CONSTRUCTION OF CONNECTION INDUCING MAPS BETWEEN PRINCIPAL BUNDLES. PART I

G. D'AMBRA

0. Introduction

Consider two C^{∞} -smooth principal bundles, say $X \to V$ and $Y \to W$, with the same structure group G and with C^{∞} connections Γ on X and Δ on Y, respectively. We look for a C^{∞} -map $f: V \to W$ such that the induced bundle $f^{*}(Y)$ over V with the induced connection $f^{*}(\Delta)$ is isomorphic to (X, Γ) . This means that f can be covered by (or lifted to) a morphism of bundles, F: $X \to Y$, inducing Γ from Δ , which is expressed by $F^{*}(\Delta) = \Gamma$.

0.1. The problem of inducing connections was first studied by Narasimhan and Ramanan [3] who proved that for a given compact Lie group G and an integer $n = 0, 1, \cdots$, there exists a (universal) bundle (Y, Δ) over some (classifying) compact manifold W, such that every G-bundle X over an ndimensional manifold V with an arbitrary C^{∞} -connection Γ can be induced by a C^{∞} -morphism $F: X \to Y$. Furthermore, they give a precise description of the universal connection Δ for the unitary and the orthogonal groups. Namely, if G = U(p) they take the Grassmann manifold $\operatorname{Gr}_p(\mathbb{C}^q)$ for W and use the standard connection Δ on the canonical bundle $Y \to \operatorname{Gr}_p(\mathbb{C}^q)$ (here Y is the Stiefel manifold of orthogonal p-frames in \mathbb{C}^q). The dimension q for which they prove the existence of F is $q = (n + 1)(2n + 1)p^3$, where $n = \dim V$. Similarly, for G = O(p), their method provides a connection inducing map into the real Grassmann manifold $\operatorname{Gr}_p(\mathbb{R}^q)$, again for $q = (n + 1)(2n + 1)p^3$.

0.2. The result by Narasimhan-Ramanan was improved for G = O(p) by Gromov (see 2.2.6 in [1]) who showed the existence of a connection inducing map $f: V \to \operatorname{Gr}_p(\mathbb{R}^q)$ for $q = \max(p(n+1), p(n+2) + n)$. Furthermore, if the manifold V is parallelizable and the bundle $X \to V$ is trivial, then

Received November 26, 1985. The author was a member of the Mathematical Sciences Research Institute of Berkeley when this paper was completed. Research supported in part by National Science Foundation Grant 8120790.

G. D'AMBRA

q = p(n + 2) suffices for the existence of a map $f: V \to \operatorname{Gr}_p(\mathbb{R}^q)$ inducing a given connection on X. The improvement was achieved by using the theory of *topological sheaves* (instead of a partition of unity argument used in [3]) to build the (global) map f out of local (connection inducing) maps.

0.3. In this paper, we study connection inducing maps between arbitrary bundles. In particular, in §2 we prove the following:

Theorem. Let Γ be an arbitrary connection on a trivial O(p)-bundle over a stably parallelizable manifold V. If $q \ge p(n + 3)/2$, then there exists a connection inducing map $V \to \operatorname{Gr}_{n}(\mathbb{R}^{q})$.

0.4. Remarks. (A) One may, in principle, apply the Theorem to a nontrivial bundle X over a nonstably parallelizable manifold V. Namely, take the trivial 2 p-dimensional bundle $X' \to V' \supset V$, where V' is a (2n - 1)-dimensional parallelizable manifold which is the total space of the normal bundle of V and where X' contains X as a subbundle. With this, one easily obtains the existence of the inducing connection map to $\operatorname{Gr}_p(\mathbb{R}^q)$ for q = 2p(n + 1). Of course (compare 0.2), this bound on q is too crude and it will be improved in Part II of this paper.

(B) The construction of a connection inducing map F between principal G-bundles X and Y amounts to solving a certain system of $\alpha = \dim V \times \dim G$ partial differential equations imposed on $\beta = \dim W + \dim G$ unknown functions (see 1.1). Therefore (see [2]), for a fixed Δ and for $\alpha > \beta$ a generic connection Γ cannot be induced (even locally) from Δ . This means that inducible connections Γ form a meager subset (depending on Δ) in the space of C^{∞} connections on V. In particular, if Y is the canonical O(p)-bundle over $\operatorname{Gr}_{p}(\mathbb{R}^{q})$, then

$$\alpha = \frac{1}{2}np(p-1), \quad \beta = p(q-p) + \frac{1}{2}p(p-1).$$

Hence, a generic connection on V cannot be induced from this Y unless $q \ge (p + 1)/2 + n \cdot (p - 1)/2$. This bound on q asymptotically (for $p, n \rightarrow \infty$) agrees with the inequality $q \ge p(n + 3)/2$ in the above Theorem. In fact, the existence of a (local) connection inducing map for a real analytic connection is established in §2 for $q \ge p(n + 1)/2$.

(C) If $q \ge p(n + 1)$, then the P.D.E. system for connection inducing maps $f: V \to \operatorname{Gr}_p(\mathbb{R}^q)$ can be reduced to an algebraic system (see [2], [1]). But such a reduction hardly is possible for $q \approx pn/2$. Moreover, an appropriate regularity (see Ω -regularity in §1.2) condition on f makes the linearized P.D.E. equations algebraically solvable. This allows us to apply Nash's implicit function theorem for local study of such maps f and to use the theory of topological sheaves for obtaining global results. (Compare 2.2, 2.3 in [1]).

Acknowledgements. I want to thank Professor M. Gromov who gave me the problem and patiently explained to me how to approach it. I am also grateful to Alan Adler for suggesting the idea of considering generic curvature forms.

1. General criteria for the existence of connection inducing maps

1.1. Let us consider the (first order) differential operator $\mathcal{D} = \mathcal{D}_{\Lambda}$ which relates to each morphism (i.e. a bundle homomorphism) $F: X \to Y$ the induced connection $F^*(\Delta)$ on X for a fixed C^{∞} -connection Δ on Y. We view morphisms $X \to Y$ as sections of the bundle $Z \to V$ associated to the principal bundle $X \to V$ with the fiber = Y for the action of G on Y. This Z naturally fibers over $V \times W$ with the fiber $X_n \times Y_w/G$ canonically isomorphic to the space of G-equivariant maps $X_v \to Y_w$. On the other hand, every C^{r+1} -smooth bundle homomorphism $F: X \to Y$ by definition is given by a C^{r+1} -map f: $V \to W$ and a family of G-equivariant maps $F_v: X_v \to Y_{f(v)}$ which are C^{r+1} smooth in $v \in V$. Thus F becomes a C^{r+1} -section $V \to Z$ covering the graph $V \to W$ of f. The range of the operator $F \mapsto F^*(\Delta)$ consists of the space of C^r-connections in X. These are C^r-sections of the fibration $H \rightarrow V$ whose fiber $H_v \subset H$ for $v \in V$ can be described as follows. Denote by X_v^1 the space of 1-jets (or differentials) of germs of sections $V \to X$ at v. Namely, X_n^1 consists of linear maps $T_{\nu}(V) \rightarrow T(X)$ which project to the identity Id: $T_{n}(V) \leftarrow$ by the differential (of the projection map) of the fibration $X \rightarrow V$. The group G naturally acts on X_v^1 and the fiber H_v equals X_v^1/G .

Observe that dim $H_v = \alpha = \dim V \times \dim G$ and dim $Z_v = \beta = \dim W + \dim G$. Therefore, the connection inducing equation $\mathcal{D}_{\Delta}(F) = \Gamma$ amounts to α equations in β unknown functions.

Our next objective is to describe an open subset A in the space of 1-jets of germs of sections $V \to Z$, such that the connection inducing operator \mathscr{D}_{Δ} : $F \mapsto F^*(\Delta)$ becomes *infinitesimally invertible* on A. First, recall the pertinent definitions from [1, 2.3.1]. Let \mathscr{D} be a nonlinear first order differential operator between spaces of sections of two arbitrary fibrations Z and H over V. The operator \mathscr{D} (acting from sections of Z to those of H) is called *infinitesimally invertible* on a subset $A \subset Z^1$, where Z^1 stands for the space of 1-jets of germs of sections $V \to Z$ if for every section $F: V \to Z$ whose 1-jet sends V to A the linearization of \mathscr{D} at F, called L_F , admits a right inverse M_F which is a linear differential operator. Here we are interested in the case where M_F is a zero order operator which is (nonlinear) differential of order one in F. The resulting operator $M_F(\cdot)$ (in two variables F and \cdot) is called an infinitesimal inversion of order zero and defect (that is the order of M in F) one (see 2.3.1. in [1] for a detailed discussion).

1.2. To describe the pertinent set A for the connection inducing operator $\mathscr{D}(F) = F^*(\Delta)$ we invoke the bundle $\tilde{Y} \to W$ associated to Y whose fiber is the Lie algebra of G with the adjoint action of G. Denote by $\Omega: T(W) \otimes T(W) \to \tilde{Y}$ the curvature form of Δ . Call a linear subspace $T' \subset T_w(W)$ for $w \in W$ Ω -regular if one of the following three (obviously) equivalent conditions is satisfied:

(i) For some (and hence for every) basis τ_1, \dots, τ_n in T' the linear system

(1)
$$\Omega_w(\tau_i, \vartheta) = l_i, \qquad i = 1, \cdots, n,$$

is solvable in $\partial \in T_w(W)$ for every *n*-tuple of vectors l_i in the Lie algebra g of G.

(i)' The homogeneous system

(1)'
$$\Omega_{w}(\tau_{i}, \vartheta) = 0, \qquad i = 1, \cdots, n,$$

is nonsingular. Namely, the dimension of the space of solutions equals $(\dim W - n \dim g)$

(ii) The linear map $T_w(W) \to \text{Hom}(T', g)$ given by $\tau \mapsto h_{\tau}(\tau') = \Omega_w(\tau, \tau')$ is surjective.

1.3. Remark. This definition will be used in §2 for subspaces $T' \subset T$, where T is an arbitrary linear space endowed with some bilinear vector-valued form Ω .

1.4. Example. If Ω is an ordinary (i.e. **R**-valued) form, then $T' \subset T$ is Ω -regular if and only if $T' \cap \ker \Omega = 0$, where $\ker \Omega = \{t \in T \mid \Omega(t, t') = 0 \text{ for all } t' \in T\}$. In particular, if Ω is nonsingular (symplectic) then every subspace in T is Ω -regular (compare [1, 3.4]). Notice that the curvature Ω of the canonical Ω of the canonical O(2)-bundle over the Grassmannian manifold $\operatorname{Gr}_p(\mathbb{R}^q)$ is symplectic (this Ω can be regarded as an \mathbb{R} -form since the Lie algebra of O(2) is $\approx \mathbb{R}$).

1.5. Take a linear map $\varphi: T_v(V) \to T_w(W)$ and let a 1-jet $\Phi \in Z^1$ lie over φ . (If Φ is the 1-jet $J_F^1(v)$ for a morphism $F: X \to Y$, then φ is the differential D_f of the underlying map $f: V \to W$ at $v \in V$.) Call φ Ω -regular if it is injective and if the image $\varphi(T_v(V)) \subset T_w(W)$ is Ω -regular for all $v \in V$. Call Φ Ω -regular if the underlying map φ is Ω -regular. Then define the subset $A \subset Z^1$ as the set of the Ω -regular 1-jets Φ . According to this terminology, we say that $F: X \to Y$ (as well as the underlying map $f: V \to W$) is Ω -regular if the 1-jet $J_F^1: V \to Z^1$ sends V into A. This is equivalent to the Ω -regularity of the differential $D_f: T(V) \to T(W)$ at every point $v \in V$.

1.6. Proposition. The connection inducing operator \mathscr{D} : $F \mapsto F^*(\Delta)$ on Ω -regular morphisms F admits an infinitesimal inversion M of order zero and defect one.

Proof. First, we must linearize the operator \mathscr{D} at some morphism F. To do this, we take a smooth 1-parametric family of morphisms $F_t: X \to Y$ for $t \in [0, 1]$, such that $F_0 = F$ and study the family of the induced connection $\Gamma_t = \mathscr{D}(F_t)$. The derivative $\frac{d}{dt}\Gamma_t$ is a 1-form on V with the values in the vector bundle \tilde{X} induced from \tilde{Y} by the map $f_0 = f$: $V \to W$ corresponding to $F_0 = F$. Let us express this form in terms of Ω . Let $V' = V \times [0, 1]$ and $X' = X \times [0, 1] \to V'$. Consider the connection Δ' on X' induced by the morphism $X' \to Y$ defined by $(x, t) \mapsto F_t(x)$. Denote by ∂ the field $\partial/\partial t$ on $V' = V \times [0, 1]$ for $t \in [0, 1]$, let $\tilde{\partial}$ be the corresponding field on X', and let $\tilde{\partial}^{\vee}$ be the Δ' -vertical component of $\tilde{\partial}$. Then the value of the 1-form $\Gamma'_t = \frac{d}{dt}(\Gamma_t)$ on every $\tau \in T(V = V \times t)$ is given by

(2)
$$\Gamma'_{t}(\tau) = \Omega'(\tau, \vartheta) + d\tilde{\vartheta}^{\vee}(\tau),$$

where d stands for the Δ' -horizontal differential, and Ω' is the curvature of Δ' . Now let us denote by L_F the linearization of \mathcal{D} at F and, assuming the map f is Ω -regular, let us resolve the linearized equation

$$(3) L_F(\bar{\partial}) = l,$$

where *l* is a given section $V \to \bar{X}$ and $\bar{\partial}$ is the unknown infinitesimal deformation (vector field) of *F*. We shall seek a solution of (3) among Δ' -horizontal fields $\bar{\partial}$. In terms of the connection Δ' , this *horizontality* is expressed (with a slight abuse of notations) by

$$\tilde{\partial}^{\vee} = 0.$$

Next we introduce another linear algebraic equation (or rather a system of equations) for the projection ∂ of $\tilde{\partial}$ to $T(V \times [0, 1])$,

(5)
$$\Omega'_0(\tau, \partial) = l$$

for all $\tau \in T(V_0 = V \times 0)$, where $\Omega'_0 = \Omega' | V \times 0$. According to (2) every $\tilde{\partial}$ satisfying (4) and (5) is a solution of (3). Since f is Ω -regular, the relation (5) can be expressed, at every point $v \in V_0$, by the following *nonsingular* system of linear *algebraic* equations:

(6)
$$\Omega'_0(\tau_i, \vartheta) = l(\tau_i), \qquad i = 1, \cdots, n,$$

for a fixed basis τ_1, \dots, τ_n in $T_v(V_0)$. Hence, solutions of (4) and (5) form an affine (sub)-space of dimension $d = \dim W - n \dim g$ and the solutions of (3) are sections of a *d*-dimensional affine (sub)-bundle over V_0 . Such a bundle always admits a section. Moreover, one can easily choose a specific section, say ∂_0 , with an appropriate partition of unity or with an auxiliary Riemannian metric in the ambient vector bundle (see [1, 2.31]). Finally, we define the infinitesimal inversion $M = M_F$ of \mathcal{D} by $M_F(l) = \partial_0$ which, according to our construction, satisfies the desired (infinitesimal invertibility) relation $L_F(M_F(l)) = l$.

G. D'AMBRA

1.7. Now, by specializing analytic results in [1, 2.3.2] to our \mathcal{D} , we obtain the following

Corollaries. Denote by $\{\Gamma\}^r$ the space of connections Γ on X with the *fine* C^r -topology (if V is compact, this is the ordinary C^r -topology).

1.8. Corollary. For every Ω -regular C^{∞} -morphism $F: X \to Y$ there exists a neighborhood $\mathcal{U} \subset {\Gamma}^2$ of the induced connections $\mathcal{D}(F) \in {\Gamma}^{\infty} \subset {\Gamma}^2$, such that every C'-connection $\Gamma' \in \mathcal{U}$ for $r \ge 2$ can be induced by a C'-morphism $F': X \to Y$. Moreover, if Δ and Γ' are real analytic, then F' also can be chosen real analytic.

1.9. Corollary. Suppose, for some $v \in V$, there exists an Ω -regular homomorphism φ : $T_v(V) \to T_w(W)$ for some $w \in W$, and a Lie algebra isomorphism $\tilde{\Phi}: \tilde{X}_v \to \tilde{Y}_w$ such that the curvature Ω of Δ at w induces the curvature form Ω'_v of a given C^r -connection Γ on X. That is,

(7)
$$\tilde{\Phi}(\Omega'_v(\tau_1,\tau_2)) = \Omega_w(\varphi(\tau_1),\varphi(\tau_2))$$

for all τ_1 and τ_2 in $T_v(V)$. Then for $r \ge 2$ the connection Γ near $v \in V$ can be induced from Δ . Namely, there exists a neighborhood $\mathcal{U} \subset V$ of v such that the connection Γ over \mathcal{U} can be induced by a C^r-morphism F of the bundle X (now restricted to \mathcal{U}) to Y. Moreover, one may choose F such that the differential of the underlying map f satisfies $Df | T_v(V) = \varphi$.

1.10. The following global version of 1.9 follows from the theory of flexible sheaves (see 2.2 in [1]). Consider a continuous morphism $\Phi: X \to Y$ and let $\varphi: T(V) \to T(W)$ be a fiberwise injective homomorphism whose underlying map $V \to W$ equals that of Φ . Denote by $\tilde{\Phi}: \tilde{X} \to \tilde{Y}$ the fiberwise Lie algebra isomorphism associated to Φ and let

(8)
$$(\varphi, \tilde{\Phi})^*(\Omega) = \Omega',$$

where Ω is the curvature of Δ and Ω' is the curvature of a given C'-connection Γ in X. (The relation (8) means that

$$\tilde{\Phi}\Omega'(\tau_1,\tau_2) = \Omega(\varphi(\tau_1),\varphi(\tau_2))$$

for all tangent fields τ_1 and τ_2 on V.)

If the homomorphism φ is Ω -regular at all $v \in V$ and if $r \ge 2$ (recall that the connection Δ in Y is C^{∞}) then, under the following condition (*) there exists a C'-morphism F: $X \to Y$ such that $F^*(\Delta) = \Gamma$.

(*) There exists a G-bundle \overline{X} over some manifold \overline{V} with a C'-connection $\overline{\Gamma}$ and a morphism $P: X \to \overline{X}$, such that:

(a) $P^*(\overline{\Gamma}) = \Gamma$,

(b) the underlying map $p: V \to \overline{V}$ is a submersion such that the pull-back $p^{-1}(\overline{v})$ is an *open* manifold of positive dimension for all $\overline{v} \in \overline{V}$. (Recall a

manifold is open if it contains no component which is a compact manifold without boundary.)

1.11. Remark. Condition (*) may seem rather restrictive. However, it can be applied to any V and Γ as follows. Take $V' = V \times \mathbf{R}$ with the obvious projection $p: V' \to V$ and with the induced connection Γ' on $X' = X \times \mathbf{R} \to V'$. Then Γ' does satisfy (*). On the other hand, $\Gamma' | V \times 0 = \Gamma$. Thus, by inducing Γ' from Δ we also induce Γ from Δ .

1.12. In order to apply (1.10) and (1.11) let us state the following algebraic Lemma which follows from 2.3.

Lemma. Let φ^0 : $T(V) \to T(W)$ be a continuous Ω -isotropic homomorphism (which means $\Omega | \varphi^0(T_v(V)) = 0$ for all $v \in V$), such that the bundle induced from Y by the continuous map $\psi: V \to V \times W$ underlying φ^0 is isomorphic to X. If φ^0 is Ω -regular then, for any arbitrary 2-form $\Omega': T(V) \otimes T(V) \to \tilde{X}$, there exists an Ω -regular homomorphism $\varphi: T(V) \to T(W)$ and a morphism $\Phi:$ $X \to Y$, both lying over ψ , such that $(\varphi, \tilde{\Phi})^*(\Omega) = \Omega'$.

1.13. Corollary. Denote by T' the Whitney sum of T(V) with the trivial line bundle and let φ^0 : $T' \to T(W)$ be an Ω -regular and Ω -isotropic homomorphism, such that the bundle induced from Y by the underlying continuous map $V \to W$ is isomorphic to X. Then an arbitrary C'-connection Γ on X for $r \ge 2$ can be induced by a C'-morphism F: $X \to Y$.

Proof. Compose φ^0 with the obvious (fiberwise injective) projection $T(V \times \mathbf{R}) \to T'$ and apply the Lemma to the resulting Ω -regular and Ω -isotropic homomorphism $T(V \times \mathbf{R}) \to T(W)$. Thus we get an Ω -regular homomorphism $\varphi': T(V \times \mathbf{R}) \to T(W)$ and a morphism $\Phi': X' \to Y$ for $X' = X \times \mathbf{R} \to V \times \mathbf{R}$ such that $(\varphi', \tilde{\varphi}')^*(\Omega) = \Omega'$ for the curvature form Ω' of the connection Γ' induced from Γ by the projection $V \times \mathbf{R} \to V$. Now, by applying 1.10, we induce Γ' from Δ and, by restricting Γ' to $V = V \times 0$ (compare 1.11) we induce Γ as well.

1.14. Let us specialize 1.13 to the case of the *trivial* vector bundle $X = G \times V \to V$ over a stably *parallelizable* manifold V. Assume, there is an (n + 1)-dimensional Ω -regular and Ω -isotropic subspace $T'_w \subset T_w(W)$ for some $w \in W$, where the Ω -isotropy means $\Omega(\tau'_1, \tau'_2) = 0$ for all τ'_1, τ'_2 in T'. Then the required φ^0 does exist. Indeed, since the bundle T' is trivial it can be induced by a (constant) map $\psi_w: V \to w \in W$ from the subpace T'_w viewed as a bundle over $\{w\}$ and since X is trivial it is isomorphic to $\psi^*_w(Y)$. Thus we conclude:

1.15. Proposition. Let Γ be a C^r-connection in a trivial bundle X over a stably parallelizable n-dimensional manifold V. If the connection Δ in Y admits an (n + 1)-dimensional Ω -regular and Ω -isotropic subspace in some tangent space $T_w(W)$ then, for $r \ge 2$, there exists a C^r-morphism $X \to Y$ which induces Γ from Δ .

G. D'AMBRA

1.16. Remark (compare 1.9). Extend a connection Γ on X to a connection Γ' on $X' = X \times \mathbf{R} \to V' = V \times \mathbf{R}$ and take a Γ -inducing Ω -regular morphism F of $X = X \times 0$ to Y. Let us try to extend F to a Γ' -inducing morphism $X' \to Y$. Denote by ∂^h the Γ' -horizontal lift to X' of the field $\partial = \partial/\partial t$ on V' and observe that the equation $(F')^*(\Delta) = \Gamma'$ implies (compare (2))

(9)
$$\Omega\left(\frac{\partial f'}{\partial t}, \partial_{\tau} f'\right) = \tilde{F}' \Omega'(\partial, \tau)$$

for all tangent fields τ on V', where the following notations are used:

 Ω' is the curvature of Γ' ,

 \tilde{F}' is the associated homomorphism of the Lie algebra bundle, \tilde{F}' : $\tilde{X}' \to \tilde{Y}$, $\partial f'/\partial t$ and $\partial_{\tau}f'$ are the images of the fields $\partial/\partial t$ and τ correspondingly under the differential of the map $f': V \to W$ underlying F'.

If F' | X = F, then the Ω -regularity of F allows one to resolve equation (9) in $\partial f' / \partial t$ and to bring it to the evolution (or Cauchy-Kowalewsky) form. We write it as

(10)
$$\frac{\partial f'}{\partial t} = \Omega^{-1} \big(\partial_{\tau} f', \tilde{F}' \Omega'(\partial, \tau) \big),$$

where the "inverse" Ω^{-1} is defined at (v, t) in so far as $f | V \times t$ is Ω -regular at (v, t).

Now, one can easily see that

1.17. Lemma. If a map F' satisfies equation (10) (which, whenever defined, is equivalent to (9)) and the conditions (a) F' | X = F and (b) the differential of F' sends ∂^h to a Δ -horizontal field, then $F'^*(\Delta) = \Gamma'$.

The proof follows by reversing the computation which brought up equation (9). The same conclusion equally applies to small neighborhoods $\mathscr{U}' \subset V \times \mathbf{R}$ of $V \times 0$. Therefore, the extension of F to \mathscr{U}' reduces to solving the evolution system expressed by (10) and the above condition (b) with the initial data (a).

1.18. Corollary. If the connections Γ' and Δ and the morphism F are real analytic, then for some neighborhood \mathcal{U}' of $V \times 0$ in $V \times \mathbf{R}$, there exists a real analytic morphism of $X' | \mathcal{U}$ to Y which induces Γ' on $X' | \mathcal{U}'$, where $X' | \mathcal{U}'$ denotes the restriction of X' to \mathcal{U}' .

Proof. Apply the Cauchy-Kowalewsky theorem (compare [2]).

Now let us return to the assumptions of Corollary 1.9 where we had an Ω -regular linear map $\varphi: T_v(V) \to T_w(W)$ inducing the curvature of Γ via some $\tilde{\Phi}$. In the real analytic case, the above Corollary 1.18 insures the existence of some neighborhood \mathscr{U}' of $(v, 0) \in V \times \mathbf{R}$ and of a Γ' -inducing morphism of $X' | \mathscr{U}'$ to Y for every (real analytic!) connection Γ' on $V \times \mathbf{R}$. (This result, as was told to me by Professor M. Gromov, is due to E. Cartan.)

2. Ω -regular subspaces

2.1. Consider linear spaces T, T', and g and let Ω be an antisymmetric bilinear form $T \otimes T \to G$. For every homomorphism φ : $T' \to T$ let $\delta(\varphi)$ denote the induced form $\varphi^*(\Omega)$ on T'. Recall that a homomorphism φ is called Ω -regular if the linear map $T \to \text{Hom}(T', g)$ given by $(\tau \mapsto h_{\tau}(\tau') = \Omega(\tau, \varphi(\tau'))$ is surjective. Restrict the above map $\varphi \mapsto \delta(\varphi)$ to the space of Ω -regular homomorphisms $T' \to T$.

Lemma. The map

 δ : Reg Hom $(T', T) \rightarrow$ (the space of antisymmetric 2-forms $T' \otimes T' \rightarrow g$)

is a submersion.

Proof. Fix a basis $\tau'_i \in T'$, $i = 1, \dots, n$, and let $\tau_i = \varphi(\tau'_i)$. The surjectivity of the differential of δ at φ is equivalent to solvability in $x_i \in T$, $i = 1, \dots$, of the linear system

(11)
$$\lim_{\varepsilon \to 0} \varepsilon^{-1} \Big[\Omega \big(\tau_i + \varepsilon x_i, \tau_j + \varepsilon x_j \big) - \Omega \big(\tau_i, \tau_j \big) \Big] = \omega_{ij}$$

for any given antisymmetric matrix of vectors $\omega_{ij} \in g$, $1 \le i, j \le n$. If φ is Ω -regular, one can solve for every fixed j the system

$$\Omega(\tau_i, x_i) = \frac{1}{2}\omega_{ii}, \qquad i = 1, \cdots, n.$$

Since Ω and ω are antisymmetric, these solution x_j satisfy the system of equations

$$\Omega(\tau_i, x_j) + \Omega(x_i, \tau_j) = \omega_{ij}, \qquad 1 \leq i, j \leq n,$$

which is equivalent to (11).

2.2. Corollary. Consider vector bundles T, T', and g over V and a bilinear antisymmetric form $\Omega: T \otimes T \to g$. If $\varphi: T' \to T$ is an Ω -regular (continuous) homomorphism, then for every sufficiently small antisymmetric form ω on T' there exists an Ω -regular homomorphism $\varphi': T' \to T$ such that $(\varphi')^*(\Omega) = \varphi^*(\Omega) + \omega$.

(If V is noncompact, "small" refers to the fine C^0 -topology in the space of sections Hom $(T' \otimes T' \rightarrow g)$.)

Proof. The map δ which now sends (the total space of) the bundle Hom $(T' \to T)$ to the bundle of g-valued forms on T', is a topological submersion on the subset Reg Hom $(T', T) \subset$ Hom(T', T) because it is a submersion over every point $v \in V$ by the Lemma in 2.1.

2.3. Corollary. Let T, T', g and Ω be as in 2.2 and let φ^0 : $T' \to T$ be an Ω -regular and Ω -isotropic homomorphism. That is, $(\varphi^0)^*(\Omega) \equiv 0$. Then, every g-valued 2-form ω on T' can be induced from Ω by an Ω -regular homomorphism φ : $T' \to T$.

Proof. By 2.2 there exists a small positive function ε on V and an Ω -regular homomorphism φ' , such that $(\varphi')^*(\Omega) = \varepsilon \omega$. Then the homomorphism $\varepsilon^{-2}\varphi'$ induces ω .

2.4. In order to make sure that the general results in §1 are nonvacuous, we need examples of connections Δ on W such that the tangent bundle T(W) contains sufficiently many Ω -regular subspaces.

2.5. Lemma. Let T and g be linear spaces and let T' be a subspace in T. Set $m = \dim T$, $n = \dim T'$, and $k = \dim g$. Then, in the following three cases (and, as one can easily see, only in these cases) there exists a g-valued 2-form Ω on T (i.e. an antisymmetric bilinear map $T \otimes T \rightarrow g$) for which T' is Ω -regular.

(i) n = 1, m > k.

(ii) k = 1 and m is even.

(iii) $m \ge n \cdot k$ and m > n.

Proof. Take a subspace $S \subset T$ complementary to T'. Then, in case (i) take any surjective linear map Ω_0 : $S \otimes T' \to g$ and define Ω by

$$\Omega(s_1 + t'_1, s_2 + t'_2) = \Omega_0(s_1 \otimes t'_2) - \Omega_0(s_2 \otimes t'_1)$$

for all $s_1, s_2 \in S$ and $t'_1, t'_2 \in T'$.

Next, let dim g = 1 and dim T be even. Then take any nonsingular **R**-valued form on T for Ω . This concludes case (ii). Furthermore, if dim $T' < \dim T$ this applies to an even dimensional subspace $T_0 \supset T'$ in T and thus yields case (iii) for dim g = 1. Now, let dim $g \ge 2$ and dim $T' \ge 2$. Then there exists a g-valued 2-form Ω' on T' for which the homomorphism $h': T \to \operatorname{Hom}(T', g)$ given by $t' \to h'_{t'}(t'') = \Omega(t', t'')$ is injective. Indeed, take $\Omega' = (\omega_1, \omega_2, \dots, \omega_k)$ for $k = \dim g$ where the **R**-valued forms ω_1 and ω_2 have ranks $\ge \dim T' - 1$ and ker $\omega_1 \cap \ker \omega_2 = 0$, where, by definition,

$$\ker \omega = \left\{ t' \in T' \, | \, \omega(t', t'') = 0 \text{ for all } t'' \in T' \right\}.$$

If dim $T \ge \dim T' \cdot \dim g$, then there exists a linear map $h: S \to \operatorname{Hom}(T', g)$ such that the images h(S) and h'(T) span $\operatorname{Hom}(T', g)$. Finally, we define

$$\Omega(s_1 + t_1', s_2 + t_2') = \Omega'(t_1', t_2') + h_{s_1}(t_2') - h_{s_2}(t_1').$$

2.6. Remark. If g is the Lie algebra of G and T is the tangent space of a manifold W at a point $w \in W$, then for any g-valued 2-form Ω_0 on T there obviously exists a C^{∞} (and even real analytic) connection in any given G-bundle $Y = G \times W \to W$ whose curvature at w equals Ω_0 .

2.7. Let us return to the G-bundles $X \to V$ and $Y \to W$ where dim G = k, dim V = n, and dim W = m, and assume the bundle X to be trivial. We

combine the results in §1 with 2.5 and 2.6 and obtain the following

Corollary. If the dimensions k, m, and n satisfy one of the above conditions (i), (ii), or (iii), then there exist subsets $\{\Gamma\}_0$ and $\{\Delta\}_0$ in the space of connections on X and on Y corresponding which satisfy the following conditions:

(1) The subsets $\{\Gamma\}_0$ and $\{\Delta\}_0$ are nonempty.

(2) The subset $\{\Gamma\}_0$ is open in the fine C^2 -topology in the space of connections in X.

(3) The subset $\{\Delta\}_0$ is open in the fine C^1 -topology in the space of connections in Y.

(4) For every C^{∞} -connection $\Delta \in \{\Delta\}_0$ and every C^r -connection $\Gamma \in \{\Gamma\}_0$ for $r \ge 2$ there exists a C^r -morphism $F: X \to Y$ such that $F^*(\Delta) = \Gamma$.

(5) Let $\Delta \in \{\Delta\}_0$ and $\Gamma \in \{\Gamma\}_0$ be real analytic and let Γ' be a real analytic connection in the bundle $X' = X \times \mathbf{R} \to V \times \mathbf{R}$ such that $\Gamma' | V = V \times 0$ equals Γ . Then, there exists a neighborhood $\mathcal{U} \subset X \times \mathbf{R}$ of $X \times 0$ such that the connection Γ' over \mathcal{U} can be induced from Δ by a C^{an} -morphism of $X' | \mathcal{U}$ to Y.

2.8. Example. Let $k = \dim g \ge 2$ and $n = \dim V \ge 0$. Then the above applies for $m \ge kn$, for $m = \dim W$. In particular, we obtain a nonempty open set of real analytic connections Γ' on $V \times \mathbf{R}$ which can be locally induced from some fixed Δ . By Remark (B) in 0.4, such a Δ does not exist for m < kn.

2.9. Lemma. Let T, g, and $T' \subset T$ be linear spaces of dimension m, k, and n (compare 2.5). If

$$(12) m \ge n(k+1),$$

then there exists a g-valued 2-form Ω on T for which $T' \subset T$ is Ω -regular and Ω -isotropic.

Proof. Take $S \subset T$ as in the proof of 2.5 and a surjective linear map h: $S \to \text{Hom}(T', g)$. Then the form $\Omega(s_1 + t'_1, s_2 + t'_2) = h_{s_1}(t'_2) - h_{s_2}(t'_1)$ is the required one.

2.10. Remarks. (a) Inequality (12) obviously is the best possible.

(b) Every sufficiently small perturbation Ω' on Ω admits an *n*-dimensional Ω -regular and Ω -isotropic subspace $T'' = T''(\Omega') \subset T$.

2.11. Now, as in 2.7, we obtain, with 1.15, the following:

Corollary. Let the manifold V be stably parallelizable, let $X = V \times G \rightarrow V$ be the trivial bundle and let $Y \rightarrow W$ be an arbitrary G-bundle. If dim $W \ge$ $(\dim V + 1)(\dim g + 1)$, then there exists a C^{∞} -connection Δ on Y such that every C^r-connection Γ on V for $r \ge 2$ can be induced from Δ by a C^r-morphism $F: X \rightarrow Y$. Furthermore, every small C¹-perturbation of Δ has the same property.

2.12. Let us turn to the canonical O(p)-bundle Y over the Grassmann manifold $\operatorname{Gr}_p(\mathbb{R}^q)$ with the standard (O(q)-invariant) connection Δ . At every point $w \in \operatorname{Gr}_p(\mathbb{R}^q)$, the tangent space $T_w(\operatorname{Gr}_p(\mathbb{R}^q))$ is identified with the space

 $T = \text{Hom}(\mathbf{R}^{p}, \mathbf{R}^{q-p})$, the Lie algebra g of O(p) is represented by antisymmetric ($p \times p$)-matrices, and the curvature form Ω of the connection Δ is given by the formula (see [1, 3.2.1])

(13)
$$\Omega(A_1, A_2) = A_1' A_2 - A_2' A_1$$

for $A_1, A_2 \in T$ where the prime denotes transposition of matrices. Observe that dim T = p(q - p) and dim g = p(p - 1)/2.

2.13. Lemma. Let Ω : $T \otimes T \to g$ be the g-valued 2-form defined by (13) where T is the space of $p \times q'$ matrices for q' = q - p and g is the space of antisymmetric matrices of order p. Then, there exists an Ω -regular and Ω -isotropic subspace $T' \subset T$ of dimension n = 2 ent q'/p.

Proof. Start with the case p = q' and consider the 2-dimensional space generated by the matrices

$$I = \begin{pmatrix} 1 & & & \\ & 1 & & & \\ & & 1 & & \\ & & & \ddots & \\ 0 & & & & 1 \end{pmatrix}, \quad I_{\lambda} = \begin{pmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & 0 \\ & & \lambda_3 & & \\ & & & \ddots & \\ 0 & & & & \lambda_p \end{pmatrix}.$$

Since $\Omega(I, I_{\lambda}) = II_{\lambda} - I_{\lambda}I = 0$, this space is Ω -isotropic. It is also Ω -regular, if (14) $\lambda_i \neq \lambda_j$, for $i \neq j$.

To see this, look at the linear homogeneous system

(15)
$$\Omega(X,I) = 0, \qquad \Omega(X,I_{\lambda}) = 0$$

in the unknown $X \in T$, $T = \text{Hom}(\mathbb{R}^p, \mathbb{R}^p)$, and show the space of solutions to have dimension $\leq p = p^2 - p(p-1)$, where p^2 is the number of unknowns in (15) and p(p-1) is the number of equations. The equation $\Omega(X, I) = 0$ amounts to X = X' (i.e. the matrix X is symmetric) and the equation $\Omega(X, I_\lambda)$ $= X'I_\lambda - I'_\lambda X = I_\lambda X - XI_\lambda = 0$ implies that every element of X, say x_{ij} , satisfies $(\lambda_i - \lambda_j)x_{ij} = 0$. Hence, every solution of (15) is a diagonal matrix and the proof is concluded for p = q'. Now, for q' = sp + p' for $0 \leq p' < p$, we take:

$$I^{1} = (I, 0, \dots, 0, 0'), I^{2} = (0, I, 0, \dots, 0, 0'), \dots, I^{s} = (0, \dots, 0, I, 0'),$$

$$I_{\lambda}^{1} = (I_{\lambda}, 0, \cdots, 0, 0'), I_{\lambda}^{2} = (0, I_{\lambda}, 0, \cdots, 0, 0'), \cdots, I_{\lambda}^{s} = (0, \cdots, 0, I_{\lambda}, 0'),$$

where the zeros stand for the zero $(p \times p)$ -matrices and 0' is the zero $(p \times p')$ -matrix. The Span (I^i, I^i_{λ}) (of dimension 2s = 2 ent q'/p) is obviously Ω -isotropic and, if condition (14) holds, it is also Ω -regular. Indeed, the system

(16)
$$\Omega(X, I^i) = 0, \qquad i = 1, \cdots, s, \\ \Omega(X, I^i_\lambda) = 0, \qquad i = 1, \cdots, s$$

(which has sp(p-1) equations in pq' unknowns $X \in T$, $T = \text{Hom}(\mathbb{R}^p, \mathbb{R}^{q'})$), obviously divides into s independent subsystems of the type (15). Hence, by the above, the space is solutions of (16) is (sp + pp')-dimensional.

2.14. Now we can prove the results stated in 0.3. and in the last remark in (B) of 0.4. Let X be a trivial O(p)-bundle over a stably parallelizable manifold V. Then the existence of the Ω -isotropic and Ω -regular subspace in $T(\operatorname{Gr}_p(\mathbb{R}^q))$ established above and Proposition 1.15 insure the existence of the connection inducing map $f: V \to \operatorname{Gr}_p(\mathbb{R}^q)$ for all $q \ge p(n+3)/2$. Furthermore, in the real analytic case, we apply 1.18 to a small tubular neighborhood $\mathscr{U} \subset V$ of a hypersurface $V_0 \subset V$ and obtain a connection inducing map $f: \mathscr{U} \to \operatorname{Gr}_p(\mathbb{R}^q)$ for all $q \ge p(n+1)/2$.

References

- [1] M. Gromov, Partial differential relations, Springer, Berlin, to appear.
- [2] M. Gromov & V. Rochlin, Embeddings and immersions in Riemannian geometry, Uspekhi Mat. Nauk 25 (1970), No. 5, 3-62.
- [3] M. S. Narasimhan & S. Ramanan, Existence of universal connections, Amer. J. Math. 68 (1961) 563-572.

MATHEMATICAL SCIENCES RESEARCH INSTITUTE