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ON 4-DIMENSIONAL s-COBORDISMS

SYLVAIN E. CAPPELL & JULIUS L. SHANESON

0. Introduction

The idea that topological problems can be converted into questions of

algebra and homotopy theory underlies much of modern higher-dimensional

topology of manifolds. The s-cobordism theorem, also called the Barden-

Mazur-Stallings theorem constitutes one of the basic building blocks of this

approach. Let W be a compact (n + l)-manifold with boundary the disjoint

union of manifolds M o and Mv Then this theorem asserts that for n > 5, W is

diffeomorphic, piecewise linearly homeomorphic, or homeomorphic, depend-

ing on the category, to a product Mo X [0,1], if and only if W has the

homotopy type of this product and a certain algebraic invariant τ(W, Mo) e

Wh(πλW\ the Whitehead torsion, vanishes. (See [12], [9] and [11] for the

topological case.) This result, whose simply-connected version πλW = {e} is

just Smale's Λ-cobordism theorem, at least provides a direction of attack in the

attempt to decide when two homotopy equivalent manifolds M o and Mx are

diffeomorphic—try to construct W or to measure the obstruction to doing so.

Moreover, Freedman demonstrated that this s-cobordism theorem is valid for

W a topological five-dimensional s-cobordism with fundamental group not too

large, e.g. finite or polycyclic; i.e., he showed that such a five-dimensional W is

homeomorphic to Mo X [0,1] under the same hypothesis on the vanishing of

the Whitehead torsion.

This paper provides a family of orientable counterexamples to the s-

cobordism theorem in dimension four. (It seems to have been fairly widely

understood (cf. [14]) that the realization of a certain non-orientable, non-

smoothable normal invariant yields a nonorientable (and nonsmoothable)

example.) Let Qr be the quaternion group of order 2 r + 1 ;

Qr = {y* Ay1 = * 2
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A representation of Qr in SO(4) is given by mapping y to the matrix

0 h \ j _ f i o

and x to the matrix

R{l/2r+ι) 0 \ _ ) = / C o s 2 τ r 0 sin2ττ0\
0 R(-l/2r+1)]' \-sm2τrθ coslπθ)'

Under this representation, Qr acts freely on the unit sphere S3; let Mr = S3/Qr

be the quotient manifold, i.e. a standard linear three-dimensional space-form
with fundamental group Qr Then this paper will exhibit 4-manifolds W with
boundary homeomorphic to Mr X {0,1}, so that for r > 2

(i) W satisfies the hypotheses of the s-cobordism theorem; and
(ii) W is not homeomorphic to Mr X [0,1].
The first section of the paper will construct W = W{k) and verify (i), where

k is any invertible knot in S3 whose 2r+1-fold branched cyclic cover is a
homology sphere. A first approximation V = V(k) to W is constructed by
removing from Mr X [0,1] a neighborhood of a Klein bottle and replacing it
by a bundle over the circle S1 with fiber the complement of k and with
monodromy the restriction of an inversion (an orientation preserving diffeo-
morphism of S3 that leaves k invariant and reverses its orientation.) This
smooth construction produces an s-cobordism with respect to local coefficients
in the integral group ring Z[Qr]; unfortunately (i) is not satisfied because the
fundamental group will be not Qr but an extension of it by a perfect group.
This problem can be corrected (smoothly) by spherical modification ("surgery")
along circles, at the cost of changing the simple homotopy type, and even the
homology. However, topological decomposition results of Freedman permit the
recovery of the original simple homotopy type over Z[Qr], without altering the
now correct fundamental group, by deleting extraneous copies of S2 X S2;
hence the topological manifold W{k) obtained by this construction will satisfy

(i).
The second section of the paper is devoted to proving the non-triviality of W

for suitable k. Let Δk(t) denote the Alexander polynomial of the knot k. Let
Z[x] c Z[Qr] be the subring generated by 1 and x, i.e. the integral group ring
of the subgroup of order 2r+ι generated by x.

Theorem {see Theorem 2.1). Suppose that W{k) is homeomorphic to Mr X
[0,1]. Then there exist i e Z and u e Z[x] such that

Δk{x) = ±xiu2.
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A crucial fact used in the proof is due independently to H. Rubinstein [15]

and to the authors [4]. It asserts that every homeomorphism of Mr that is

homo topic to the identity is actually isotopic to it. The basic idea—one-sided

Heegard splittings (see (1.1))—has been extended and applied in a number of

contexts [15]-[17].

It is probably well-known that the 2r+1-fold branched cyclic cover of A: is a

homology sphere if and only if Δk(x) is a unit in Z[x]. This can be derived

from the calculation of the homology in [7], which can be interpreted as taking

a type of norm of Δk(x). A proof can also be extracted from the proof of (2.2).

For example, let k be the (lr — l , 2 r + 1) torus knot.Torus knots are invert-

ible; view the (/?, g)-torus knot as the intersection of the locus {(z l5 z2) \ z{ +

zf = 0} with a small sphere and apply complex conjugation to obtain the

inversion. It is easy to check (3.2) that Δk(x) is a unit and not of the form

+ c'w2, for r > 2 and k the indicated torus knot. Hence W(k) is not a product

M/X[0,l] , r>2.

Using methods beyond the scope of this paper, the converse to the above

theorem can also be proven; i.e. that W(k) = Mr X [0,1] if and only if

Δ*(x) = ±xiu2. More generally, W(k) = W(k') if and only if Δ*(JC)Δ*,(JC)

has this form. From these results and the construction of §1, one then obtains

that the set Sr of homeomorphism classes of s-cobordisms of Mr to itself is in

1-1 correspondence

Sr = Z[x]*/{±x\ squares}.

It is well known that the group on the right is a Z2—vector space of rank

If — r — 1; an explicit basis is given in [2]. Thus So and Sλ are trivial,

S2 = Z 2 , 5*3 = ( Z 2 ) 4 , etc. The induced group structure on Sr can be given

geometrically by pasting along one end.

It remains unknown whether any of the nontrivial W(k) admit smooth

structures. All known smoothing obstructions applicable to this situation

vanish.

Added in proof. Some remarkable recent work of Donaldson shows that, in

one higher dimension than considered here, there are smoothly non-product

s-cobordisms. As these are simply-connected, the results of Freedman on

5-dimensional Λ-cobordisms, quoted above, imply that they are topological

products.

1. Construction of s-cobordisms
Let k be an invertible knot in S3. Let X = X(k) be the complement of the

interior of a tubular neighborhood of k. Then dX = S1 X S1, where Sι X {x}

is a meridian and {x} X Sι a longitude with linking number zero with k. The
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invertibility of k is equivalent to the existence of a diffeomorphism ψ: X -> X

with ψ(z l 5 z 2 ) = (zv z 2) for z, e S 1 = (z|z a complex number of modulus 1}.

Let Sι X^ X denote the bundle over S1 with fibre X and monodromy ψ; i.e.,

the mapping torus.

Now consider the 1-sided Heegard decomposition

(1.1) Mr = N(K)UH.

Here K is the Klein bottle, H is a solid torus, Â (AT) is the interval bundle

associated to the orientable double cover of K and dH = dN(K). To see

this decomposition, let S3 = {(zv z 2 ) | \zλ\
2 + | z 2 | 2 = 1}. Then the torus

{(z1? z 2 ) | \zx\ = \z2\ = 1/2} is invariant under the representation of Qr defined

above, K is its quotient, and H is the quotient of the complement a

neighborhood of this torus.

The embedding K= Kx {1/2} c Mr X [0,1] has the neighborhood N(K)

X [1/4,3/4]. As K is itself a bundle over Sι with fiber Sι and monodromy

z -> z, it is not difficult to see that this neighborhood can be described as

Sι X^ Xo, where Xo = S 1 X D2 is the complement of the trivial knot and

Ψo(zι°z2) = (zlyz2) for zι^Sι = {z\\z\ = \ ) a n d z 2 e Z ) 2 = {z\ \z\ < 1 } .

L e t

3 0 y = Θ^S1 Xψ o Jf0) = Sι

Then 3 y consists of Mr X {0,1} and the component

30

Hence we may define the union along the indicated boundary component,

(1.2) V=V(k)=YUdoYS
ιX^,X.

We wish to prove that V is an s-cobordism with local coefficients in Z[Qr].

Even to make sense of this statement, a homomorphism τrxF -> Qr is needed.

To construct one, first recall that as X is a knot complement, it has a (smooth)

map /: X -> Xo with / |3X = identity. The existence of / is a standard fact

(using S 1 = K(Z, 1) and Alexander duality). Equally standard arguments

prove the fact that ψ 0 / and /ψ are homo topic relative the boundary. The

homotopy gives a fiber map

T(f) 13(5' X ψ * ) = identity.

Hence a well-defined continuous map

g: V^Mr x[0,l]
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is obtained by setting g\ Y = id y and g\Sι X ψ X = T(f). The induced map

g J ) e:77 1F^7r 1(M rx[0,l]) = ρ r

is the desired homomorphism.
(1.3) Proposition. Suppose the 2r+ι-st branched cycle cover of k is a homol-

ogy sphere. Then g is a simple homology equivalence over Z[Qr].

We recall what the conclusion means [3]: The map g is covered by g:

V -» S3 X [0,1] where V is the covering space corresponding to the kernel of

the map g* on fundamental groups. The chain complex C*(g) can be defined

as the cellular chains of the mapping cylinder of g, relative V\ it will be a based

chain complex over Z[Qr]. Here Qr acts by covering translations and a basis is

given by choosing lifts of the relative cells of the mapping cylinder of g,

relative the subspace V. The statement that g is a homology equivalence over

Z[Qr] is equivalent to the statement that C*(g) is acyclic. In this case, the

Whitehead torsion

is defined, and the proposition asserts its vanishing.

Since dV = Mr X {0,1} and g°h = i d M for h the inclusion of either

component, it follows from (1.3) that h is also a Z[Qr] homology equivalence.

Further (compare [12]),

Thus τ(h) = 0, τ(Λ) defined with respect to the homomorphism g*: πλV -> Qr;

i.e.,

(1.4) Corollary. // the 2r+ι-st branched cyclic cover of k is a homology

sphere, then (V, Mr X 0, Mr X 1) is an s-cobordism over Z[Qr].

Proof of 1.3. Since g | Y is the identity, by excision (or the Meyer-Vietoris

sequence) for homology with local coefficients and additivity for Whitehead

torsion [12, §3] it suffices to prove that

is a simple homology equivalence over Z[Qr] with respect to the map

^ ( S 1 x ψ 0 *o) ""* *ι(Mr x [°>!]) = Qr induced by inclusion. But

T φ 1 Xψo XO) = πx(K) = { Milftiί"1 = w-1},

and the map induced by inclusion sends t to y and u to x. Let H =

{s, υ\sυs~ι = ι r \ ^ 2 + 1 = 1}. Then there is a factorization

where λ(s) = y, λ(v) = x, μ(t) = s, μ(u) = v. Hence it suffices to prove the

stronger result: T(f) is a simple homology equivalence over Z[H].
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View Xo a Sι X φo Xo as the fiber over the basepoint, and similarly for X.
Then there is an obvious commutative diagram

C

1
where C is the subgroup generated by υ and the top map sends the generator u
of ττιX0 to υ. We first assert /: X -> Xo is a homology equivalence over Z[C].
It is easy to see that this is equivalent to the assertion that the (unbranched)
2Λ+1-fold cyclic cover X of X has the (integral) homology of a circle. This
assertion follows by Alexander duality from the hypothesis that the 2r+1-st
branched cyclic cover of k is a homology sphere.

Let / be a map on 2r+1-fold cyclic covers lying over /. Then / = f(f)\X,
where f(f) is a covering map of T(f) on covering spaces corresponding to
keηu and ker(Γ(/)*/*). Let (C*,3) be the chain complex of / (see the
paragraph following 1.3); we assume /, ψ, ψ0, and the homotopy used to
construct T(f) all cellular. Then as / is a homology equivalence over Z[C],
(C*,3) is an acyclic chain complex. From an explicit cell decomposition it is
not hard to see that C*(Γ(/), Δ) can be constructed as follows:

Ci(f(f)) = ( ς Θ ς . J ® Z [ C ] Z [ H ] ; Δ | ς = θ,,

and for I G Ci_v

Δ,.(x) = ±(x - ψ*x) Θ θ .^jc) e (C,._! Θ Cf._2) ^ c

ψ + induced on the relative chains by (ψ, ψ0). Thus Δy looks like

'3.. 0

with respect to the sum decomposition of
It is an easy exercise from the definition of torsion to conclude that

f is acyclic and

This completes the proof of (1.3).
Let K be the kernel of

then K = πλV. By (1.3), g induces isomorphism of homology groups. Hence
K/[K, K] = Hλ(V) = 0. Let xl9--9xm be normal generators of K, and
represent them by disjoint smooth framed embeddings

φ,: S1 X D3 -+ Int(F), 1 < / < /w.
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Let V be obtained from V X [0,1] by attaching handles along the images of

the φ,; i.e.,

ί / = K x [ 0 , l ] u ( φ i U . . . u φ w ) x { 1 } | l J / i / j ,

where A, is a copy of D2 X D3. The manifold V is parallelizable (because Mr

is, //*(F, Mr X {0}) = 0, and BSO is a simple space). By well-known argu-

ments [10], for a suitable choice of the framings (i.e. the extension of φz | S
1 X 0

to S 1 X D3) it may be arranged that U is also parallelizable. By Van-Kampen's

theorem,

πιU=(ττιV)/K=Qn

with Mr X i c V c ί/, / = 0,1, inducing an isomorphism on πv

Clearly

3(7= (VX 0) U(3KX[O,1]) U ΪF 7 ,

where

Jit the copy of D2 X S 2 in 3/^. Since ί7 is obtained from V by attaching

3-handles, πxV
f = ̂ t / = β r .

Now consider

V the universal covering space. Intersection numbers yields a Hermitian

pairing over Z[Qr]

( , ) : L X L - > Z [ β Γ ]

Elements e l 5 -,em, / l 5 ,/ m in L can be defined as follows: /̂  is repre-

sented by the copy of 0 X S2 contained in hj. To define ej9 let

and let Vo c F be the induced covering. By general position, T^FQ -> ^ F

induced by inclusion is an isomorphism. It follows that the circle φj(Sι X z),

z e 3D 3, lifts to Fo. Since
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this lift will bound an orientable surface Sj in Vo. It also bounds a disk dj in
V' lying over the copy of D2 X z in hj. The union SJ U dj = Sj is a closed
surface and represents an element

Let

(1.5) Proposition. H2(V'\ Z[Qr]) = ττ2(F') is a free Z[Qr]-module with basis

That the intersection numbers are as indicated is apparent from the defini-
tion of the e, and /,. That they form a basis is a standard handlebody-theoretic
argument involving, in this case, the exact homology sequences of the pairs
(£/, V X 0) and (ί/, F') over Z[Qr]. We leave the details to the reader.

Now the results of Freedman apply to yield a topological connected sum
decomposition

y> = W(k)#m(S2 X S2)

where the yth copy of S2 X z represents eJ9 and the yth copy of z X S2

represents fy

(Strictly speaking, one should consider a self intersection form μ: L ->
Z[Qr]/{ξ - ξ}, defined using a framing of V\ and with ( , > as associated
bilinear pairing. But

μ(x) + μ(x) =(x,x)\

it follows in this case that μ(x) = 0 if and only if (x, x) = 0. Hence μ(et) =
μ(fi) = 0 automatically.)

(1.6) Proposition. (W(Λ:), Mr X {0}, Mr X {1}) w α« s-cobordism, and there
exists a (topological) s-cobordism Z relative the boundary from V to W(k\ over

ΆQλ
Proof. Let P be obtained from V X [0,1] by attaching 3-handles along

the spheres (S2 X z) X {1} in the above decomposition of V'\ thus P is
homeomorphic to the boundary connected sum of W(k) X [0,1] with m copies
of D3 X S2. Let(F' = Γ x 0 )

Z= U Uy,P.

Clearly Z is a relative boundary cobordism from V to W = W(k). We claim
that Z is an s-cobordism over Z[Qr].
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In fact, consider the inclusion W c Z. Then Z is obtained from W by first
attaching 2-handles, and then attaching 3-handles along 2-spheres in V
representing the classes /, above. Since (ei9fj) = δij9 the attaching sphere of
the yth 3-handle and the dual sphere (the "left-hand sphere") of the jth
2-handle intersect algebraically (over Z[Qr]) in 8iJ. It is a standard argument in
this case ([12], [9]) that W c Z is a homotopy equivalence with vanishing
torsion. Indeed, ΊTJV = πxZ = Qr, the chain complex C*(Z, W, Z[Qr]) is non-
zero except in dimensions 2 or 3, and, with respect to a basis of 2-cells and
3-cells given by the handles, the boundary map of this chain complex has the
identity matrix. Hence Z is an s-cobordism over Z[Qr]. In particular by
duality, F c Z will be a simple homology equivalence over Z[Qr]. Since V
itself is an s-cobordism over Z[Qr], it follows easily that W is also. Since
m^W = <2r, W is therefore an actual s-cobordism of Mr X {0} and MX {1}.

2. Nontriviality of W(k)

Let Δ^ denote the Alexander polynomial of the knot k\ then Δ*(x) e
Z[x\xr+ι = 1].

(2.1) Theorem. Suppose that W(k) is homeomorphic to Mr X[0,1]. Then
there exist i and u e Z[x \ xr =1] such that

The first step in proving (2.1) is to identify Δk(x) as a suitable type of
Reidemeister-Whitehead torsion. To do this, we return to the cobordism
V= V(k) and g: K->Afrx [0,1] defined just prior to (1.3). Let R =
Z[x \xr+ = 1], and let (x) be the cyclic group generated by x.

(2.2) Proposition. V contains a proper, smooth codimension submanifold L,

with (interval bundle) neighborhood N(L), meeting the boundary transversely, so

that

(i) (N(L\ L)ΠMX{i} = (N(K), K) X {/},/ = 0,1;

(ii) (g+)τ7'1(F — Int iV(L)) c ( c), the subgroup of Qr generated by x,
(Hi) H*(V - Int(iV(L), H X {/}; R) = 0, i = 0,1; and
(iv) τ(V- lntN(L)9HX {/}) = ΔA(jc)mod{±Jc'"}.
Here the homology groups in (iii) are defined using the local coefficients in

R = Z(x) provided by (ii). In view of (iii), the torsion in (iv) is defined; recall
that the determinant map proves an identification (see [1], [12]),

Wh((x)) = Rx/{±xi}9 Rx= units of R.
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Proof of Proposition 2.2. K can be moved by an ambient isotopy of Mr to a

Klein bottle K' c Mr that meets K transversely in a circle C which, suitably

oriented, represents x e Qr = ττ1Λfr. If AT is viewed in the usual way as a circle

bundle over S1, then K Γ) K' = C may be taken to be a fiber, and K' n N(K)

an annulus C X [-1,1] with C = C X {0}. This can be seen by considering the

union of N(K) with a boundary collar of H as the total space a circle bundle ξ

over the Mobius band (pictured in Fig. 1). Then K and K' will be the total

spaces of the restrictions of this bundle to the curves λ = Sι and λ' pictured in

Fig. 1; N(K) will be the total space of the restriction to the indicated

sub-Mobius band. Hence we obtain a new decomposition

Mr = N(K')\JH',

isotopic to the original decomposition of (1.1)

F I G . 1

Now, it is clear that, with the canonical identification N(K)X [1/4,3/4] =

Sι X ψo Xo, we have that the intersection

(κ'x[o,i])n(sιx+ox0)

is just the fiber Xo lying over the point λ Π λ' of Sι. Hence, viewing X as the

fiber of Sι XφQX over λ Π X we may form the union along dX = dXQ

r = ((rχ[o,i])n7)u9Ii

(Recall Y = Mr X [0,1] -
ψoXo) ) i s c l e a r t h a t

L' = g-\K'X [0,1]);

hence for N(L') any regular neighborhood of L', g*(fli(F— IntJV(L')) is

contained in the image of ir^H') = TΓ^M - K' X [0,1]). It is also clear that

this image is precisely ( x ) , since H' and // are isotopic and the core of H

represents x. Hence V satisfies (ii).
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An explicit construction of N(L') goes as follows:
First, let N(K') be the total space of the restriction of £ to a small Mobius

band with λ' as core and meeting λ = Sι in an interval / ' centered at λ Π λ'.
Then

{N(κ')x[o,ι])n(sιx+ox0)

is just the restriction of the bundle Sι Xψo Xo to the interval /'. Hence we may
define

N(L') = ({N(K') X[O,1]) ΠY)UE,

where E is the part of Sι Xψ X lying over /, and the union is taken along the
common part of the boundary, namely the part of S1 Xψ (dX) = Sι Xφo(dXo)
lying over /'. It is obvious that

It also follows that V - lnt(N(L')) is obtained as the union

where H' = Mr- Int N(K'\ F is the part of Sι Xψ X lying over S1 - Int /',
and the union is along the part of Sι X^(dX0) lying over Sι — Int/'. By
comparison, the product M X [0,1] - Int(N(K') X [0,1]) = H' X [0,1] has
the decomposition

((//'x[o,i])ny)πF0,

where Fo is the part of S1 Xψ (9^) lying over Sι - Int/', and the union is
along the part of Sι Xψo(9^0) lying over this interval. Further g|(iΓ X [0,1])
Π Y is the identity, whereas g\F: F -> Fo is a bundle map.

In fact, F = X X [0,1] and Fo = Xo X [0,1], as these are bundles over
intervals. As noted in the proof of 1.3, the canonical map /: X -> Xo is a
homology equivalence over R = Z(jc>, as consequence of the hypothesis on
the 2'+1-fold branched cyclic cover of k. It follows that g|F, which restricts on
each fiber to a map homotopic to /, has the same property. Hence by excision
(or the Mayer-Vietoris sequence for homology with local coefficients) and the
exact sequence of a pair, g restricts to a homology equivalence over R of

(V-IntN(L'),H'x{i}) with (H' X [0,1], H' X {/}), i = 0,1.

Hence

Hj(V- Int(L'),//' X {/};#) = 0 for all j .



108 S. E. CAPPELL & J. L. SHANESON

Since H' X {/} c H' X [0,1] is a simple homology equivalence over R, the

additivity of torsions over unions and compositions are easily applied to

deduce that in R x/{ ± x ι }

1 = τ(V- lntN(L'),Hx{i})τ(f).

Let m a dX0 be a meridian of the knot k. Then τ(X, m) is defined and the

additivity with respect to compositions gives

Hence

τ(V- lniN(L'),H x{/}) = τ(X,m) e Rx/{±xi).

An argument similar to [13, §5] shows that

This completes the proof of (2.2), but with L', K', H\ etc. in place of

L, K, Hy. To obtain L with the desired properties, just apply λ X id [ 0 Λ ] to L',

where λ is the final stage of an ambient isotopy throwing Kf onto K and Hf

onto H.

From now on we assume the hypothesis of (2.1), viz. that W'= W(λ:) is

homeomorphic to M X [0,1], Let

A: ( H ^ M X { O } , M X { 1 } ) -> ( M X [0,1], M X {0}, M X {1})

be a homeomorphism. After composition with (h\M X {0}"1 X id [ 0 ι]9 it may

be assumed that A | M X {0} is the identity. It follows (since M X {/} c W is

a homotopy equivalence) that A | M X {1} is homotopic to the identity. Hence,

by [15], [4], h\M X {1} is isotopic to the identity. By using this isotopy in a

collar neighborhood, we may arrange for the following crucial extra condition

on A: AIM X {1} is the identity.

Let Z be the relative the boundary s-cobordism of V and W, as in (1.6);

thus

Hence 9Z has the codimension one submanifold
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with the interval bundle neighborhood

'N{L)=N(L)umK)x{0Λ)h-1(N(K)x[0,l})

(2.3) Proposition. There exists a proper codimension one submanifold J of Z,
meeting dZ transversely, with interval bundle neighborhood N{J), such that

(i) 3/ = / Π dZ = L,

(ή)N(J)ΠdZ = N(L), and
(iii) (Z - I n t # ( / ) , S(J)) is 2-connected.

(In (iii), S(J) denotes the associated S°-bundle of N(J), easily seen in this case
to be just the orientable double cover ofJ.)

The detailed proof of (2.3) will be omitted. Using the homeomorphism h,
the smooth structure on V extends to one on ΘZ with V as a codimension zero
submanifold and L as a smooth submanifold. Under the assumption that this
smooth structure extends to a smooth structure on Z, the proof of (2.3) is
entirely standard in nature. One first recalls that, by a version of the Thom-
Pontrjagin construction, L = f\RPN~ι\ for /: dZ -> RPN a smooth map
transverse regular to RPN~ι, N large. Using the fact that homotopy classes of
maps into real protective space RPN are in 1-1-corresρondence with H\-\ Z2),
one verifies that / extends to F: Z -> RPN; make F transverse to RPN~ι

without changing F\dZ, and let / ' = F-\RPN~ι). Then J' c Z will satisfy
(i) and (ii), and / ' can then be altered to / satisfying (iii) as well by the
well-known codimension-one surgery technique of handle exchanges of one-and
two-handles, which is perfectly valid in a 5-manifold.

Actually, a similar argument holds as well in the topological category.
However, this requires topological transversality and, in particular, since
dim J = 4, the work of Freedman again. Hence we indicate briefly a method
that avoids 4-dimensional topological transversality. The Kirby-Siebenmann
obstruction 0(Z, 3Z) e i/4(Z, 3Z;Z2) measures precisely the obstruction to
extending the smooth structure on 3Z. It can be shown that there is a
topological s-cobordism of Mr X [0,1] to itself, relative the boundary, realizing
a given K - S obstruction in H4(M X [0,l]2,3(M X [0,l]2),Z2). The con-
struction involves the topological theory of surgery, Kirby-Siebenmann (Lashof-
Rothenberg) theory in higher dimensions (i.e., at least 5) and some calculations
of L-groups and normal invariants. This 5-cobordism can be glued to Z along
W = Mr X [0,1] to kill 0(Z,3Z); in other words Z may be modified to a
smooth s-cobordism, rel3, from V to W, and the smooth argument outlined
above then applies. [Thus, for the rest of §2, we could work entirely in the
smooth category. A completely different approach, modelled on [5], would
involve taking products with CP2 and applying high dimensional topological
methods.]
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Let / be as in (2.3), and let ZQ = Z - \ni N(J). Let h be surpressed from

the notation from now on; then

3 Z 0 = (V- lntN(L)) c S(J) c J / x [ O , l ] .

Further, by (2.3)(iii) and Van-Kampen's theorem, πxJ = Qr, iTιZ0 is cyclic of

order 2 r + 1 and π^H X {/})-» ^\Z0 is surjective. Hence we may view 77^Zo as

the subgroup (x) of <πλZ = πJV = Qr generated by x.

For the next part of the argument we will need to consider the following

exact sequences of chain complexes over R = Z[JC|JC2 + = 1]; the coefficients

R will be surpressed from the notation for the rest of this section

0 ^ C J | c ( F

-» Cj^Z^V - IntiV(L)) -> 0;

(2 4 2) ° C * ^ ( / ) U H X [ ° ' 1 ] ' H X { 0 ^ ~* C * ( Z ° ' H

-> C*{Z0, S(J)UHX [0,1]) -> 0.

[As noted above, we can be working in the smooth category, in which case

these chain complexes are defined from handle decompositions in the standard

way. In the topological category, one may apply [11] to obtain handle decom-

position of products of all the indicated pairs with a (given) disk, and use the

corresponding chain complexes for the exact sequences (2.4.1) and (2.4.2).]

(2.5) Proposition. # , ( Z 0 , H X {0}) = //,(Z 0, V - Int N(L)) is zero for i

Φ 2 and is a stably free R-module for i = 2. # , ( Z 0 , S(J) U H X [0,1]) - 0 for

i Φ 3 and is a stably free R-module for i = 3.

Proof. By (2.2)(iϋ), H*(V - IntJV(L), H X {/}) = 0. Hence, by the ho-

mology sequence of (2.4.1), H^ZQ, H X {0}) and H^Z^V - Int N(L)) are

isomorphic. Since everything is connected and the composite

πλ(H X {/}) -> πx(V - IntN(L)) -> W l Z 0 = (x)

is surjective, the groups H^Z^V — Int(L)) vanish for i = 0,1.

Consider the triple

S ( J ) c S ( / ) u ^ x [ 0 , l ] c Zo.

By excision,

which is clearly trivial for / < 1. By (2.3)(iii) (and the Hurewicz theorem)

//f ( Z 0 , £ ( / ) ) = 0 for / < 2. Hence, by the long exact homology sequence of

the triple, # f ( Z 0 , 5(7) U H X [0,1]) = 0 for / < 2. By Poincare duality,
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Hence these cohomology groups vanish for / > 3, and similarly for the
homology groups. Hence, by the argument of [18, 2.3], with minor modifica-
tions, it follows that //3(Z0, S(J)U H X [0,1]) is stably free. By Poincare
duality, the assertions about H^Z^V — Int(L)) also follow.

In view of (2.5), let b be a stable1 basis for H2(Z0, H X {0}), and let b also
denote the image of this basis under the isomorphism of (2.5), i.e., the
isomorphism to which the homology exact sequence of (2.4.1) reduces. With
respect to these bases, Whitehead torsions τh are defined in Wh((x)) =
Rx/{±xi}, and by [18, 3.2],

(2.6.1) τ 6 (Z 0 , J ϊx{/}) = τ(K

On the other hand, the homology exact sequence of (2.4.2) reduces to

(2.6.2)

It follows that the middle group is stably free and is the only non-vanishing
group of (S(J) U 7/ X [0,1], H X {0}). By duality

H3(Z0, S(J) U H X[O,1]) = H2(Z0,V - IntJV(L))

= HomR(H2(ZQ9V - IntN(L)),R)

has the dual basis b*. Hence the middle group has the basis c = b*b (see [12]
for the notation), and from (2.4.2) and [12, 3.2] we obtain

(2.6.3) r^Zo, H X {0}) = τc(S(J) UHX {0}) V ( Z 0 , S(J) U H X [0,1]).

By duality for Whitehead torsion

where R has the conjugation

This conjugation induces the identity on Rx/{±xi}; see [1]. Hence from
(2.6.1) and (2.6.3) we obtain

(2.7) τ(V - Int N(L), H X {0}) = τc(S(J) U H X [0,1], H X {0}).

Actual basis can be obtained by stabilizing using handle exchanges of trivial 2-handles to

replace J by its connected sum with copies of S2 X S2.
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But the inclusion

(s(/),s(ι:χ[o,i]))c(s(;)ufίx[o,i],ffχ{o})

induces an "excision isomorphism"; in fact, the relative chain complexes are

identical. Hence

(2.8) τ(V - Int N(L)9 H X {0}) = τc(S(J), S(K X [0,1])).

Now t ^ Qr operates on S(J) by the covering translation of a double cover.

In fact it is obvious from the definitions that C*(S(J), S(K X [0,1])) can be

obtained from C*(/, K X [0,1]; Z[<2r]) by restricting the module structure to

the subring R. In particular,

as Λ-modules, and similarly for cohomology. It follows from [18, §2] again

that the only non-vanishing group H2(J, K X [0,1]; Z[Qr]) is stably free

over Z[Qr]. Moreover, if d = {dl9- 9dq} is a stable basis, then {d, td) =

{dl9-—9dq9tdl9—-9tdq} will be a stable basis over R of H2(S(J\

S(KX [0,1])). Again, τd(J9 K X [0,1]) is defined. Recall the transfer map

induced by restriction of module structures from Z[Qr] to R.

(2.9) Lemma. tr(τd(J, K X [0,1])) = τ{dJd]{S{J\ S(K X [0,1])).

(2.10) Lemma. Let γ: Wh((x)) -> Wh(Qr) be induced by inclusion. Then

tr(y(ξ)) s ξ\

The first lemma is an exercise in the definitions. For (2.10), recall [1] that

every element £ of Wh{(x)) is represented by a symmetric unit u e Rx; i.e.,

u = w. So tr(y(ξ)) is represented by the automorphism of Z[Qr] as a right

Λ-module given by left multiplication by u. With respect to the basis {1, t) of

Z[Qr] over R, this has the matrix

u 0)
0 ΰ)(0

as ut = tΰ. The result follows.

Now consider the short exact (Meyer-Vietoris) sequence of chain complex

over Z[Qr] = Λ,

(2.11) -*C*(Z09HX{0)9A)<BC*(N(J),N(K)X[091]9A)

- > C , ( Z , M Γ x [ 0 , l ] ; Λ ) - > 0 .



4-DIMENSIONAL s-COBORDISMS 113

The long exact sequence of this short exact sequence reduces to an isomor-

phism (® = ® Λ ).

(2 12) ( Λ ® 1 > β ) : H2(S(J),S(KX[O,1])) β Λ

Here j * is as in the homology exact sequence (2.6.2) and δ is the extension to

Λ-modules of the identification of Λ-modules

H2(S(J),S(Kx[0,l])) = H2(J,Kx[0,l];A);

note that

(J,Kx[09l])-> (N(J),N(K) x[0,l])

is a simple homotopy equivalence.

Now, with respect to basis (b*b) ® 1 and {b ® 1, d}, the isomorphism

(j* <8> 1, δ) has matrix of the form

Γθ A,

[I A2

as 7* vanishes on each element of 36*; see (2.6.2). Hence Aι is invertible;

i.e. the image 36* of b* is a basis of H2(J,KX [0,1]; Λ), over Λ. Thus

{ 3Z>*, t(db*)} is a basis of H2(S(J), S(K X [0,1])) over R.

With respect to the basis b*b ® 1 and (6 ® 1,36*), the isomorphism of

(2.12) obviously has zero torsion; hence [12, 3.2] applied to (2.11) yields

since τ(Z, M r X [0,1]) = 1 as Z is an s-cobordism. Hence τdb*(J, K) is in the

image of γ. Hence

is a square, by (2.10), in Rx/{±x1}.

Applying the quotient notation of [12] for the element in a Whitehead group

represented by a change of basis matrix, we easily obtain from the definitions

W S ( / ) , S(K X [0,1])) = τ{db.%tdb.}S(K X [0, l))[b*b/{db*9 tdb*}].

Hence, by (2.8) (c = b*b) and (2.2), the proof of (2.1) is reduced to showing

that

[b*b/{db*,t(db*)}] = [b/j\t(db*)]

is a square in Rx/{±xi}(= Wh((x)).).

To prove this, consider the bilinear pairing φ on H3(Z0, S(J) U H X [0,1])

given by

φ(a,β)=(Dj*(tda),β),
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where D is the appropriate Poincare duality isomorphism, and (-, -) is the

evaluation of cohomology on homology. Then the change of basis matrix B

expressing j*(t(db*)) in terms of b is clearly the matrix for φ with respect to

the basis 6*. On the other hand, it is a well-known argument to show that

φ(a,β) G R is the intersection number of the homology classes t(d, a) and dβ.

Hence

= -xr+φ(cc,β),

as on S(J) the operation given by t reverses orientation and carries x e πλS(J)

to x"1. Hence

(2.13) B = -xrB',

B* = transposed of B. In [6], it is proven that for an invertible matrix over R

satisfying (2.13), dettf = ±w2, some u e Rx. Thus [b/j*t(db*)] = det£ e

« jc» = Λ x /{±*' '} is a square.

3. Further results

With only minor modifications, the results of §2 can be improved to the

following:

(3.1) Theorem. Let k and k' be invertible knots with ΔA:(JC) and Δk(x) units

in R = Z[x\xr+1 = 1]. Then the s-cobordisms W(k) and W(k') from Mr to

itself are homeomorphic only if, for some i and u e Rx,

Δk(x)Δk(x)= ±x>u\

Using more sophisticated, surgery-theoretical methods, beyond the scope of

this paper, the converse to this theorem can also be proven: If Δk(x)Δk,(x) =

±xlu2, then W(k) and W(k') are homeomorphic.

One particularly nice example is given by letting k be the (p,q) = (2r —

1,2r + 1) torus knot. It is well-known that k is invertible. For example, view k

as the intersection of a small sphere with the complex algebraic variety in C 2

given by z[ + zf = 0; then complex conjugation in each co-ordinate provides

the inversion. Further

Δk(T) = (T^ - ί)(T - l)/(Tp - 1)(Γ* - 1)

(3.2) Proposition. Δ^(JC) is a unit, but Δk(x) Φ ±xiu1.

We leave the proof mostly as an exercise. One method is to use the fibered

square:

R *εR/{l + * + ••• + J C 2 Γ + 1 )

Z > Z / 2 r + 1 Z
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Then ε(Δk(x)) is the product of cyclotomic units, and a(Sk(x)) = Δ^(l) = 1.
From this it follows that Δk(x) is a unit; i.e. the 2r+1-fold branched cyclic
cover of A: is a homology sphere. To see it does not have the form ±xiu2, it
suffices to pass to the ring R $ Z2. In this ring, x'u2 always has the form
xεΣatx

21), ε = 0 or 1. It is easy to see that Δk(x) does not have this form. [For
example, for r = 2, the (3,5)-torus knot yields

Δ*(JC) = -x1 + x5 + x4 + x3 - x + 2.]

Every element of Rx/{±x1} can be represented by a self-conjugate poly-
nomial p with p(l) = 1, and every such polynomial is the Alexander poly-
nomial of a knot. In fact, one can obtain every element of R x from invertible
knots. Hence there actually are at least 2r~r~ι distinct s-cobordisms of Mr

with itself. For example, for r = 2, we have M2 and W(K), k the (3,5)-torus
knot, whereas for r = 1, granting the converse of (3.1), every s-cobordism of
Mr to itself is homeomorphic to Mλ X [0,1].
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