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0. Introduction
A smooth manifold Mn is called an affine manifold if it admits a torsion

free affine connection whose curvature tensor is zero, or if it admits a
coordinate system whose coordinate transition homeomorphisms are affine
transformations in R". For example, Riemannian flat or Lorentz flat manifolds
are subclasses of such manifolds.

The manifold M is said to be complete if every geodesic can be defined on
all time intervals. By a well-known theorem the connected complete affine
manifolds are just the quotients Rπ/Γ, where Γ is a subgroup of Aff(Rn), the
group of all the affine transformations of R", acting freely and properly
discontinuously on R".

The group theoretic nature of such Γ is an open question and it is suggested
that such Γ should be virtually polycyclic (i.e., contains a subgroup of finite
index which is polycyclic) (see [1], [2], [16].) Milnor showed the converse,
namely every virtually polycyclic group can be realized by such a Γ [16].

Recently Fried and Goldman, following an idea of Auslander, showed that
such Γ, assuming it is virtually polycyclic, is virtually contained in a connected
Lie subgroup G of Aff(R") which acts simply transitively on Rn (so G is
homeomorphic to Rw) [8]. It is well known that a simply connected Lie group
G acts simply transitively on Rn as affine transformations iff G admits a
complete left-invariant affine structure.

Conversely, if G has a complete left-invariant affine structure and Γ is a
discrete subgroup, then T\G will become an affine manifold.

Therefore, to identify affine manifolds, it is natural to ask which simply
connected Lie groups G admit a complete left-invariant affine structure. It is
known that those G which act simply transitively on R" as affine transforma-
tions are solvable [2], [16].
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Auslander proved that if G acts simply transitively and affinely on R", the
unipotent radical of the algebraic hull of G again acts simply transitively and
affinely on Rw [2]. This suggests studying the nilpotent case first.

In fact, a compact complete affine manifold with nilpotent fundamental
group is known to be a compact quotient of a nilpotent Lie group with a
complete left-invariant affine structure [9].

We naturally are intereseted in two questions. The first is an existence
question, i.e., whether a simply connected solvable group admits a complete
affine structure, and the second is to classify the structure up to affine
equivalence in low dimensions.

The first question is still an open problem. Some special cases have been
known ([2], [18], [19], [16]) until Boyom recently proved the existence for
general nilpotent Lie groups [3].

The general classification problem of affine structures (up to affine equiva-
lences) on a simply connected Lie group G is very complicated. It involves the
cogredience classification of vector valued bilinear forms even in the 2-step
nilpotent case. Thus we restrict ourselves to the low-dimensional cases.

The dimension 2 classification was known to Kuiper about 30 years ago [15].
Braverman, in his thesis [4], classified the structure for abelian 3-dimensional
group G. Vesguez showed that there are finitely many structures in dimension
4 and 5, and infinitely many in dimension > 6 for abelian G. Fried and
Goldman obtained the classification in dimension 3 for general G [8].

The classification in dimension 4 when G is nilpotent is carried out in this
paper using so-called left-symmetric (l.s.) algebra formulation.

The basic idea of the classification is to use an inductive scheme as in [8].
One difficulty in the induction in dimension 4 is the following. While a
nilpotent l.s. algebra resembles a nilpotent Lie algebra in some ways, it does
not necessarily have a center. In terms of a simple transitive group action, the
center corresponds to the central translations in Aff(R"). Its existence for all
representations was conjectured by Auslander but Fried found a counterexam-
ple in dimension 4 [7]. In fact, we show from the classification that there are
just two such nilpotent l.s. algebras without center in dimension 4.

In order to make the induction argument work, we use another characteristic
ideal, Q^ = •••((βfi)fl) , which is proper and is nonzero whenever the
center of g is zero.

Then, following the procedure of Lie algebra extension, we classify the l.s.
algebra extension up to congruence by calculating the l.s. algebra second
cohomology (this can be defined on l.s. algebras, too). We proceed to produce
the classification up to isomorphism (which corresponds to affine automor-
phism in group terms).
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This article is organized as follows. In the first section, we examine the
equivalent formulation of the problem of finding complete left-invariant flat
connections on a simply connected Lie group, by formulating it in terms of the
l.s. algebra structure on its Lie algebra. Then in the next section we study basic
structures of such an algebra when its associated Lie algebra is nilpotent. In
particular, we are interested in the properties of the characteristic ideal q^.
Then we develop an extension theory for l.s. algebras which parallels the
extension theory for Lie algebras, on which our inductive argument for
classification is based. The classification question will be formulated in terms
of a group action on the l.s. algebra second cohomology. In the final two
sections we determine the l.s. algebras without translations, and sketch the
classification for the 4-dimensional nilpotent l.s. algebras deferring all the
calculations and details to a subsequent paper [14].

Acknowledgments. This paper is based on my thesis under the direction of
F. Raymond. I cannot express my deep gratitude sufficiently to my advisor for
his invaluable guidance and consistent support. Also I would like to thank the
referee for bringing my attention to Helmstetter and Goldman-Hirsch's paper
and careful corrections and improvements of my English in the first draft.

1. Left-invariant flat connection and left-symmetric product

Let G be a simply connected Lie group with its Lie algebra g. In this
section, we will reformulate the problem of finding a complete left-invariant
flat connection on G in terms of a left-symmetric product on g with certain
properties. Most of the results in this section seem to be well known (see [2],
[18], [20], [11], [16], [8], [17]) and we will reestablish some of the results
necessary to set up our investigation.

We want to find a left-invariant affine connection on G which is torsion free
and flat. To perceive the problem algebraically, we denote the covariant
derivative V χY by XY for I j E g and then observe that this amounts to
finding an algebra structure on g with the properties

(1.1) XY - YX = [X, Y] (torsion zero),

(1.2) X(YZ) - Y(XZ) -[XY]Z = 0 (curvaturezero)'

for X, Y, Z e g. Note that these two conditions imply

(1.3) X(YZ) -(XY)Z = Y(XZ) -(YX)Z.

A vector space with a bilinear product which satisfies the condition (1.3) is
called a left-symmetric algebra or l.s. algebra in short ([21], [11], [17]). Note that
an associative algebra trivially satisfies (1.3). Suppose a Lie algebra admits a
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left-symmetric product satisfying (1.1). Then we say that this l.s. structure is
compatible with the Lie structure. Starting with any left-symmetric algebra L,
define a Lie bracket by the formula (1.1), then the Jacobi identity readily
follows from the first Bianchi identity R(XY)Z + R(YZ)X + R(ZX)Y = 0
and we get the associated Lie algebra structure on L. Hence we have a
one-to-one correspondence between the left-invariant flat connections on G
and the compatible left-symmetric algebra structures on g.

Now we will examine how the complete ones can be determined in this
correspondence. Suppose G admits a left-invariant flat affine structure which
is complete. Then G is affine equivalent to a vector space V of the same
dimension with its usual flat affine structure. Since G acts on G by left
translations which is affine, the induced G-action on V by the above affine
diffeomorphism will be simply transitive by affine transformations. Con-
versely, if G acts on V simply transitively by affine transformations, then the
evaluation map evx at any point x e V is a diffeomorphism and the pull-back
connection will be clearly left-invariant.

Consequently a complete left-invariant flat affine structure on G gives rise to
a representation R of G into Aff(F) = G1(F)° F, the group of affine trans-
formations on F, with the property that ev̂ . is a diffeomorphism for each
J C E K .

On the Lie algebra level, this induces a representation r = dR = (h9t) of g
into αf f (F)= gl(F) + F with the property that d(tvx) at e (= identity of
G) is an isomorphism for each x e F. Conversely, since evg.JC = evx r , where
rg is a right translation on G, the above property implies that ev̂  is a local
diffeomorphism. Therefore each orbit is open, which in turn implies it is
closed, and hence there is only one orbit. It follows that evx is a diffeomor-
phism since this is a covering map.

To calculate d(evx) at e explicitly, consider the evaluation map of Aff(F) at
x G F. It is easy to check that its derivative maps (M, m) <Ξ αf f (F) = gl(F)
+ F into Mx + m<ΞV - TX(V). Thus d(evx) at e is a linear map g -> F
which sends Y -> h(Y)x + t(Y).

Note also that r = (Λ, ί) is a Lie algebra homomorphism if and only if
h'Q -» gl(g)isa Lie algebra homomorphism and /is a 1-cocycle of g-module
Fdetermined by Λ, i.e., t[x, y] = h(x)t(y) - h(y)t(x).

As a summary, we have the following equivalent statements.

1.1 Proposition. Let G be a simply connected Lie group with its Lie algebra

g. Then the fallowings are equivalent.

(1) G admits a complete left-invariant flat affine connection.

(2) G acts simply transitively on a vector space V by affine transformations.
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(3) There is a representation R:G -> Aff(F) such that the evaluation map evx

is a diffeomorphism for each x e F.

(4) There is a representation r = (A, t): g -> αff(F) = cjI(F) + Vsuch that

the vector space homomorphism Y -> h(Y)x + t(Y) is an isomorphism for each

x e F.

(5) There is a representation h:Q —> g l ( F ) α«rf 0 linear isomorphism t: g -> F

(i) f [*, 7] = A(-Y)ί(y) - h(Y)t(X\ I J e g , am/ (ii) Y -> A(y>*

w aw isomorphism for all x e F

At this point, we would like to see how the original connection on G is

reflected in the representation space F. If G acts simply transitively on V as

affine transformations, then it can be shown by a simple calculation that the

pull-back connection V on G is given by t{vxY) = h(X)t(Y) with the same

notations as before. Hence Vx = t~ι h(X) t and condition (ii) of (5) be-

comes

(1.4) y -> y + VyA" is an isomorphism for all i G g .

Observe that we recover the flatness for v from the fact that A:g -> g I ( F ) i s

a Lie algebra homomorphism and the torsion free condition from (i) of (5).

This proves the following:

1.2 Proposition. A left-invariant flat connection V on a simply connected Lie

group G is complete iff (1.4) holds.

If we denote left (resp. right) multiplication by λ^ (resp. px) in the

left-symmetric algebra defined by XY = V ^ , then the condition (1.4) can be

rephrased as

(1.5) 1 + px is an isomorphism for all X e g.

We will call a left-symmetric algebra structure with the condition (1.5) transi-

tive as in [17]. With this terminology, we conclude that the notion of the

complete left-invariant flat connection on G coincides with that of the transi-

tive compatible left-symmetric algebra structure on its Lie algebra g.

We close this section by a well-known observation that a linear Lie group

which acts simply transitively as affine transformations on a vector space F is

diffeomorphic to F and hence is solvable (see [2], [16], [11], [17].)

2. Nilpotent Lie algebra with left-symmetric product

We already know that a Lie algebra which admits a compatible transitive Is.

product has to be solvable. In this article, we will specialize to the case of a

nilpotent Lie algebra. This section is devoted to establishing some basic

structure theorems which will be used later. One important theorem was first
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proved by Scheuneman. He showed that a nilpotent Lie group which acts
simply transitively on Rn by affine transformations is unipotent [20]. We
restate his theorem in terms of a l.s. product and give another proof in this
context. Let L be a Lie algebra. Recall that if L admits a compatible l.s.
product, then left multiplication λx induces a Lie algebra homomorphism
λ : L -> Ql(L) defined by x -> λx, and this product is transitive iff 1 4- px is
an isomorphism for all x e L.

2.1 Theorem (Scheuneman). If L is a transitive l.s. algebra whose associated
Lie algebra is nilpotent, then the left multiplication λx is nilpotent for all x e L.

Proof. Let L c be the complexification of L so that Lc has the induced l.s.
product. Then λ has an obvious extension: L c - » g I ( L c ) which is still
denoted by λ. Since λ(L c ) is a nilpotent Lie algebra, as is well known λ(L c )
can be decomposed as a direct sum of its weight spaces Va as λ(L c)-
submodules, i.e. a e L£ = Hom c(L c,C) and Va = {y e Lc\(λx - a(x))my
= 0 for some m}. By Lie's Theorem, there is a basis {aly- , ak) in Fα with
respect to which

a(x)

0 a(x)

(see, for example, [13, p. 50].) Hence if we let VJ

a = span(α1, , αy>, then V£
becomes a left ideal with respect to l.s. product and x ax• = a(x)ai (mod Fj" 1).

Now we want to show a = 0. Let {b^- , bt) be such a basis for Vβ as
above. Then

[bt, aj] = bfij - ajbt e α(ί>>,. + VJ~l + V> c yJ + Vj.

Thus

FΓ1 + Vj),

[[b, • • • [b,aj]] ] - a{b,)Naj (mod^'"1 + V').

Since L c is nilpotent, αί^) = 0 if a Φ β. The same argument applied to
[ai9 ctj] with i <j shows that a(at) = 0, / = 1, , k — 1.

It only remains to show that αίtfj.) = 0. First note that a G L£ defined by
α(Jc) = a(x) is also a weight for λ(L c ) since (λ x — α(x))m^ = 0 implies
(λx - a(x))my = 0, and {al9" 9ak} becomes the associated basis for Vά.
Suppose a Φ α, then a(ak) = 0 from above. Thus we have ak- ak = a(ak)ak,
ak- ak = 0(modFJ :"1)andso(modFα

/c~1 + V£~ι). Let us denote ak = u 4- iυ9

u,v e LR, and α(α^) = p 4- /#, / ? ^ G R . K M G F ^ " 1 + V£~\ then α(w) = 0
and hence a(ak) = 0 since α ^ ) = 0. Hence assume u £ V£~ι 4- F / " 1 .
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Since Vk~ι + V£~ι is invariant under complex conjugation, we get, by

comparing real and imaginary parts,

u2 - v2 = pu - qv, uv + υu = qu + pυ,

w

2 + t;2 = 0, vu = uv

It follows that 2M2 = pu - qv, 2uυ = qu + pυ, and hence u(2pu + 2qv) =
2pu2 + 2#ιw = (/>2 + 42)u. This implies (-(/?2 + q2) + pjίw) = 0, where
JC = 2/?w + 2qv G LR. Note that both pα and ρ5 and hence ρx sends F ^ " 1 +
V£~l into itself, and u £ V*'1 + F^"1.*Therefore ?2 + r̂2 = 0 and a(ak) =
0, otherwise -(/>2 + #2) + px would be an isomorphism by transitivity (see
(1.5)).

Finally, if a = α, then a is real, i.e. a: L R -> R. Thus

u έiΛ = a(u)ak, v-ak = a{υ)ak

for α(w), α(ϋ) G R. It follows that u - u = α(w)w, υ - v = a(υ)v, and again
α(w) = α(ί;) = 0 and α ^ ) = 0 by transitivity, q.e.d.

It is also known that the converse of this theorem holds and, furthermore, px

is nilpotent (see [11]). This of course implies L is transitive (see [10] for more
about completeness). We will give another proof here.

2.2 Theorem. // L is an is. algebra where the left multiplication λx is
nilpotent for all I G L , then its associated Lie algebra is nilpotent and the right
multiplication px is nilpotent for all x G L.

Proof. Suppose λx is nilpotent for all x e L. We want to show that
L, L(2) = [L, L], , L (*+ 1 ) = [L, L(*>], stops at 0 at some stage. Suppose
A and B are subspaces of L. Then the subspace of L which is spanned by the
elements of the form a b, a e A, b e B, will be denoted by A B. Since λ^
is nilpotent for all X E L , λ(L) can be put into strict upper triangular
matrices simultaneously by EngeΓs theorem. Therefore the decreasing sequence
L1 = L, L2 = L - L, , Li+ι = L L1', will stop at 0 at some stage. Now
we can complete the proof of the first part from the following claim.

Claim. (1) L(*> Lι c Lk+ι (/ > 0).
(2) Uk) c ZΛ

Proof of (1). Apply induction on k.

c L •(£<*> • L') - LW(L • Lι) (by left-symmetry)

c L Lk+I - L(k) • Ll+1 (by induction hypothesis)

cLk
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Proof of (2). Again apply induction on k.

c L Lk — L(k) - L (by induction hypothesis).

Now note that L(/c) - L a Lk+1 by (1).

For the second part, first note that the left-symmetry of the product is

equivalent to the condition

(2.1) [ λ , , py] = p x y - p y p x , x . y ^ L .

It follows from this that p2

x = ρxi — [λx,px] and the induction argument shows

Px = Px"-[λχ*-i>Pχ] -Pχ[λχ«-*>Pχ] ~ '•' - P Ϊ ~ 2 [ λ χ > P χ ] '

Take the trace of both sides and note that U[A9B] = 0 and tτ(A[BC]) =

tτ([AB]C). We obtain tτ(p"x) = tτ(pxn). Observe that t r (p j = 0 for all x e L

since ad x = λx — px. Consequently tr(p") = 0 for all n and ρx is nilpotent.

q.e.d.

By virtue of this theorem, we propose the following definition.

Definition. Let L be an l.s. algebra. Then L is called nilpotent if λx is

nilpotent for all x e L.

Remark. This definition is different from that used in [11] and [17], where

an l.s. algebra is called nilpotent when simply px is nilpotent for all x e L.

From now on we will assume that L is a nilpotent transitive l.s. algebra. We

saw in the proof of Theorem 2.2 that the decreasing sequence L1 = L,L2 =

L L, , Lι+1 = L L\ - stops at 0 at some stage. But if we consider

successive right multiplications, then the situation is not the same because

p : L - > g I ( L ) i s not a Lie algebra homomorphism in general. Let us consider

the decreasing sequence

If Lk = Lk+1 for some /c, then this sequence will stabilize from that stage on

and we will denote this limit by Lx. It is easy to show using the left-symmetry

that all L/s are two-sided ideals with respect to the product structure. The

ideal L^ will play an important role later in this paper.

2.3 Proposition. (1) There is a basis {el9- - ,er,er+1,- ,en} for L such

that L^ = s p a n ( ^ 1 , , e r>, and the matrices of ρ(L) are of the block form

Ar *

0 Bn
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and the matrices of λ (L) are of the form

0 D.
n — r

simultaneously, where Bn_r, Cr, Dn_r are strict upper triangular matrices.

(2) // L^ = 0, then ρ(L) and λ(L) can be represented as strict upper

triangular matrices simultaneously.

Proof. Consider the sequence Lv L 2, , defined above. Since these are

two-sided ideals, they are invariant under all px and λx, and hence get induced

maps ρx and λ x of Li/Li+1 into itself. From the definition of Li9 px = 0 and

EngeΓs theorem gives simultaneous triangular forms for λx, whence (1)

follows. (2) is immediate from (1).

Now we introduce another important (two-sided) ideal

T= kerλ = {a e L\a x = 0 for all x e L).

This is clearly a Lie ideal since λ is a Lie homomorphism, and is trivially a

right ideal. If L^ = 0, then from 2.3 above, 0 = px(eλ) = eγ x for all x e L.

Hence ex e Γ and we have the following

2.4 Corollary. IfL^ = 0, ίfon T Φ 0.

We collect some more properties of L^ and T which will be useful later.

2.5 Proposition. (1) L^ is a proper ideal.

(2) Σ^LJ = £„.

( 3 ) d i m L 0 0 # l .

Proof. L L is a proper ideal of L since λ(L) is strict upper triangular. (1)

follows from this and L^ c L L. (2) is just L^ L = L^. If dimL^ = 1,

then px IL^ being nilpotent is a zero map for all X E L , which contradicts (2).

2.6 Lemma. If R is a 2-dimensional {two-sided) ideal of L, then R L is a

proper subspace of R.

Proof. By abusing the notation, λ : L -> gl( i ϊ ) is a Lie algebra homomor-

phism, and so dimλ(L) < 1 by EngeΓs theorem. It follows that L = K + Fx

(vector space direct sum), where λ\Vλ is an isomorphism and hence Vx - R or

0 and # = ker λ = {a e L10 x = 0 for all x G # } . Consider the restriction

of p onto # , p : ϋΓ -> g l(R). Then

+(rx)y ~(xr)y = (rx)y = ρ^(r)

for x, y e AT, r G K (use left-symmetry for the second equality). This shows

that P[ j = -[p x , p^], i.e., -p is a Lie algebra homomorphism. Thus dimp(A')

< 1, again by EngeΓs theorem. As before K = J + F 2, where / = kerp and

V2 = R or 0. Finally, L = J+V2+VV Denote Vt = span(ί;/). Suppose R L

is not proper; R = R L = R (F 2 + Fx) = R ϋx + R ϋ2. Then each ϋf. # 0
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since multiplication is nilpotent, and R vt= span(r/> for some {rv r2) which
is linearly independent. Note that rx v1 = 0 and r2 v2 = 0 since ρυ, is
nilpotent, and this implies r2 υx = βrx and rx υ2 = ar2 for some nonzero
α,/?. Therefore pVl+ϋ2 sends rγ -> ar2 and r2 -> /J^ and defines a nonsingular
map contradicting its nilpotency.

2.7 Corollary. (1) dim Lx Φ 2.

(2)//dimL = 3, ίhenTΦO.
If we denote the center of Lie algebra L by Z = Z(L), then Γ # 0 implies

C = Γ Π Z # 0 by the well-known fact for nilpotent Lie algebra (see, for
example, [12, p. 13]). If L is a Lie algebra g of a nilpotent Lie group G, then in
terms of simple transitive action, Q -> αff(fl) defined by X -> (λ^, X) in-
duces G -> Aff(g) and the exponential of C corresponds exactly to central
translations. Consequently, in group term, 2.7(2) simply says that if G is a
3-dimensional nilpotent Lie group which acts simply transitively on R3, then it
contains a nontrivial central translation. This fact is known to Fried-Goldman.
(Compare [18, Proposition 3.5].)

3. Extensions of left-symmetric algebras

In this section we will consider the extension problem of l.s. algebras by
imitating the well-known procedure for groups or Lie algebras. The case of l.s.
algebras is more complicated and it is not clear to us that a full cohomology
theory can be developed as in the Lie algebra case. We define only the
2-dimensional cohomology and establish the 1-1 correspondence with the
congruence classes.

We concentrate mainly on the central extension case because this is useful in
determining the nilpotent l.s. algebras inductively. In order to classify the l.s.
algebras up to isomorphism, we consider the actions of automorphism groups
on the central extensions so that the orbit space of this action corresponds to
the isomorphism classification (see [14] for more details and information).

Suppose we have two l.s. algebras A and K; we want to define an l.s.
structure on a vector space extension L of A by K so that

0 -+A -^L^K-^0

becomes a short exact sequence in the category of l.s. algebras.
Choose a linear map u:K -> L with p © u = id and denote u(x) = 3c. Then

an element of L can be written uniquely as a + 3c, a e A, x e K, and

(3.1) (a + 3c) -(b + y) = a b + 3c b + a y + 3c y.
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This product is left-symmetric, i.e. R(rs)ί = r(st) - s(rt) - [r,s]t = 0 with

r = a + 3c, s = b + y, t = c + z iff

(i) R(ab)c = 0, (ii) R(xb)c = 0, (iϋ) Λ(flZ>)z = 0,
1 ' } (iv) R(xy)c = 0, (v) R(ay)z = 0, (vi) R(xy)z = 0.

Note that we do not have to worry about the two missing conditions R(ay)c

= 0 and R(xb)z = 0 because of the identity R(rs)t = -R(sr)t. Also observe

that (i) is just the left-symmetry of A.

Since p(x y) = x y = /?(* ^), x y = Λ: y 4- g(x, >>) for a bilinear map

g : K X A' -> A. Define a linear map λ,p:K -+ QI(A) by λ^Z?) = x - b and

Py(tf) = α * P Then the conditions (3.2)(ii)-(v) become

(3.3)

(ii) ~ λ^fec) = λx(b) c + b- λx(c) - Pχ(b) c,

(iii) <=> ρz[ab] = a pz(fc) - b ρz(fl),

(iv) ~ [ λ ^ ] -λ [ j c J , j = λ/(JCfiy), where/(x,

(v) ~ [ λ ^ p j + pzp^ - pyz = p g ( > ; 5 2 ) .

Condition (vi) can be written as δg = 0, where

8g(x9y,z) = g(x,y z) -g(j,x z)
(34)

+ x g ( j z ) - j g ( x , z ) -f(x,y) z,

where /(x, ̂ ) is as in (3.3)(iv).

3.1 Proposition. There exists an l.s. algebra structure on a vector space L

extending an l.s. algebra A by an l.s. algebra K iff there are linear maps

λ9p:K -> g l(A) and a bilinear map g:KX K -> A such that δg = 0 and (3.3)

holds.

If A = E is a trivial l.s. algebra, i.e. all the products are 0, then (3.3)

simplifies to

(1) λ is a Lie algebra homomorphism (from (3.3)(iv)),
( 3 > 5 ) (2) [λ, , P z ] + PzPy - Pyz = 0 (from (3.3)(v))

and this gives a "ΛΓ-bimodule" structure on E.

Let £ be a AΓ-bimodule defined by (3.5). Then define a coboundary

operator 8X :SP{K, E) -* Se\K, E) and δ2 :άC2(K, E) ^ Se\K, E) by

h e J?(K, E) ~ S^ίx, y) = hx • y + x • hy - h(x • y),

geJ?2(K,E)~δ2g(x,y,z) = δg(x,y,z) defined in (3.4),
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where J?n(K,E) is the space of E-valued w-linear forms. Direct calculation
shows that δ 2 = 0 and this defines cohomology in dimension 2, Hχ p(K, E) =
Zλ,p/Bλ,p'

It can be shown that the congruence classes of the extensions of E by K is
in 1-1 correspondence with Hχ p(K, E) as in the case of group or Lie algebra
extension theory.

We call C = C(L) = {r e L\r s = 0 = s r, for all s e L} = Z(L) Π
Γ(L) the ce/iter of l.s. algebra L. (Recall that T(L) is the left kernel of L
defined by T(L) = {r e L | r .s = 0 for all s e L} and Z(L) is the center of
Lie algebra L.) An l.s. extension 0 - > F - » L - > ^ - > 0 i s called central if
i: F -> C(L), and in this case the ^-bimodule structure on V is trivial, i.e.,
λ = p = 0:K -» QI(V). Since actions λ and p are trivial, the coboundary
operation 8 has a simpler formula:

(3.7) 8g(x,y,z) = g(x,y - z) -g(y,x>z) -g([x,y],z),

geJ?2{K,V).

3.2 Proposition. Given K an l.s. algebra and V a trivial K-bimodule, a

central l.s. extension L exists iff there exists a bilinear map g:K X K -> V such

that δg = 0. In this case the product on L is defined by (a, x) - (b, y) =

(g(x, y)9 x y). Furthermore, congruence classes of the central extensions are in

1-1 correspondence with

H2(K,V)= {ge<?2(K,V)\δg = 0}/{δh\heJ?(K,V)}.

When a l.s. algebra K and a trivial A^bimodule V are understood, we denote
a central extension corresponding to a class [g]^ H2(K, F)byO-> V -> L
-> K -> 0; [g] e i / 2 (^, F), or simply by L [ g ]. Let 7g = N{g) Π C(ίΓ), where
^(g) = {x e AΊg(jc,^) = 0 = g(^,Jc) for all j ; G i [ } , the kernel of the
bilinear form g. Then it is easy to show that (α, x) e C(L) iff x G 7g, and
hence F = C(L) iff 7g = 0. Moreover, Ig = / g + δ Λ and 7 [ g ] is well defined
depending only on the cohomology class of g.

Let L = L[g] and 7/ = L [ g Ί be two central extensions of F by K. If
α e Aut(F) = G1(F) and η e Aut(AΓ), then (α, η) defines an isomorphism
θ:(a,x) -> (α(α) + )8(X),TJ(X)) from L onto 7/ provided η*g' = α*g - δ)8,
i.e., Ί7*[gr] = a*[g]. This suggests to us to define an action of G = Aut(F) X
Aut(#) on H2(K, V) by (α, η) [g] = α*(τj-1)*[g]. Denoting the orbit of [g]
by G[g], we can obtain

3.3 Proposition. (1) G[g] = G[g'] ^ L[g] s L [ g Ί

(2) G[g] = G[g'] >̂ L [ g ] = L [ g Ί Λo/ώ o/i £(ΛΓ,K), where E(K,V) = {[g]
e 772(A:, F) 17[g] = 0} = central extensions with C(L) = V.
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This proposition says that the classification of the exact central extensions of

V by K up to l.s. isomorphism is simply the orbit space of E(K, V) under the

obvious action of G = Aut(F) X Aut(iO

4. 4-dimensional nilpotent l.s. algebra without translations

Let L be a nilpotent l.s. algebra. If dim L = 2 or 3, then we know L^ = 0

from 2.5 and 2.7, and hence T(L) ΦOby 2.4, which implies C(L) = T(L) Π

Z(L) Φ 0. Now we have an l.s. short exact sequence, 0-*C-*L^>K-*0

with dim K < 2. First determine the 2-dimensional L to show L = R2 or

N2 = (el9e2\e2 e2 = ex), and then the 3-dimensional L inductively: Since

dim K = 1 or 2, we can easily calculate H2(K, C) and G = Aut(C) X Aut(AΓ)

from which we can obtain the classification as given in 3.3.

Unlike the 2- or 3-dimensional case, the 4-dimensional L does not neces-

sarily have a nontrivial Γ(L), hence a nontrivial C{L). In fact, it was

conjectured by L. Auslander [2] that T(L) Φ 0 for all dimensions and D. Fried

discovered a counterexample in the dimension 4 [7]. (Note that in terms of

simple transitive actions, T(L) corresponds to the translations. See the com-

ments following Corollary 2.7.) This type of l.s. algebra adds one more

difficulty to the 4-dimensional classification problem and will be described

completely in this section.

First of all recall that if T(L) = 0, then L^ Φ 0 (Corollary 2.4). Moreover,

dim L^ = 3 from 2.5 and 2.7. We will denote L^ by R for simplicity. Thus we

have a short exact sequence of l.s. algebras,

(4.1) 0 - > # - > L - > R ^ 0 , R = L(0 0 *

We choose a section u: R -> L as before and let w(l) = JC. Define λ, p e g l(R)

by λ(r) = x r and p(r) = r x, and let x JC = 5 e #. Hence λ and p are

nilpotent linear transformations of R such that

(1) λ(fl b) = λ(έi) b + α λ(6) - p(fl) 6,

(4.2) (2)p[ab] = a p(b)-b p(a),

(see Proposition 3.1). Moreover the necessary and sufficient conditions for

T(L) = 0 in terms of λ, p and s can be given as follows.

( 4 ) p ( / ) # 0 forί

(5) There is no r G R with the properties λ r = λ and p(r) = s.
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In fact, an element p e L can be written as r + ax with r e R. Note that

r e T(L) iff r G Γ(iί) and p(a) = 0, and -r + JC G Γ(L) iff λ r = λ and

0
1

.0

0
0

-1

0
0
0

o'
0
0

a
0
0.

with

a e R,

respect to e.

4.1 Lemma. R, as a Lie algebra, is the Heisenberg algebra.

Proof. Suppose R is an abelian Lie algebra. Then a p(b) = b p(a) from

(2). Given t G T(R), p(t) -r = r- p(t) = t p(r) = 0 for all r G #, and so

p(ί) G Γ(#). From (4), p(/) # 0 and we get a contradiction to the nilpotency

of p.

4.2 Lemma. There is a basis e = {eve2, e3} in R such that the structure of

R is given by (ev e2, e3 \ e2 e3 = el9 e3 e3 = e2) and

λ =

0
P = 1

.0

Since R is Heisenberg, d imZ(i ί ) = 1 and 0 Φ C(R) c Z(R) im-

plies that C(i?) = Z ( # ) = <c>. From (4), p(c) Φ 0 and hence {c,p(c)} is

linearly independent since p is nilpotent. Since φ = λ — p: Z(R) ^ Z(R) is

nilpotent, φ(c) = 0 and λ(c) = p(c). Now let ^ = {k G £ | r A: = 0 for all

r G # } Then we claim that # = (c, ρ(c)>. Clearly C E ^ and 0 = λ(r c) =

φ ( r ) c + r λ(c) implies λ(c) = p(c) e K. Note that K Φ R, otherwise R

would be a trivial l.s. algebra and hence an abelian Lie algebra. Thus

dim K = 2 and the claim follows.

[ λ , p ] + ρ2 = ps ==> λ(ρ(c)) — p ( λ ( c ) ) + p(p(c)) = c - s = 0

- 0 = λ ( p ( c ) ) = λ 2 (c) .

This shows λ:K -* K and λ = [? §] w ^ h respect to (c, ρ(c)}. On the other

hand, we claim p2(c) £ K. In fact, if we assume ρ2(c) G AT, then p:K -> K

and p = [? *] relative to (c, p(c)}. Since p is nilpotent, p = [? g] and

p 2(c) = 0. Again the nilpotency of p implies ρ:R^>K and so p[r, r r] = /* •

p ( r r ) - r ' ρ(r) = 0 for r, r r G jR. As R is Heisenberg, c = [r, r'] for some

r,r' & R and p(c) = 0, which contradicts (4), and whence the claim follows.

Therefore {c, ρ(c),p2(c)} form a basis for R and let e = {eλ = -c, e 2 =

-p(c), e 3 = p2(c)}. It is clear the nilpotency of λ and p implies that

0 0
1 0
0 -1

0
0
OJ

and λ =
Ό
1

.0

0
0
0

a
b
0.

with respect to e.
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Since C(R) = (ex) and K(R) = (eve2), the only possible nonzero prod-
ucts will be e2 e3 and e3 e3. Observe that φ(e2) = λ(e2) - ρ(e2) = e3 and

λ(e3) e K to obtain

(•) M*2 e3) = φ(e2) e3 + e2 λ ( e 3 ) = <?3 . <?3.

If e 2 e3 = 0, then e3 e 3 = 0 and # would be a trivial algebra. Hence

e2 e3 Φ 0 and this implies with e3 e 2 = 0 that [e2,e3] Φ 0 which is an

element of [R, R] = Z ( # ) = (eλ) and e 2 e3 = α ^ for α Φ 0. We may

assume a = 1 by defining new basis "e f " to be ( l / α ) e . Now from (*),

^2 = P(el) = λ ( ^ l ) = M*2 ^3> = ^3 * e3> a n d Λ = <*1> ^2' ^3 k 2 * ^3 = 1̂»

e 3 e3 = e 2 ) . Similarly, consider λ(e3 e3) = φ(e 3 ) e3 + e 3 λ(e 3 ) = (αex +

^ 2 ) ' e3 = ^ e i a n d M^3 * ez) = λ (e 2 ) = 0. Thus b = 0 in the matrix represen-

tation of λ and the lemma is proved, q.e.d.

Suppose we have a 4-dimensional nilpotent l.s. algebra L. Then we get an

extension of the form (4.1). The structure of R, λ = λ^, and p = ρx are

determined as in 4.2, and these are the necessary conditions. Conversely,

suppose we have a 3-dimensional nilpotent l.s. algebra R of the structure given

in 4.2. Then it is easy to check that λ and p given in 4.2 satisfy (4.2)(1), (2) and

also (4), (5). If we define s = peλ + qe2 — ae3 for any p, q, then we can

immediately show that the condition (3) is also satisfied. Hence we get a l.s.

structure on L (by Proposition 3.1) with T(L) = 0. Now let us write down the

structure of L explicitly using a basis. From 4.2, we have

eλ - x = έ?2, e2 x = -έ?3; x x = pex + qe2 - ae3.

Let e4 — x — ae2 — q/2ev Then

e2'e3 = el9 e3 e3 = e2\ e4 eλ = e2,

(4.3) el ' eΛ = e2, e2 ' eA = - ^ 3 ; ^4 e4 = Pel>

and all other products are 0.

For all p e R, L has a Lie algebra structure; [έ?2,έ?3]
 = ^υ [^2^4] = ~e3- I f

/? = 0, we denote the l.s. algebra given in (4.3) by Lo. If p Φ 0, then by letting

q = }fp and new " ^ 1 " = g 3 ^, " e 2 " = # 2 e 2 , " e 3 " = qe3, and " ^ 4 " = ^ 4 /^, we

can assume p = 1 in (4.3). We denote this by Lv It is easy to check that L o

and Lλ are not isomorphic keeping in mind that R = L^ is a characteristic

ideal. (The example D. Fried obtained is Lo.) We conclude as follows.
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4.3 Theorem. There are two (nonisomorphic) nilpotent l.s. algebras without
translations {i.e. T = 0). These are given by

L0 = (e\ie2>e3>eΔe2 ' e3 = el> e3 ' e3 = e2> e4 ' el = *2>

*Ί * e4 = e2> e2' e A = - ^ 3 ) '

L λ = < ^ i , e 2 , e 3 , e 4 | β 2 e3 = el9 e3 e3 = e2, e4 eλ = e2,

ex e4 = e29 e2 e4 = -e3, eA eA = e λ ) .

5. Classification
In this section we briefly sketch the outline of how to get the final list for the

classification of 4-dimensional nilpotent l.s. algebra L. There are five different
types of L according to the dimension of C(L).

(1) dimC(L) = 0: In this case necessarily T(L) = 0 and we have two
isomorphism classes found in Theorem 4.3.

(2) dim C(L) = 1 : L is an extension of the form
0 -> R -> L -> K -> 0; [g] e E(K, R), and K can be any of the 3-dimensional
nilpotent l.s. algebras. This is the most complicated case since we have to
calculate H2(K,R) and A\xt(K) for all 3-dimensional K and compute the
orbit space as in 3.3. We refer the reader to [14] for these calculations.

(3) dimC(L) = 2: L is an extension of the form
0 -+ R2 -» L - K -> 0; [g] e £(Λ:,R2), where K = R2 or JV2. The classifica-
tion of this type is easier than the previous one and again we refer the reader to
[14] for the details.

(4) dimC(L) = 3 : L is an extension of the form
0 -> R3 -> L -> R -> 0, [g] G £(R,R3). In this case it is easy to show that
there is only one isomorphism class.

(5) dimC{L) = 4: L is just R4, the trivial l.s. algebra.
As is well known, there are three 4-dimensional nilpotent Lie algebras up to

isomorphism (see, for example [5] or [6]). We will denote these as follows.

A = (xι,x2,x3jxΛ\ - > ; abelian,

(5.1) H = (xι,x2,x3,x4\[x2,x3] = *!>; Heisenberg θ R,

T= (X19X2,X39X4\[X2,X3] = * i , [*3>*4] = X2)-

We can recognize these three types easily from the observation that A, H, and
T are 1, 2 and 3-step respectively, or that the dimension of [LL] is 0, 1, and 2
respectively.

5.1 Theorem. Let L be a nilpotent l.s. algebra of dimension 4. Then, up to
isomorphism, we have the following table. {In the table, structure of L is written
with respect to a basis e = {el9 e2, e3,e4} presenting only nontriυialproducts.)
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5.2 Remark, (i) The table already shows the classification of 3-dimensional
nilpotent l.s. algebras K as listed in (2)(a)-(i) at the titles.

(ii) Apply Proposition 3.2 to obtain the nontrivial products from [h] e
E(K, C) c H2(K, C) in the table below.

(iii) In order to convert the l.s. algebra to the Lie subgroup of Aff(R4) which
acts simply transitively on R4, first read off the left multiplication λ : L - > ς I ( L )
from the nonzero products and then exponentiate (λ^, x) e αf f(R4) to obtain
the corresponding Lie group element. (Recall Proposition 1.1 for this process.)

(1) dimC = 0:

Nonzero product (Lie algebra type)
( eλ - e4 = e2

1. e2 - e3 = eu e3 e3 = e2,1 ^ . ^ = ^ , e2 • e4 = -e3. ( Γ )

( e
x
 - e

4
 = e

2

2 e
2
 e

3
 = e

u
 e

3
 • e

3
 = e

2
, | ̂ . ̂

 =
 ^ , e

2
 e

4
 = -e

3
, e

4
 e

4
 = e

v
 (Γ)

(2) dimC = 1: 0 ^ R -^ L -> K -> 0; [h] e E(K,R).

(a)K = J? = (bl9b2,b3\-)
[h] (h: K X K -> R is given as a matrix with respect to a basis b

(bl9b29b3)).

6.

8 r

e2 e2 = eι, e3 e3 = ev e4 e4 = ev (A)

lj
l 1

1 e2 e2 = eλ, e3 e3 = elt e4 e4 = -ex. {A)

-1 0
1
1

-1 0 1
1

1 1
-1 t

1

1 1
-1 / 11 > 0; e

2
 - e

2
 = e

λ
, e

2
 e

3
 = e

v
 e

3
 e

3
 = te

x
, e

4
 e

4
 = -e

λ
.

- 1 .

e2 e3

= eλ >

(b) K = Kv 0 ^ R -> ^ -> R2 -* 0 with g = ft], or 7^ = <Z>l9 62, δ3162

b2 = bv b3- b3 = bλ).

0 1 0 |

e
2
- e

3
 = e

lt
 e

3
 e

3
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10.

11,

0

0

1

1

o"
0
1.

o"
1
t _

e2 • e3 = = e2> = el + e2-

t > 0; e2 - e3 = ex, e3 e4 = eλ, e3 e3 = e2, e4 e4 = teγ + e2. (H)

(c) K= K2, 0 -> R ^ K2 ^ R2 -> 0 with g = [l_,l or K2 = (b1,b2,b3\b2

b2 = bl9 b3- b3 = -bx).

12.

13.

14.

15.

16.

17,.

0

"o

"o

"o

"o

0

1

1

1

1

1

1

o"

Γ

l"
1

Γ
1
1.

o"
0
1.

o"
1

e2 e3 = ex, e3 e3 = e2, e4 e4 = —β2.

5
 e
2 '

 e
3 =

 e
l>

 e
2"

 e
4 =

 e
l>

 e
3 '

 e
3 =

 e
2»

 e
4 '

 e
4

 =
 ~

e
2

' ^4 *
 e
4
 =
 —^2

' e
4
 e

4
 = e

λ
 - e

2

\
 e
2 '

 e
3 =

 e
l>

 e
3'

 e
3 =

 e
2>

 e
4 '

 e
4 =

 e
\ ~

 e
2

5 e2 • * e4 = te\ ~

(d) K = ^ 3 ( λ ) , 0 ^ R ^ ϋ : 3 - ^ R 2 - ^ 0 with g = [_} {], or K3 =

bl9 b2, b3\b2- b2 = bv b2- b3 = bv b3 b3 = λfe!).

0 1 1

18λ.

19λ

2O λ. r

0
. - 2

0
0

. - 2
0
0

1
0
1

1
1

1
0
0
1
0

L-2 / Oj

e
2
 - e

3
 = e

lt
 e

2
 e

4
 = e

lt
 e

3
 - e

4
 = e

2
, e

3
 e

3
 = e

2
,

e
4
 • e

3
 = - e = λe

2

e2 • ^ = el9 e2-e4 = elt e3 e4 = e 2 , β 3 e 3 =

' e4- e2 = -2el9 e4 e3 = ex - e2, e4 e4 = λ^2.

e 2 e 3 = e x , e2- e4 = elt e3 - e4 = e2, e3 • e3 =

' e2 = - 2 ίex - e2, e4 • e4 = λe2.

(T)

(T)

(T)

= bv

21.
0 1 0

-2 0 0
0 0 0

with g = [_? J], or K4 = <ftls ft2, b3\b2

(Γ)
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22.

23.

(0 κ =

24.

25.

26.

27.

28.

29.

30,.

31,.

0 1 0
-2 0 0

0 0 1.
0 1 1

-2 1 0
-2 0 - 1

* < , 0 -

e2 e3 = e?1? e 3 e 4 = e 2 , e 4 e 4

e 3 " ^2 = " 2 ^ , e 4 * ̂ 3 = - e 2 .

e2 • e3 = ex, e2 e4

' e3- e2 = -2ex, e4

elt e3 e4 = 2, e4 e4

3 = -e2.

(Γ)

(Γ)

R -> 0 with g ( l , 1) = <?1? or

0
0

.0

"o
0

.0
0
0

.1

"o
0 ,

.1
0
0

.0
0
0

.0
0
0

.1

0
0

.1

1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
1
0
0
0
0

0
0
0.

o"
1
0.

o"
0
0.

o"
1
0.

Γ
0
0.

Γ
0

o:/
0
0.
t
1
0

e2 - e3 = elt e4

e2 e3 = eλJ e3 •

e2 - e3 = elt e4

e3

e4 = e2.

-e4 =

1, ^4 * eΛ = ^2

1, ^4 ' e4 = Ϊ2-

*1

e2 e4 = el9 e3 e3 = elt e4 e4 = e2.

e2-e4 = el9 e4 e3 =

' I *4 *2

l s b3- b3 = b2).

e4 = elt e4 e4 = e2.

0 with g = [g J],

32.

33.

34.

35.

36.

0
1

.0
0
1

.0

"o
1

.0
0
0

.1

0
0

-1

0
0
0
0
0
1

0
0

-1
0
0
0

0
1
1

0
0

0.

o"
0

0 .

o"
0
0.

-Γ
0
0.
2
0
0.

e3

e2 e4
e 4 e2

e3 e4 = e2

. e3 = -eι'

e3 ' e3 = «1»

e 4 e3 = e ^

e4 - e4 = e3.

A if / = 1.

HiitΦl.

= (bvb2,b3\b2

(Γ)

(T)

(T)

(T)

= e3, {T)
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37,.

38,.

0 l

ί 0
0 0

0 )

0
0

= ( 1 " t ) β l 9

e3 - e2 = ex, e3 - e4 = e2,

TiitΦ 1/2)

(h) K = K7(μ), O^R-*KΊ^N^O with g = [° £], or tf7 =

{Z? 1 ? fe2? ^ 3 I ̂ 2 # ^ 3 = ^1> ^ 3 ' ^ 2 = / ^ l ? ^ 3 ' ^3 = ^ )

39μ.

40,.

0 0 0] e

0 1 0 .
Li o oj '

0
0

L(-+3μ)/2

e2 = elf e3-e4 = e2, (Case μ = 1: //)

^3 = M^2 ( C a s e μΦl'.T)

0 1 e2

Yμ)/2 0 l e 4

1 0 e, •

(-1

0 Oil
0 / 0

t- 1 + μ 0 0 I

= bv b3 - b3 = b2).

0

0

.1

"o
0

.1

"o
0

./

0

0

0

0

0

0

0
-1

o

o"
0

0 .

o"
1

0.

1

o
o

42.

43.

44,.

JO O i
45,. | 0 -1 1 | ;

e4 ' e2 =

e2-e4 =

e3 = q

e4 e4 = e3.

(Case/ι = 1: //)

1: T)

e3- e3 = telt e4 e4 = e3.

(Caseμ = l: A if / = 1, H if t Φ 1)

(Case μ Φ 1: // if / = 2 - μ, Γ if r ̂  1)

-> 0 with g = [ J g], or i ί 8 = (ft^ Z>2, i

(T)

(T)

0 Oj ί ^ ' ^ - e i

\ ^4 *3 = ^2 ' 4

(3)dimC = 2:0-R 2 ->L^,

(//if / = 1,

TiίtΦ 1)

if / Φ 1)

0; [A]

46.
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47.

48.

49.

50.

51,.

52,.

53,.

56.

57,.

*i
-e2

*1
-e2

[-:

l f \ * 4 *3 β - * l

(e3 e4 = e2,

e3

^ 3 = - ^ 2 '

• e4 = e-γ.

c i I I cr-j tΓ/1 — ίtΓi
1 1 ^ 0 ; ^ - ^ = ̂ , 3 4 * , e 4 . ,

e4 = te\

-teλ

(1 + 0-2

(1-0-2

e3 ' e3 = βι,

; / e 3 e 4 = (1 + r ) e 2

e4- e3 = (I - t)e2

el e\ ' *̂2
- e χ — ί e 2 e 2 J '

(1-O-2 o

- - 4 • - 4 = - 2

€3 ' €3
 ==

 6γ,

(/4 if r = 0,

HΊit> 0 )

(/ί if/ = 0,

// if r > 0)

(/I if r = 0,

• H if f > 0)

i *4 = *i + e:

-

• έ?4 = (1 + t)e2

' \ e4 e3 = (1 - t)e2

(H)

(A iit = 0,

// if ί > 0)

K = N1 = (bx,b2\b2- b2 = bλ).

58.

59. | ° el\Λeye*Ze} eΛ e4 = e3.

60,.

0 Γ \ *4 * *3 β *2

tex θ\;\e4

 ee3 =
 eteιe4'e4

(/4 if 7 = 1,

HύtΦ 1)

(4) dimC = 3; 0 -» R3 -» L -» R ^ 0, A(l, 1) = eλ.

61. e4 e 4 - e ! .

(5) dimC = 4; L = R4.

62. —
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