (acting from sections of Z to those of H) is called

infinitesimally inυertible on a subset 4̂ c Z 1 , where Z 1 stands for the space of

1-jets of germs of sections V -> Z if for every section F: V -* Z whose 1-jet

sends V to A the linearization of 3) at i% called LF, admits a right inverse MF

which is a linear differential operator. Here we are interested in the case where

MF is a zero order operator which is (nonlinear) differential of order one in F.

The resulting operator M F ( ) (in two variables F and •) is called an infinitesi-

mal inversion of order zero and defect (that is the order of M in F) one (see

2.3.1. in [1] for a detailed discussion).
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1.2. To describe the pertinent set A for the connection inducing operator

Sι{F) = J P * ( Δ ) we invoke the bundle Ϋ -> W associated to Y whose fiber is

the Lie algebra of G with the adjoint action of G. Denote by Ω: T(W) <£>

T(W) -> Ϋ the curvature form of Δ. Call a linear subspace T' c TW(W) for

w G W Ω-regular if one of the following three (obviously) equivalent condi-

tions is satisfied:

(i) For some (and hence for every) basis τ1 } , τ Λ i n Γ the linear system

(1) Qw(τi9d) = li9 / = 1 , , Λ ,

is solvable in d <Ξ TW(W) ior every n-tuple of vectors /,. in the Lie algebra g

of G.

(i)' The homogeneous system

(1)' Ω > , , 3 ) = 0, i = l , ,n ,

is nonsingular. Namely, the dimension of the space of solutions equals

(dim W — n dim g.)

(ii) The linear map TW(W) -> Hom(Γ', g) given by T -> Aτ(τ') = Ωw(τ, T')

is surjective.

1.3. Remark. This definition will be used in §2 for subspaces T' c T,

where T is an arbitrary linear space endowed with some bilinear vector-valued

form Ω.

1.4. Example. If Ω is an ordinary (i.e. R-valued) form, then T c T is

Ω-regular if and only if T' Π kerΩ = 0, where kerΩ = [t e Γ|Ω(/, t') = 0

for all tf e T). In particular, if Ω is nonsingular (symplectic) then every

subspace in T is Ω-regular (compare [1, 3.4]). Notice that the curvature Ω of

the canonical Ω of the canonical O(2)-bundle over the Grassmannian manifold

Gr^R^) is symplectic (this Ω can be regarded as an R-form since the Lie

algebra of O(2) is ~ R).

1.5. Take a linear map φ: T0(V) -> TW(W) and let a 1-jet Φ G Z 1 lie over

φ. (If Φ is the 1-jet J}(υ) for a morphism F: X -> 7, then φ is the differential

Df of the underlying map /: V -» W at u G F.) Call φ Ω-regular if it is

injective and if the image φ(7;(F)) c TW(W) is Ω-regular for all υ G F. Call

Φ Ω-regular if the underlying map φ is Ω-regular. Then define the subset

i4 c Z 1 as the set of the Ω-regular 1-jets Φ. According to this terminology, we

say that F: X -> Y (as well as the underlying map /: V -> PF) is Ω-regular if

the 1-jet /^: F -• Z 1 sends V into 4̂. This is equivalent to the Ω-regularity of

the differential Df\ T(V) -* T{W) at every point υ G K.

1.6. Proposition. 7%e connection inducing operator Si: F >-* F*(Δ) on Ω-

regular morphisms F admits an infinitesimal inversion M of order zero and defect

one.
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Proof. First, we must linearize the operator 3) at some morphism F. To do

this, we take a smooth 1-parametric family of morphisms Ft: X -> Y for

/ e [0,1], such that Fo = F and study the family of the induced connection

Γ, = @(Ft). The derivative ftTt is a 1-form on V with the values in the vector

bundle X induced from Ϋ by the map / 0 = /: V ^> W corresponding to

Fo = F. Let us express this form in terms of Ω. Let V = Vx [0,1] and

Xf = X X [0,1] -> V. Consider the connection Δ' on X' induced by the

morphism X' -> Y defined by (x, t) -» Ft(x). Denote by 3 the field 3/3 ί on

V = V X [0,1] for t e [0,1], let 3 be the corresponding field on X\ and let

3 v be the Δ'-vertical component of 3. Then the value of the 1-form Γ,' = ft(Tt)

on every T G T(V = F X ί) is given by

(2) Γ/(τ) = Ω'(τ,3) + ί f 3 v ( τ ) ,

where d stands for the Δ'-horizontal differential, and Ω' is the curvature of Δ'.

Now let us denote by LF the linearization of 2) at F and, assuming the map /

is Ω-regular, let us resolve the linearized equation

(3) _ M 3 ) = /,
where / is a given section V -> X and 3 is the unknown infinitesimal deforma-

tion (vector field) of F. We shall seek a solution of (3) among Δ'-horizontal

fields 3. In terms of the connection Δ', this horizontality is expressed (with a

slight abuse of notations) by

(4) 3 v = 0 .

Next we introduce another linear algebraic equation (or rather a system of

equations) for the projection 3 of 3 to T(V X [0,1]),

(5) Ωί)(τ,3) = /

for all T G Γ ( F 0 = F X 0), where Ω'o = Ω ' | F X 0. According to (2) every 3

satisfying (4) and (5) is a solution of (3). Since / is Ω-regular, the relation (5)

can be expressed, at every point v e Fo, by the following nonsingular system

of linear algebraic equations:

(6) Ωί)(τ,,3) = /(τ/), ι = l, , π ,

for a fixed basis τ1? , τn in Tυ(V0). Hence, solutions of (4) and (5) form an

affine (sub)-space of dimension d = dim W — n dim g and the solutions of (3)

are sections of a J-dimensional affine (sub)-bundle over Vo. Such a bundle

always admits a section. Moreover, one can easily choose a specific section, say

30, with an appropriate partition of unity or with an auxiliary Riemannian

metric in the ambient vector bundle (see [1, 2.31]). Finally, we define the

infinitesimal inversion M = MF of 3) by MF(l) = 30 which, according to our

construction, satisfies the desired (infinitesimal invertibility) relation

LF(MF(l)) = l.
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1.7. Now, by specializing analytic results in [1, 2.3.2] to our 3), we obtain

the following

Corollaries. Denote by { Γ }r the space of connections Γ o n I with the fine

Cr-topology (if V is compact, this is the ordinary Cr-topology).

1.8. Corollary. For every 9,-regular C°°-morphism F: X -> Y there exists a

neighborhood <% <z {Γ} 2 of the induced connections 3)(F) e {Γ}0 0 c {Γ}2,

such that every Cr-connection Γ' e °U for r > 2 can be induced by a Cr-

morphism F'\ X —> Y. Moreover, ί/Δ and Γ' <zre real analytic, then Ff also can

be chosen real analytic.

1.9. Corollary. Suppose, for some v e V, there exists an Ώ,-regular homo-

morphism φ: Tυ(V) -> TW(W) for some w e W, and a Lie algebra isomorphism

Φ: Xυ -* Ϋw such that the curvature Ω of Δ at w induces the curvature form &'υof

a given C-connection Γ on X. That is,

(7)

for all τx and τ2 in Tυ(V). Then for r > 2 the connection Γ wear v E: V can be

induced from Δ. Namely, there exists a neighborhood °U a V of v such that the

connection Γ over °U can be induced by a Cr-morphism F of the bundle X (now

restricted to <%) to Y. Moreover, one may choose F such that the differential of

the underlying map f satisfies Df \ Tυ(V) = φ.

1.10. The following global version of 1.9 follows from the theory of flexible

sheaves (see 2.2 in [1]). Consider a continuous morphism Φ: X -» Y and let φ:

T(V) -> T(W) be a fiberwise injective homomorphism whose underlying map

V -> W equals that of Φ. Denote by Φ: X -» Ϋ the fiberwise Lie algebra

isomorphism associated to Φ and let

(8) (φ,Φ)*(Ω) = Ω',

where Ω is the curvature of Δ and Ω' is the curvature of a given Cr-connection

Γ in X. (The relation (8) means that

ΦΩ'(τ 1 ,τ 2 ) = Ω ( φ ( τ 1 ) , φ ( τ 2 ) )

for all tangent fields τλ and τ2 on V.)

If the homomorphism φ is ΐί-regular at all v e V and if r > 2 (recall that the

connection Δ in Y is C°°) then, under the following condition (*) there exists a

Cr-morphism F: X -> Ysuch that F*(Δ) = Γ.

(*) There exists a G-bundle X over some manifold V with a Cr-connection

Γ and a morphism P: X -> X, such that:

(a) P*(Γ) = Γ,

(b) the underlying map p: V -> V is a submersion such that the pull-back

p~ι(v) is an open manifold of positive dimension for all ΰ e F . (Recall a
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manifold is open if it contains no component which is a compact manifold

without boundary.)

1.11. Remark. Condition (*) may seem rather restrictive. However, it can

be applied to any V and Γ as follows. Take F ' = F x R with the obvious

projection p: V -» V and with the induced connection Γ ' o n Γ = I x R - >

V. Then Γ' does satisfy (*). On the other hand, Γ ' | F X 0 = Γ. Thus, by

inducing Γ' from Δ we also induce Γ from Δ.

1.12. In order to apply (1.10) and (1.11) let us state the following algebraic

Lemma which follows from 2.3.

Lemma. Let φ°: T{V) -> T(W) be a continuous Q-isotropic homomorphism

{which means Ώ,\φ°(Tυ(V)) = 0 for all v e F) , such that the bundle induced

from Y by the continuous map ψ: V -> V X W underlying φ° is isomorphic to X.

If φ° is ^-regular then, for any arbitrary 2-form Ω': T(V) ® T(V) -» X, there

exists an Ώ-regular homomorphism φ: T(V) -> T(W) and a morphism Φ:

X -> y, both lying over ψ, size/* /Λαr (φ, Φ)*(Ω) = Ωr.

1.13. Corollary. Denote by 7" /Λe Whitney sum of T(V) with the trivial line

bundle and let <p°: Ύr -> Γ(PF) fee an 0,-regular and 9,-isotropic homomorphism,

such that the bundle induced from Y by the underlying continuous map V -> W is

isomorphic to X. Then an arbitrary Cr-connection Γ on X for r ^ 2 can be

induced by a Cr-morphism F: X -> Y.

Proof. Compose φ° with the obvious (fiberwise injective) projection

T(V X R) -> T* and apply the Lemma to the resulting Ω-regular and Ω-

isotropic homomorphism T(V X R) -> T(W). Thus we get an Ω-regular homo-

morphism φ': T(V X R) -> T(W) and a morphism Φ': X' -> Y for X' = * X

R -* F X R such that (<p\φ')*(Ω) = Ω' for the curvature form Ω' of the

connection Γ r induced from Γ by the projection F X R -» F Now, by

applying 1.10, we induce Γ' from Δ and, by restricting Γ' to V= F x 0

(compare 1.11) we induce Γ as well.

1.14. Let us specialize 1.13 to the case of the trivial vector bundle X = G

X F -> Fover a stably parallelizable manifold F Assume, there is an (n + 1)-

dimensional Ω-regular and Ώ,-isotropic subspace T£ c TW(W) for some w e W,

where the Ω-isotropy means Ω(τx', τ2') = 0 for all T/, T2' in 7". Then the

required φ° does exist. Indeed, since the bundle Tf is trivial it can be induced

by a (constant) map \pw: V -> w e W from the subpace ΓJ viewed as a bundle

over { w } and since X is trivial it is isomorphic to ψ*(y). Thus we conclude:

1.15. Proposition. Lei Γ be a Cr-connection in a trivial bundle X over a

stably parallelizable n-dimensional manifold V. If the connection Δ in Y admits

an (n + \)-dimensional ^-regular and ίl-isotropic subspace in some tangent

space TW(W) then, for r > 2, there exists a Cr-morphism X -» Y which induces

Γ from Δ.
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1.16. Remark (compare 1.9). Extend a connection Γ on X to a connection

Γ' on r = I x R ^ F ' = F x R and take a Γ-inducing Ω-regular mor-

phism F of X = X X 0 to Y. Let us try to extend F to a Γ'-inducing

morphism Λ" -> Y. Denote by 3Λ the Γ'-horizontal lift to X' of the field

3 = 3/3/ on V and observe that the equation (F')*(Δ) = T' implies (com-

pare (2))

(9) ( )

for all tangent fields τ o n K ' , where the following notations are used:

Ω' is the curvature of Γ',

F' is the associated homomorphism of the Lie algebra bundle, F'\ X' -> Y,

df'/dt and 3 T / ' are the images of the fields 3/3/ and τ correspondingly under

the differential of the map f':V -* W underlying F'.

If F' I X = F, then the Ω-regularity of F allows one to resolve equation (9)

in 3/'/3/ and to bring it to the evolution (or Cauchy-Kowalewsky) form. We

write it as

(10) ^ = Ω

where the "inverse" Ω"1 is defined at (v, t) in so far as / 1 V X / is Ω-regular at

(v,t).

Now, one can easily see that

1.17. Lemma. If a map F' satisfies equation (10) (which, whenever defined,

is equivalent to (9)) and the conditions (a) F' \ X = F and (b) the differential of

F' sends dh to a ^-horizontal field, then F '*(Δ) = Γ .

The proof follows by reversing the computation which brought up equation

(9). The same conclusion equally applies to small neighborhoods °U' c F x R

of V X 0. Therefore, the extension of F to W reduces to solving the evolution

system expressed by (10) and the above condition (b) with the initial data (a).

1.18. Corollary. // the connections Γ ' and Δ and the morphism F are real

analytic, then for some neighborhood °W of V X 0 in V X R, there exists a real

analytic morphism ofX'' \<& to Y which induces Γ ' on X'\<%f, where X'\W

denotes the restriction of X' to °U'.

Proof. Apply the Cauchy-Kowalewsky theorem (compare [2]).

Now let us return to the assumptions of Corollary 1.9 where we had an

Ω-regular linear map φ: Tυ(V) -> TW(W) inducing the curvature of Γ via

some Φ. In the real analytic case, the above Corollary 1.18 insures the

existence of some neighborhood °U' of (t;,0) e F x R and of a Γ'-inducing

morphism of X' \°Uf to 7 for every (real analytic!) connection Γ ' o n F X R.

(This result, as was told to me by Professor M. Gromov, is due to E. Cartan.)
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2. Ω-regular subspaces

2.1. Consider linear spaces T, T', and g and let Ω be an antisymmetric

bilinear form T ® T -* G. For every homomorphism φ: T' -> Γ let δ(φ)

denote the induced form φ*(Ω) on T'. Recall that a homomorphism φ is called

Ω-regular if the linear map T -> Hom(Γ', g) given by (T H Λ T ( T ' ) =

Ω(τ, φ(τ')) is surjective. Restrict the above map φ -> δ(φ) to the space of

Ω-regular homomorphisms T' -> T.

Lemma. The map

δ: RegHom(Γ' ,Γ) -> (the space of antisymmetric 2-formsTf Θ Γ' -> g)

/s α submersion.

Proof. Fix a basis T/ e Γ', Z = 1, , H, and let τf = φ(τ/). The surjec-

tivity of the differential of δ at φ is equivalent to solvability in JC; G Γ,

z = 1, , of the linear system

(11) lim c-^ΩίT,. + εx,,τ, + εxy) - Q(τf.,τy)] = ω l 7

for any given antisymmetric matrix of vectors ω/y e g, 1 < /, y < «. If φ is

Ω-regular, one can solve for every fixed j the system

Ω ( τ ι > * / ) = 2«iy. ί = 1, , « .

Since Ω and ω are antisymmetric, these solution xy- satisfy the system of

equations

Ω(τ,.,x7.) + Ω(x / , τ y ) = ω/y-, 1 < i,j < /i,

which is equivalent to (11).

2.2. Corollary. Consider vector bundles T, Ί\ and g over V and a bilinear

antisymmetric form Ω: T ® T -> g. // φ: Γ ' -> T is an ^-regular (continuous)

homomorphism, then for every sufficiently small antisymmetric form ω on T'

there exists an ^-regular homomorphism φ': T' -* T such that (φ')*(Ω) =

φ*(Ω) + ω.

(If V is noncompact, "small" refers to the fine C°-topology in the space of

sections Hom(Γ' « Γ - > g).)

Proof. The map δ which now sends (the total space of) the bundle

Hom(Γ' -> T) to the bundle of g-valued forms on Γ r, is a topological

submersion on the subset RegHom(Γ r, T) c Hom(Γ r, Γ) because it is a

submersion over every point υ e F by the Lemma in 2.1.

2.3. Corollary. Lei T, T\ g and Ω te α5 /« 2.2 W fe/ φ°: T' -* T be an

ίl-regular and Qi-isotropic homomorphism. That is, (φ°)*(Ω) = 0. Then, every

g-valued 2-form ω on T' can be induced from Ω by an Ώ,-regular homomorphism

φ: T' -> T.
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Proof. By 2.2 there exists a small positive function ε on V and an Ω-regular

homomorphism φ', such that (<p')*(Ω) = εω. Then the homomorphism ε~ V

induces ω.

2.4. In order to make sure that the general results in §1 are nonvacuous, we

need examples of connections Δ on W such that the tangent bundle T(W)

contains sufficiently many Ω-regular subspaces.

2.5. Lemma. Let T and g be linear spaces and let T' be a subspace in T. Set

m = dimΓ, n = dimΓ', and k = dimg. Then, in the following three cases

(and, as one can easily see, only in these cases) there exists a g-υalued 2-form Ω

on T (i.e. an antisymmetric bilinear map T Θ T -> g) for which Γ ' is Q-regular.

(i) n = 1, m > k.

(ii) k = 1 and m is even.

(iii) m > n k and m > n.

Proof. Take a subspace S c Γ complementary to Γ'. Then, in case (i) take

any surjective linear map Ωo: S ® Γ ' -> g and define Ω by

Ω('i + t[,s2 + t'2) = Ω o ( ^ ® t'2) - Ώ0(s2 ® t[)

for all sl9 s2(Ξ S and t[, t'2eT'.

Next, let dim g = 1 and dim T be even. Then take any nonsingular R-valued

form on T for Ω. This concludes case (ii). Furthermore, if dim T' < dim T this

applies to an even dimensional subspace To D T' in T and thus yields case (iii)

for dimg = 1. Now, let dimg > 2 and d imΓ' > 2. Then there exists a

g-valued 2-form Ω' on T' for which the homomorphism h'\ T -> Hom(Γ', g)

given by t' -> h't>(t") = Ωί/',/") isinjective. Indeed, take Ωr = (ω 1 ,ω 2 , ,ω^)

for A: = dimg where the R-valued forms ωx and ω2 have ranks > d i m Γ ' - 1

and kerω 1 Π kerω2 = 0, where, by definition,

kerω ={*'€= Γ ' l ω ί ί ' , / " ) = 0 for all ^ ' e T'}.

If dim Γ > dim Tf dim g, then there exists a linear map h: S -> Hom(Γ', g)

such that the images h(S) and h'(T) span Hom(Γ', g). Finally, we define

Ω(. x + t[, s2 + ί 2 ) = Q'(/ί, ί 2 ) + Λ5 i(/2) - A J / ί ) .

2.6. Remark. If g is the Lie algebra of G and Γ is the tangent space of a

manifold W at a point w e W, then for any g-valued 2-form Ωo on Γ there

obviously exists a C 0 0 (and even real analytic) connection in any given

G-bundle Y = G X W -> W whose curvature at w equals Ωo.

2.7. Let us return to the G-bundles X -> V and Y -> W where dimG = &,

d i m F = Λ, and ά\mW = m, and assume the bundle X to be trivial. We
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combine the results in §1 with 2.5 and 2.6 and obtain the following

Corollary. // the dimensions k, m, and n satisfy one of the above conditions

(i), (ii), or (iii), then there exist subsets ( Γ } 0 and {Δ} 0 in the space of

connections on X and on Y corresponding which satisfy the following conditions:

(1) The subsets {Γ} 0 and {Δ} 0 are nonempty.

(2) The subset ( Γ } 0 is open in the fine C2-topology in the space of connections

in X.

(3) The subset ( Δ } 0 is open in the fine Cι-topology in the space of connections

in Y.

(4) For every C°°-connection Λ G { Λ } 0 and every C-connection Γ e { Γ ) 0

for r > 2 there exists a Cr-morphism F: X -» Ysuch that F*(Δ) = Γ.

(5) Let Δ e { Δ } 0 and Γ G { Γ } o k real analytic and let Γ ' be a real analytic

connection in the bundle Γ = I x R - > VxR such that Γ ' | V = V X 0 eςrMα&

Γ. ΓAe/i, there exists a neighborhood Ί f c I x R of X X 0 such that the

connection Γ ' over °U can be induced from Δ by a Can-morphism of Xf \°ίl to Y.

2.8. Example. Let k = dim g > 2 and « = dim V > 0. Then the above

applies for m > /:«, for m = dim JF. In particular, we obtain a nonempty open

set of real analytic connections Γ Ό n F X R which can be locally induced from

some fixed Δ. By Remark (B) in 0.4, such a Δ does not exist for m < kn.

2.9. Lemma. Let Γ, g, and Tf c ΓZ?e linear spaces of dimension m, /c, awd

/? {compare 2.5). //

(12) m>n(k + l),

then there exists a g-valued 2-form Ω on T for which Tf c Γ w ^-regular and

0,-isotropic.

Proof. Take S c Γ as in the proof of 2.5 and a surjective linear map h:

S -> Hom(Γ r, g). Then the form Ω(sλ + /(, s2 + ^ ) = M ' 2 ) ~ ΛJ2(^O is the

required one.

2.10. Remarks, (a) Inequality (12) obviously is the best possible.

(b) Every sufficiently small perturbation Ω' on Ω admits an ^-dimensional

Ω-regular and Ω-isotropic subspace T" = Γ r /(Ω r) c T.

2.11. Now, as in 2.7, we obtain, with 1.15, the following:

Corollary. Let the manifold V be stably parallelizable, let X = F x G - > F

&e //ze trivial bundle and let Y -> W fo^ α« arbitrary G-bundle. If dim Ŵ  >

( d i m F + l)(dimg + 1 ) , ίΛ «̂ //ẑ re exists a C™-connection Δ on Y such that

every C -connection Γ on V for r ^ 2 αz« &e induced from Δ by a Cr-morphism

F: X -> y. Furthermore, every small C1-perturbation of Δ has the same property.

2.12. Let us turn to the canonical 0(/>)-bundle y over the Grassmann

manifold Gτp(Rq) with the standard (O(g)-invariant) connection Δ. At every

point w G Gr^ίR'7), the tangent space Tw(Gτp(Rq)) is identified with the space
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T = Hom(R/?, Rq p), the Lie algebra g of 0(p) is represented by antisymmet-

ric (p X /?)-matrices, and the curvature form Ω of the connection Δ is given by

the formula (see [1, 3.2.1])

(13) Q(Aι,A2) = A[A2-A'2A1

for Al9A2e T where the prime denotes transposition of matrices. Observe

that dim T = p(q — p) and dim g = p(p - l)/2.

2.13. Lemma. Let Ω: T ® Γ -> g be the g-υalued 2-form defined by (13)

where T is the space of p X q' matrices for q' = q - p and g is the space of

antisymmetric matrices of order p. Then, there exists an 0,-regular and Ω-

isotropic subspace T' c T of dimension n = 2entqf/p.

Proof. Start with the case p = qf and consider the 2-dimensional space

generated by the matrices

ί λ l

1 0
1 = 1

0

0

0

Since Ω(/, 7 λ) = IIλ - IλI = 0, this space is Ω-isotropic. It is also Ω-regular, if

(14) λ , . * λ , for iΦj.

To see this, look at the linear homogeneous system

in the unknown X e Γ, T = HomίR^, R^), and show the space of solutions to

have dimension < p = p2 - p(p - 1), where p2 is the number of unknowns

in (15) and p(p - 1) is the number of equations. The equation Ω(X, /) = 0

amounts to X = X' (i.e. the matrix X is symmetric) and the equation Ω(X, J λ )

= XΊλ — IχX = IλX - XIλ = 0 implies that every element of X, say xij9

satisfies (λ, — λy)jcf y = 0. Hence, every solution of (15) is a diagonal matrix

and the proof is concluded for p = q'. Now, for q' = sp 4- p' for 0 < pr < /?,

we take:

where the zeros stand for the zero (p X/?)-matrices and 0' is the zero

(p X /7')-matrix. The Span(/y, I{) (of dimension 2s = 2 ent q'/p) is obviously

Ω-isotropic and, if condition (14) holds, it is also Ω-regular. Indeed, the system
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(which has sp(p — 1) equations in pq' unknowns X e Γ, T = Hon^R7*, R*7')),

obviously divides into s independent subsystems of the type (15). Hence, by

the above, the space is solutions of (16) is (sp 4- /?/?')-dimensional.

2.14. Now we can prove the results stated in 0.3. and in the last remark in

(B) of 0.4. Let X be a trivial O(/?)-bundle over a stably parallelizable manifold

V. Then the existence of the Ω-isotropic and Ω-regular subspace in T(Gτp(Rq))

established above and Proposition 1.15 insure the existence of the connection

inducing map /: V -> Gτp(Rq) for all q > p(n + 3)/2. Furthermore, in the

real analytic case, we apply 1.18 to a small tubular neighborhood ^ c Fof a

hypersurface Vo c V and obtain a connection inducing map f:<%^> Gr^R*)

for all q > p(n + l)/2.
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