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BOUNDS ON THE VON NEUMANN DIMENSION
OF ZΛCOHOMOLOGY AND THE GAUSS-

BONNET THEOREM FOR OPEN MANIFOLDS

JEFF CHEEGER&MIKHAEL GROMOV

0. Introduction

In this paper we continue the discussion of [6]. In §§1-3, we prove those
results concerning the Von Neumann dimension of ZΛcohomology spaces (L2

Betti numbers) whose proofs were given only for normal coverings which are
profinite.1

The ZΛcohomology techniques turn out to be useful in other contexts as
well. For example, in [7] we simplify the proof of the theorem of Gottlieb and
Stallings, which states that if a K{π, l)-space is homotopy equivalent to a finite
complex and π has nontrivial center, then the Euler characteristic χ(ΛΓ(π, 1))
vanishes. In fact, we show that it suffices to assume that ΊT has a nontrivial
normal amenable subgroup.

In §4 we extend the result of [6] concerning the η-invariant to the not
necessarily profinite case. For this we define a corresponding invariant τ/(2) by
means of the Γ-trace.

In §5 we extend our results to certain metrics which are conformally related
to those considered in §1. We also give an intrinsic criterion (Theorem 5.5) for
a metric to be of this type.

As background for §§1-3 of the present paper, we now recall some material
from [6]. There we considered a complete riemannian manifold Mw, whose
sectional curvature, K, and volume, Vol(M), satisfy \K\ < 1, Vol(Λf) < oo.
Here we will be concerned exclusively with the particular case in which

Received October 10, 1984. The first author was partially supported by National Science

Foundation grant MCS 8102758 and the second author by grant MCS 8203300.

1 A covering M is profinite if there exist subgroups I) c ^(Λ/), of finite index, such that

ΠΓj = Γ = τr1(Λ/).



2 JEFF CHEEGER & MIKHAEL GROMOV

geo(M) < 1 for some normal covering/?: M -> Λf, M/Γ = M. The condition

< 1 means that \K\ < 1 and the injectivity radius, i(X\ satisfies

1. As in [6], it actually suffices to assume geo(£/) < 1 for some

neighborhood U of infinity. The details of this generalization are not difficult
and will be omitted.

Let 7r̂  denote orthogonal projection on φ1', the space of closed and coclosed

square integrable /-forms of M. Then

(0.1) i r * ' ( ω ) = ί h ι ( x , y ) Λ * v ω ( y ) 9

where A'(x, j>) is a symmetric C°° double form. The assumption geo(M) ^ 1,

together with the elliptic estimate for the Laplacian implies that the pointwise

norm of A'(JC, γ) satisfies

(0.2) \\h (x,y)\\^c(n)

(n = dim M). 2 Since hι(x, y) is invariant under isometries, we can regard its

pointwise trace, tτ(hι(x, x)), as a function on M, and put

(0.3) b{2)(M) = ί tr(A'"(jc, x)) dx < oo,
M

where the integration is with respect to the natural volume element. Observe

that Γ acts on the reduced ZΛcohomology space H{2)(M) = ker d/ im d. The

number b'(2)(M) can be interpreted as the Von Neumann dimension (from

now on we just say Γ-dimension) of the Γ-module i/('2)(M) (see §2 and the

references cited there for further discussion of Γ modules). It follows by a

standard argument that ~b[2)(M) is a quasi-isometry invariant of M. A main

concern here is to show that in fact, bι

(2)(M) is a homotopy invariant (Theorem

6.2 of [6]). To this end we show that the Γ-module H[2)(Mn) is the inverse limit

of the system Ήl2){p~ι{B)), corresponding to the possibly disconnected cover-

ing spaces p~\B\ over all open sets with compact closure B c Mn. We can

then apply the known fact that (the isomorphism class of) the Γ-module

H{2)(B) is a homotopy invariant of B (see [13]).

The above result and others proved below are easy consequences of the

assertion that M admits an exhaustion M = UMk by compact submanifolds

with boundary such that

(0.4) Vol(3Mj -> 0,

(0.5) \\ll(dMk)\\<c

2 Throughout the paper we indicate the dependence of constants appearing in estimates on
parameters, by writing, e.g.,. c(n) for a constant which depends only on n.
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for some constant c. (Π(dMk) denotes the second fundamental form of dMk.)

The sequence {Mk} is called a sequence of good choppings. Grant for the

moment that such a sequence exists. Let hι

k denote the kernel corresponding to

projection on the harmonic /-forms for p~1(Mk) c M. By the elliptic estimate

for manifolds with (controlled geometry of the) boundary, as in (0.2),

(0.6) \hk(x,y)\\<c(n).

It follows that

(0.7) lim bUdMk) = 0,
k-+ oo

and in the same way

(0.8) lim b[2)(M\Mk9 d(M\Mk)) = 0.
k-*ao

Let V(2)(B) be defined by

(0.9) Vm(B) = dimΓ(im Hi2)(p-1(B),p-\dB)) c H 2)(p'ι(B)))

and for A c B, put

(0.10) b'm(A, B) = dimΓ(im Ή'm{p-\B)) c H(2)(p-ι(A))).

Then

(0.12) h l )

It follows from (0.7), (0.8) and the exact cohomology sequences for L2-

cohomology spaces which are Γ-modules (see §2) that

(0.13) ~b{2)(M)= lim V(2)(Mk) = lim lim bι

(2)(Mk, M 7).
k-+ao k->oo I-* oo

By (0.11), (0.12) we then have

(0.14) b[2)(M) = lim V(2)(Bk) = lim lim b'{2)(Bk, B,)
k-*oc k—> oo /—* oo

for fl«^ exhaustion M = U^^. This is easily seen to be equivalent to the

statement that i/ ( '2 )(M) is the inverse limit of {H[2)(p~ι(B))} (where B is

compact); compare [7].

However, as noted in [6], condition (0.5) in the definition of a good

chopping is technically difficult to achieve. In the profinite case, we cir-

cumvented this point by passing to a sufficiently large finite covering space

pN{ky MN(k) -> M (where M -> MN(k) -> M) on which, say,

(0.15) ( )
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A cruder chopping result could then be applied (see [6, Theorem 2.1 (Neigh-

borhoods of bounded geometry)]). Since the V, V are multiplicative under

finite coverings, (0.14) follows directly.

Here, rather than constructing a sequence of good choppings, we will

generalize the argument just described for the profinite case. The basic

observation is that in a suitable sense, an arbitrary covering is locally profinite.

More precisely, we have the following (compare [14]). Let \K\ < 1. There are

constants cx(n), c2(n) such that if BR(q) is a metric ball of radius R < cλ(n)

and /: BR(q) -> B4R(q) is the inclusion, then i(7r1(BR(q))) c B4R(q) is a

nilpotent subgroup of index < c2(n).3 As a standard algebraic consequence, if

U c BR(q), i: πx(U) -> TTX{M) and Γ c πx(M), then Γι(T) c πλ(U) is pro-

finite.

The induced covering space tjcorresponding to the subgroup i~ι(T) a π^U)

can be identified with a single component of p~ι(U) c M. It is clear from (0.3)

that

(0.16) dimτ H(%(p-ι(U)) = ώmrHT)H{%(U).

Let Tr(U) denote the tubular neighborhood of radius r and asume that

Tr(U) c BR(q). Then applying the argument in the profinite case gives the

basic local estimate

(0.17) b[2){U, Tr(U)) < c(«)(l + r-")Vol(Tr(U)).

In fact, the estimate given in (0.17) holds without the hypothesis Tr(U) c

BR{q). This can be seen by combining (0.17) with an argument based on the

double complex associated to an open covering Uαί/α = X c M. The resulting

global estimate is the main step in proving (0.14).

We are grateful to Han Sah for several helpful conversations.

1. Statement of main results

For the convenience of the reader, we begin by recalling the results of [6]

concerning L2-cohomology, whose proofs in the general case were deferred to

this paper. Theorem 1.1 corresponds to Theorem 3.1(1), (3), Theorem 5.1 and

Theorem 6.2 of [6]. Theorem 1.2 corresponds to Theorem 7.1 of that paper.

3 Actually, more is true, but the above suffices for present purposes ( q (n) is called the Margulis

constant).
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If M is a riemannian manifold with \K\ < 1 and Vol(M) < oo we put

(1-1)

(1.2) σ(M9g)=f PL(Ω),
JM

where ^X(Ω) and PL(Ω) denote the Chern-Gauss-Bonnet form and Hirzebruch
L-form, respectively.

We now define the L2-Euler characteristic and signature by

(1.3) i

(1.4)

According to the ZΛindex theorem of [6] (compare [1], [11], [18]).

(1-5) x(M,g) = χ ( 2 ) (M),

(1.6) σ(M,g) = σ ( 2 )(M).

Theorem l.l.4 Let M be complete, \K\ < 1, Vol(M) < oo and suppose that
geo(M) < 1 for some normal covering.

(1) For any exhaustion M =

(1.7) Urn bj 2 ) (Mj = lim lim b[2)(Mk, M,) = b'2)(M).
k-+ oo k-*oo 1-* oo

In particular, the b'(2)(M) are homotopy invariants of M.
(2) χ(M, g) and σ(M, g) are homotopy {respectively proper homotopy) in-

variants of M.
(3) // M has the topological type of some Mk c M, then

(1.8)

(1.9)

Proof. (2) The homotopy invariance (respectively proper homotopy invari-
ance) of χ(M, g) and σ(M, g) is a consequence of (1) and the ZAindex
theorem, (1.5), (1.6).

(3) If M has finite topological type, we can find an exhaustion such that the
inclusion Mk -> M is a homotopy equivalence for all k. In this case we have

(1.10) k2)(Mk, Mk) = bl2)

and the equality (1.8) follows from (1.7). Thus,

(in)

4 We refer to [6] for earlier results concerning χ( M, g).
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and (1.9) follows from (1.5) together with the corresponding ZAindex theorem

for the compact space Mk (proved, for example, as in [1], [6] or [11]).

(1) The equality (1.7) is an immediate consequence of the various subcases of

(3.13) of Theorem 3.3. Hence, its proof will be deferred.

The homotopy invariance of b'{2)(M) follows from (1.7). In fact, let /:

M -> X, g: X -> M determine a homotopy equivalence and let M, X be

corresponding normal coverings. We can assume/, g are simplicial with respect

to some triangulations of M, X. To each finite subcomplex, say Kj c M", we

can associate simplicial ZΛcohomology spaces H{2)c(KJ), defined using square

integrable cochains. By [13], the Hι

{2)c(K) are functorial and are homotopy

invariants. Moreover, we have

if K " determines a compact submanifold with boundary.

Let ΌkMk = M and \Jk,Xk, = X be exhaustions. For fixed k, let k' be

chosen so large that

(1.13) f(Mk)<zXk..

Next fix /' with

(1.14) Xk.cXr.

Let ht be a homotopy of g/"to the identity. Choose / so large that for each t,

(1.15) Λ , ( M Λ ) c M 7 ,

(1.16) g(Xr)<zMt.

Let p^ β denote the inclusion of A into B and p^ β the corresponding

restriction map, p* β : Hι

{2){B) -> Hι

{2){A). Then we have a commutative dia-

gram

(1.17) /

/

where the composition gf is homotopic to the inclusion pMkM/. Hence

(Λ <Λ £(2)( M *' M / ) = ™nkrP*Mk,M, = rankΓ(g/ )* = (

Then

(1.19) lim £; 2 )(M,, M7) < lim b[2)(Xk., Xr)
/->oo /'-»oo
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and so

(1.20) lim lim bι

(2)(Mk, AT,) < lim lim b{2)(Xk,, Xr).
A:—>oo /—>oo λ:' —• oo /'—• oo

Thus, by (1.7),

(1.21) b

and, in the same way, the reverse inequality follows.

Theorem 1.2. Let N be compact and let N -> N be normal. If [0, oo) X N

admits a complete metric with Vol([0 oo) X N) < oo, geo([0, oo) X N) < 1, then

for all /,

(1.22) b'i2)(N) = 0.

Proof. I f w e a p p l y ( 1 . 7 ) t o t h e e x h a u s t i o n ( J [ 0 , k]X N of [0 , o o ) X N, i t

f o l l o w s t h a t

( 1 . 2 3 ) 0 = i > ; 2 ) ( [ 0 , k ] x N ) = έ ; 2 ) ( [ 0 , k ] X N , [ 0 , 1 ] X N ) = b ' i 2 ) ( N ) .

In summary, all the results of this section are consequences of (1.7), which is

contained in Theorem 3.3.

2. Homological properties of Γ-modules

In this section we discuss some basic homological properties of Γ-modules.5

Essentially, complexes of Γ-modules behave like complexes of finite-dimen-

sional vector spaces, provided a certain technical condition (d is Γ-Fredholm)

is satisfied. But the fact that the Γ-dimension can be an arbitrarily small real

number gives a characteristic flavor to the applications (compare (0.17) which

has no analog for ordinary Betti numbers).

Let Γ be a discrete group. A Γ-module A is a pre-Hilbert space on which Γ

acts by isometries and which can be equivariantly isometrically imbedded as a

subspace of L2(Γ) <S> H. Here, the action of Γ on L2(Ω) is via the left regular

representation and H is a Hubert space on which Γ acts trivially. As in the

references cited, we can attach to A a nonnegative extended real number,

0 < dim A < oo, which is independent of the imbedding φ.

If A # 0 , then dim A > 0. Moreover, the Γ-dimension of a pre-Hilbert space

is equal to that of its completion. As usual,

(2.1) d i m r ^ θ A2) =

5 We refer to [1], [6], [11], [16] for further background on Γ-modules.
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The following property of Γ-dimension is crucial. If Bj + ι c Bj9 j = 1,2, ,

are closed and dim Bλ < oo, then

(2.2) dimΓ Π Z?7 = lim dimΓi?7.

Finally, let I\ c Γ2 and let A1 be a ^-module. If A2 is the Γ2-module arising

from the induced representation of Γ2, then

(2.3) dimΓi Ax = dimΓ2 A2.

Example 2.1. Let M = M/T2, Vol(M) < oo and geo(M) < 1. Let/?: M ->

M and ί / c M b e open. Then £/ = p~\U)/T2i but p~ι(U) need not be

connected. Consider some Γ2-module naturally associated to M, for example

the space EJ(λ, M), corresponding to the spectral resolution of the identity for

the Laplacian on /-forms of M. As in (0.2), (0.3), the elliptic estimate implies

dim Ei(λ,M)< oo. If /: U ^ M, then Γ2 = mx(M)/mx(M\ The isotropy

group, I\, of some component Uoίp~ι(U) is isomorphic to π1(U)/i~ι(π1(M)).

The Γ2-module EJ(λ, p~ι{U)) arises from the representation of Γ2 induced

from the Γ rmodule Ej(\,U), and by (2.3)

(2.4) dimΓιE
J(λ,U) = dimΓ2 ^

y (λ, p'ι(U)).

A morphism iλ\ Aλ^> A2 of Γ-modules is a densely defined (possibly

unbounded) linear operator which commutes with the action of Γ. All maps

below are assumed to be of this type.

Let

(2.5) Aλ^A2^A3.

Since

(2.6) dimΓiι(Aι) = dimΓ i^A^ ,

we make the following convention. The sequence (2.5) is called exact if

(2.7) im/*! = ker i2.

The statement that dimΓ is independent of φ can be extended significantly.

Namely, if

(2.8) 0 -+Al^>A2->0

is exact, then dimΓ^41 = dimΓ^ί2. To see this, replace iλ by (z*/ 2)~ ι / 2i v the

isometric part of its polar decomposition.
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A differential T-module is a Γ-module A, together with a morphism d:

A -> A, satisfying d2 = 0. Morphisms of differential Γ-modules are always

assumed to be bounded and to commute with differentials. We define the

homology spaces H(A) by

(2.9) H(A) = keτd/imd.

Note that since we use im d (in order to be assured of obtaining a Hubert

space), H(A) is a so-called reduced cohomology space and not a cohomology

space in the usual sense. Clearly, H(A) is a Γ-module in a natural way. From

now on we assume άimΓH(A) < oo (this assumption will have to be

strengthened below). Suppose

— Ί — h —
(2.10) 0 -> dom dλ -> dom d2 -> dom d3 -> 0

is exact and that there exist bounded morphisms ijι: domdJ+ι Π im ij ->

dom J y , y = 1,2. Then the reduced homology sequence

( 2 n )

can be defined by a trivial modification of the standard definition for ordinary

homology. However, in this degree of generality (2.11) need not be exact. The

pathology arises as a consequence of the fact that d'1 need not be a bounded

operator. Equivalently, im Jneed not be a closed subspace.

Example 2.2 (Manifolds with cylindrical ends). Let M be a compact rieman-

nian manifold with dM Φ 0. Assume that the metric is a product near dM.

Put X = M U [0, oo) X 3M, where the union is along dM and the metric on

[0, oo) X dM is the product metric. If we view the reduced ZAcohomology as a

Γ-module with trivial Γ-action (so that dimΓ = dim) we have

H[2)(X, [0, oo) X dM) =- H\M, 8M),

(2.12) ^ (ί 2 )([0,oo)x3M) = 0,

H{2)(X) = im H'iM^dM) a H'iM).

Thus, the reduced ZΛcohomology sequence of the pair (X, [ 0, oo) X dM) is

not exact if im H\M, dM) Φ H\M).
In order to ensure the exactness of (2.11) a condition must be placed on the

operators dj. In general, a morphism iλ Ax-+ A2 will be called T-Fredholm if

for some λ 0 > 0, the spectral projections, £ ( λ 0 ) , of the unbounded self adjoint
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operators zyf and ifiι satisfy dim Γ £(λ 0 ) < oo (in our notation the spectral

measure is dE(λ)).

Theorem 2.1 (Exact homology sequence). Let Aj be as in (2.10), and assume

in addition that the differentials dy are Y-Fredholm. Then the reduced homology

sequence (2.11) is exact.

Proof. We will check that im if = ker /*• The other cases follow by similar

arguments. Since clearly im /* c ker ι j , if we put

(2.13) U = ( i m / * ) " L Π k e r / * ,

it suffices to show dimΓ U = 0. For j = 1,2,3 let

(2.14) φy. = {zeAjldz = d*z = 0}.

Then p: QJ

2 -> H(A{) is an isometry. We identify U with the corresponding

subspace of φ 2 . Since U c ker i 2,

(2.15)

Let ττλ denote orthogonal projection on ^ 3 ( λ ) . We claim that kerτrλ/2 |U = 0

for λ > 0. For if x e ker ττλ/2, then i2x e dom d~ι, and in fact,

Put

(2.17) y = Γ2

ιd-h2{x).

Then

(2.18) x — dy e ker i2 = im ί'
x ,

contradicting (2.13). Thus, wλ/2 |U is an injection for all λ > 0. Since d2 is

Γ-Fredholm, by (2.2) we have

(2.19) lim dimΓ $ £ n £ 3 ( λ ) = 0.
λ—>0

So

(2.20) d i m Γ U = 0,

which suffices to complete the proof.

Example 2.3 (Mayer-Vietoris). The Mayer-Vietoris sequence, implied by

Theorem 2.1, can be employed to estimate the ZΛbetti numbers, b'iU" U U2"),

where for example, U", U2" c Mn are compact submanifolds with smooth

boundary such that dU", W2 intersect transversally. In this case, U" U U2,

U" Π U2 are piecewise smooth and hence are quasi-isometric to smooth
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manifolds with boundary. Thus the hypothesis of Theorem 2.1 is satisfied

(compare [5]) and we obtain the estimate

(2.21) b^iU, Π U2) < b^iUj + b{2){U2) + b{2)\Uλ Π U2).

Our main estimate, (2.52), is in the spirit of (2.21) but for (possibly infinite)

locally finite covers {Ua} of some X = \JaUa, by arbitrary open sets with

compact closure. Since the Ua are arbitrary, it becomes necessary to replace

b[2){U) by a relative invariant b'(2)(r, U) (0 ̂  r < oo) which is automatically

finite if r > 0 and Ua has compact closure. In fact, keeping in mind the

definition of "Γ-Fredholm", we will consider invariants b'(2)(λ, r, U) (λ > 0)

defined as follows.

Let p: A!(p-\Tr(U)) -• M{p-\U))) denote the restriction map. Consider

the unbounded operator d~ιp on the subspace of closed forms ψ e

A\p~ι(Tr(U)))Π L2 such that ρ(ψ) G im d. Let E{\) denote the spectral

resolution of the selfadjoint operator (J~1p)*(^~1p) Set

(2.22) ra){\,r,U) = [kerd\N{p-\Tr{U)))\ KE{\γ .

In particular, for no φ e Z('2)(λ, r, ί/) does there exist η, with p(φ) = dη,

\\η\\ < λ1 / 2 | |φ| |. However, this does hold if φ e £(λ).

We put

(2.23) ^ 2 ) ( λ , r, ί/) = dimΓZ/2 )(λ, r, ί/),

and

(2.24) ^ 2 ) (0, r, U) = ̂ , ( r , ί/) = b[2,(U, Tr(U)).

It follows easily that if

(2.25) t/c yc^(y)crΓ2(ί/),

then

(2.26) έ ;2)(λ,r 2 , t/)<6( 2 ) (λ, r 1 ,y) .

In particular, if U has compact closure, taking Y = 7" to be the interior of a

compact smooth submanifold with boundary, we see that

(2.27) j&)(X,r,£/)<oo.

Now let {ί/α} be a locally finite cover of I = Uα c M". The multiplicity Nx

of { Ua } is the supremum of integers k, such that there exists

(2.28) Uaon •••nuaί* 0 .

Wewillput(αo, ,α λ) = (α),

(2.29) ί/θ 0n •• n t / α t = ί / ( α ) .
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We denote by N2(a) the number of sets Uβ(β Φ a) such that Ua Γ\ Uβ Φ 0.

The norm, N2, of {Ua} is then defined to be

(2.30) supN2(a) = N2.
a

Clear ly ,^ < N2 < oo.

Associated to { Ua } is the double complex of Γ-modules6

(2.31) φ M ( , )

Thus, a cochain φ of CiJ(X) consists of a collection of j-forms φ ( α )

Λ y (/^Ή^α))) s u c n t n a t if ^ is a permutation of α 0 , ,a k , then

(2.32) φ ( 7 r ( α ) ) = ( _ i ) M φ ( α ) .

The differentials 3 = 0 3, j9 d = Θ < y,

(2.33) 3 Λ y : C ' y -> C / + 1 'Λ

(2.34) rff y : C'"'-7" -> C 7 ' y + 1 ,

are given by

(2.35) *

(2.36) (dφ\β) = d(φ)iβ).

Clearly,

(2.37) dd = dd.

From now on we will assume that the sets Ua have compact closure and that

the multiplicity of {{/„} is finite. In this case sections of AJ(p'\X)) Π L2 can

be identified with cochains φ e C 0 ' 7^ X) such that

(2.38) φ e k e r θ 0 > , . .

(2-39) ΣllΦj|2<°o.
a

Suppose, in addition, there is a partition of unity 1 = Σ fa subordinate to

{Ua} such that the pointwise norm \\df \\a is bounded independent of α. Then

for i ^ 1, an operator

(2.40) 3"1: CiJ -^ C~λJ

b The symbol Φ denotes direct sum in the sense of Hubert spaces.
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satisfying

(2.41) d~ιd + 3 3 ' 1 = 1

can be defined by the following standard formula. If β = (/?0, ,/?/_1), we

put

(2-42) u(βa) =uβon n uβji n ua

and

(2.43) (d-ιφ)iβ) = (-l)J~lΣ fAβaiKy
a

Finally, let Δ = dδ0 + δod denote the Laplacian for generalized absolute

boundary conditions (see e.g. [5]). Let π§ denote orthogonal projection on ker

Δ and Δ"1 the Green's operator,

(2.44) Δ Δ 1 = Δ"XΔ = 1 - π%.

Then as usual,

(2.45) d~ι = δ0Δ-\

(2.46) dd~ι + d~ιd= 1 - ττφ.

Since there will be no danger of confusion, we also define

(2.47) d~ι: σ<J -» C ' 7 " 1

by

(2-48) d-ι(φ\a) = d-ι(φ(a)).

We are now in a position to state the main estimate of this section (compare

[15]).

Theorem 2.2 (Double complex estimate). Let p: Mn -> Mn be normal and

let {U<χ} be a cover of X = UaUa c Mn by open sets with compact closure.

Assume

(1) {Ua} has finite norm N2 < oo and multiplicity Nx < N2.

(2) There is a partition of unity 1 = Σ / α , subordinate to {ί/α}, such that for all

α, thepointwise norm \\dfa\\ is uniformly bounded,

(2-49) \WΛ<c.

For fixed j , we put

(2.50) / = min(;, Nλ).

For λ > 0 (c as in (2.49)) and a suitable constant c(N2), we define μ by

(2.51) r ^ - c ( * 2 ) £ {c2/μ)k/1.
Λ
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Then for any 0 = r0 < rx < < />+1,

{2){( 2 . 5 2 ) b{2){\, r J + 1 , X ) < Σ Σ S έ

Remark 2.1. Of course, the implication of Theorem 2.2 is vacuous unless
the sum on the right-hand side of (2.52) is finite.

Proof of Theorem 2.2. In view of (2.2), the case λ = 0 follows from the case
λ > 0 by letting λ -> 0. Thus we assume λ > 0 and hence, μ > 0.

Put

(2.53) C' ' M * ) ) - Θ
'•-K«)l

If z G ker di%J c Cl'i-'(Γ/(Λ')), let τrμ(z) denote its projection on the subspace

ι-K«)|

We will define maps, ψ0 = Ident|Z(

y

2)(μ, rJ+v X\ %9- ,ψ7,

(2.54) ψΛ: k e r ^ ψ ^ ! -> i m θ ^ ! , ^ ^ Π kerdkJ_k

c CkJ-k(Tr (X))

(1 < A: < / ) and a decreasing filtration

(2.55) Fy c c J/o c F x = Z/2)(λ, rJ+1, X),

given for /: > 0, by

(2.56) F, = kerττμψ,.

It will suffice to establish that for μ as in (2.51),

(2.57) Vj = 0.

For then,

j

(2.58) ^ 2 ) (λ , 0 + 1 , Jf) = Σ dii

and
(2.59)

* - 0 A: = 0 A = 0 K«)l~*

is an injection.
For k' > k, let pk denote the restriction map

(2.60) Pk: <&C'<J(Trt.(X)) -» C
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Set

(2.61) Bk_x = M-'pk_x: 0 C>J(T,t(X)) -» φ C'+ι J-ι(TflιJX)).

As in (2.38), (2.39) we identify Z(2)(oo,0,Trj+ι(X)) with the correspondiing
subspace of

(2.62) ker80%j Π kerdO y,

and put

(2.63) ψ o = I d e n t | z ; 2 ) ( μ , / > + 1 , ^ ) ,

(2-64) ψ, = Bj_k^k_v

To see that imψJkerT^ψj..! c keτdk j _ k as claimed in (2.54), we can
assume by induction that

(2.65) ^-^-iMiy^-i-**-!-

Then

(2.66) dψk = dBj_k+^k_x = 3 d r V i Ψ * - i = P*-i3ψ*-x = 0.

Next observe that if Nx < j , we have automatically

(2.67) Ψ*1 + 1 = 0.

On the other hand, if Nx > j , since the only closed 0-forms are constants,

(2.68) kerτrμψy. = kerψy

Thus, if we put

(2.69) j* = vain(Nl9j - 1)

on Vj we have

(2.70) Ψy+i = 0.

To show that Vj = 0, we introduce

(2.71) A = dd-1: Θ C^(r7(Jf))-> 0 C'- 1-^
ι>i,y ι>i,y

and the operator

(2.72) tfiKy-^C0-'"-1

given by

(2.73) ^ = P o Σ {-lΫAkd-χ

Pj_ktk

(where ̂ ° = 1). Since dλ = 0, clearly

(2.74) dK=IVj,
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where Iv denote the identity operator on Vj. Moreover, we claim that

(2.75) im(K) c ker90 y _ x .

To see this note that by (2.37), (2.41), (2.66),

(2.76) dA = ddd-1 = ddd'1 = d{\ - d~ιd) = d-Ad,

from which it follows easily by induction that

(2.77) ZAk = (-\)k~lAk-ld + (-l)kAkd.

Thus,

(2.78) dAk

Pj_kd-ιtk

By combining (2.73), (2.78) and using (2.70) we get

(2.79) dK=(-l)j*PoA
J*tr+ι =

According to (2.75), given x e Vj, we can regard

(2.80)

and it suffices to show that

(2.81)

But in view of (2.43), (2.71) (the definitions of 3"\ K) and (2.66), on V3 we

have

..1=11 Σ

il 9O\ A- V f df A Λ ήf n J, / r \

α l ' ' ' ak

sup | |x II

where the supremum is over a such that UaΓ) Uβ Φ 0 . For μ as in (2.51), this

easily yields (2.81) which completes the proof.

Remark 2.2. Clearly the constant in (2.51) can be estimated explicitly.

Remark 2.3. There is an analog of Theorem 2.2 in the more familiar

context of forms on A"rather than onp~ι(X).
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Remark 2.4. In case ~b[2)(Ua) = 0 for / > 0, an easy variation of Theorem

2.2 identifies the Γ-module H^X) with the reduced ZΛcohomology of the

complex ({£/α},9) with local coefficients in the system of Γ-modules

{H?2)(p-\Ua))} (compare [13]).

3. Proof of main results

As noted in §0, the basic fact which allows us to introduce profiniteness into

the general situation is the existence of constants cλ(n) (the Margulis constant)

and c2(n) with the following properties. If BR(q) is a metric ball of radius

R < cλ(n\ then i^iiB^q))) c πι(B4R(q)) contains a nilpotent subgroup of

index at most c2(n). As a consequence, for any U c BR(q) a normal covering

ί/ —> C/ is profinite, provided it is induced from a covering

(3.1) p:B4R(q)^B4R(q).7

This observation together with the argument of [6] yields

Lemma 3.1. Let U c Tr(U) c BR(q) and let p: B4R(q) -+ B4R(q) be a

normal covering with geo(Γr(£/)) < I. If R < cλ{n), then

(3.2) έ;2 )(λ, r, U) < c(N)(l - λ" + /--")Vol(Tr(U)).

Proof. By an easy scaling argument, we can assume λ < 1, r > 1. Since/?:

Br (q) -> Br (q) is profinite, there exists a finite covering/?/ fr(U) -> Tr(U) of

order j such that fr(U) -• fr(U) -> T(U). As explained in Example 2.1, we

can work with fr(U) rather than p~ι(U) c M. By Theorem 2.2 of [6] we can

find a manifold Yn with smooth boundary such that

(3.3) Vol(37") < c(n)fr(U)9

(3.4) | | | |

(3.5) p j

If we apply the elliptic estimate on 7", together with (2.26), we obtain

(3.6) ^ 2 ) ( λ , r, pj\U)) < έ;2 )(λ,0, 7W) < Vo\{p]\Tr{U))).

Then (3.2) follows by dividing by j.

Our first main estimate is the global version of Lemma 3.1, in which the

hypothesis Tr(U) c BR(q), R < cx(n% is removed.

7 For "most" small balls, BR(q) is a deformation retract of B4R(q). For such balls, ^

itself is nilpotent (compare [15]).
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Theorem 3.2. Let U c M" andp: Tr(U) -> Tr(U) be a normal covering with

geo( fr(U)) < 1. Then (3.2) holds.

Proof. By an easy scaling argument, we can assume r ^ 1, λ < 1. Take a

maximal set of points {qa} which is cx{n)/2(i + 1) dense in U(where / is as in

(2.50) and we can assume cx(n) < 1). Then for r = cλ(n)/(i + 1), Br(qa) = Ua

we have

(3.7) ί/cX = Uί/αc Tu+l)r(X) c Trι(U).

As in [14, 2.2.A], the assumption \K\ < 1 gives a bound

(3.8) N2<c(n)

on the norm of the covering. Our claim now follows from (2.26), Theorem 2.2

and Lemma 3.1.

Before proceeding to our final estimate we introduce some notation. If U is

an open set, we put

(3.9) τ_r(u)=un{τr(du)y.

Let T: Λ0(Γ_r(t/)) -> Λ'"(t/). Let £"(λ) denote the spectral resolution of

(rf"1τ)*(rf"V), where φ e dom J ' V if φ G ker d0 and τ(φ) G im d. Put

(3.10) Zj 2 )(λ,-r,£/) = ker J 0 |Λ ' 0 (Γ r(U)) Π

(3.11) b|2 )(λ, -r, t/) = dim Γ Z ( 2 ) (λ, -r, £/).

Let Uλ c ( / 2 , 0 < r 1 < j l 9 0 < r2 < oo. Then

(3.12) T_Sι(Uλ) c 71 r i ( ^ ) c Uγ c t/2 c ΓΓ2(t/2)

and we have

Theorem 3.3. For all ε > 0 and sλ > rl9

(3.13) + c(n)(l + X" + ε"2" 4-(^ - r j " " + rf1 + r2~")

Remark 3.1. If (say for rx large) T^^U^ = 0 , then b|2)((l + ε)λ, -r2, U2)

= 0 and Theorem 3.3 reduces to Theorem 3.2.

Proof of Theorem 3.3. By scaling, we can assume λ < 1, (sλ — rx), rx, r2 > 1.

We can also assume ε < 1, and we have only to establish the second inequality.
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Recall that for any U

(3.14)

We introduce the following notation for orthogonal projections.

(3.15) π(λ, r,U): ker dlp^T^U)) -» Z[2){λ, r, U),

(3.16) π(λ,-r,U): ker^/Γ^Γ ,(£/)) - Z|2)(λ, -r, U).

Also put

(3-17) A_Sι = U2\T_Sι(Uι).

We will show that for 212εJ/2 = ε,

(3.18) b'(2)(λ, r2,U2) < ^ ( e Γ 1 , ^ , ^ . , , ) + V(2)((l + ε)λ,-r^ ί/J

Then (3.13) follows by applying Theorem 3.2 to estimate the first and third

terms of (3.18).

Let/: p~\A_Sι) -> [0,1] be a smooth function such that

(3.20) ||rf/|| < - 4 — < 3.

If

(3.21) φekerw(εΓ 1,r 2,^l_J

there exists η e Λ'"^^"^^-^)), with

(3.22) η = d~ιφ,

(3-23) lhNεl/2W.

Set

(3.24) B(φ) = φ-d(fη).

Then

(3.25)

(3.26)
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We have

(3.27) τr((l + ε)λ, -r, UX)B: keτπ(e{\ r2, Λ_J->Z{2)((1 + ε)λ, -r1 ? Uλ).

Suppose, also

(3.28) φG kerττ((l + ε)λ,-rι,U1)B.

Then there exists γ e Λ ' " " 1 ^ " 1 ^ ) ) s u c h t h a t

(3.29) y

(3.30) lHK ( 1 +

Let

(3.31) g:p-^^iU^ΊΪ^Ϊϋj) -> [0,1]

be a smooth function such that

(3-32)

(3.33) \\dg\\ < 12/7 < 12.

Suppose

(3.34) γ e kerπfεΓ1, ̂ 3 , Γ.^ίl/JX Γ . ^ ί / J ).

Then there exists

(3.35) θ e Λ'

with

(3.36)

(3-37)

Thus, d(gθ) extends to a form γ onp~ι(U2) and

(3-38) /r\T.Ίri/i2(U1)\T_2rι/3(U1) = γ,

(3.39) dy =

(3.40) Htll
Therefore, onp~\U2)

(3.41)

( 3 . 4 2 ) ! | γ + / τ ? | | ; ^ λ n ' /" " " 1 / 9 λ / " -- w > ^ ^ε1/2

ε) 1 / 2 λ χ / 2
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Using λ < 1, it follows easily from the choice

(3.43) 212ε1/2 = ε,

that

(3.44) ||γ +/τj | |< λ-1 / 2 | |φ| |.

Thus (3.18) follows (see (3.21), (3.28) and (3.34)). Thus (3.13) follows as well.

To obtain our main result (1.7) from (3.13) take Ux = Mk, U2 = M, rλ = 1,

sr = 2, r2 = 1 and λ = 0.

4. η(2)-invariants and collapse with bounded covering geometry

Let TV47"1 be a compact oriented riemannian manifold. The η-invariant is

defined by8

(4.1) η(N*'-*) = γ ^ [ /-^trί Λ-^-i') dt.

Here e~^2 -ιt is the heat kernel on (2/ - Informs.

Suppose TV4'"1 is the boundary of a riemannian manifold M41 and that the

metric is a product near the boundary. According to [2], we have

(4.2)

Note that σ(M41 g), the reduction mod Z of σ(M4 /, g), depends only on

N41"1; it is an example of the invariants P(N4l~ι) (where P is a polynomial in

the Pontrjagin classes) which were studied in [10], [17], [9]. In the notation of

those papers, σ(M4l,g) = PL(N4i~ι).

The invariants η(N4l~ι) does not behave multiplicatively under coverings,

and hence, cannot be obtained by integrating a canonical local expression

derived from the metric. However, let g0, gλ be a pair of metrics on N. Then, as

follows easily from (4.2) (and also from (4.1)), the difference η(N, gx)-

η(N, g0) is a locally computable function of the pair (g0, gλ). The analogous

statement also holds for the invariants P(N). As a consequence, for any finite

covering space N of order J,

(4.3) p(N9N) = η(N9g)

is independent of metric. Moreover, we can study the nonlocal and topological

aspects of the invariants η(N) and P(N) by the following approach.

8 Everything in the present section applies equally well to the η-invariant with coefficients in a

flat orthogonal bundle, but we will not mention this explicitly.
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Given N4/~ι, possibly with some auxiliary structure, define a class of metrics

(possibly degenerate) for which the invariants η(N) and P(N) have a purely

topological interpretation.

Here, isolating the relevant features of the topology is itself an element of

the problem. Also, the actual geometry of those metrics which arise is of prime

interest and importance. Note that we do not require uniqueness of the

auxiliary structure, nor that it should always exist.

In [6], the above program was applied to the 77-invariant for those manifolds

N which admit a volume collapse with boundary covering geometry. A family

of metrics gε on TV is said to volume collapse with bounded curvature (from now

on we just say volume collapse) if for all ε,

(4.4) \K.\ < c,

(4.5) lim Vol(N, gε) = 0.

This collapse is said to have bounded covering geometry if the induced metrics

gε on the universal covering space N satisfy

(4.6) geo(ΛΓ, gε) < c.

(By scaling, we can take c = 1 in (4.4), (4.6).)

In [6], it was necessary to assume that the covering N is profinite (the

argument is recalled below). The purpose of this section is to remove this

hypothesis by introducing an invariant ή(2)(iV) defined using the concept of

Γ-trace. Most of the discussion, but not the main conclusion (Theorem 4.1),

also applies to the invariants P(N).

Before proceeding further we mention that in [8], a second realization of our

program is given for manifolds admitting a volume collapse which is compatible

with a polarized F-structure. (The simplest example of a polarized ^-structure is

a nonvanishing Killing field; for the general definition see [8].) The discussion

of [8] applies not only to the τj-invariants, but to the invariants P(N) as well.

A given manifold N4l~ι may admit no volume collapse or it may admit

(possibly infinitely many) essentially different ones. This may or may not have

bounded covering geometry (the latter condition is relatively rare). If the

volume collapse (N4l~ι, gε) is compatible with a polarized F-strucure, then

(4.7) hmη(NΛi-\ ge), lim P(N4l~\ gε)
ε->0 ε->0

always exist and can be evaluated explicitly as topological invariants (which

are cobordism invariants of the structure; see [6] and [8]). Examples show that

these limits are not independent of the choice of F-structure in general. On the

other hand, we will see that the first limit in (4.7) exists for arbitrary collapses
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with bounded covering geometry. Hence, for any two such collapses the limits
are equal. It would be remarkable if this were also true for the invariants

The main analytic point in [6] was the estimate

(4.8) \v(Y4l~l)\ < c(4l - l)Yol(YΛl-ι)9

provided geo(Y4l~ι) < 1. This was applied as follows. Let (N41'1, gε) be a
volume collapse with bounded covering geometry, for which N is profinite.
Then for each ε, there exists a covering Nε, of order dε, for which

(4.9) geo(^ε, ge) < 2.

If we put τ)(2)(Λf, gt) = n(Nt)/dt, then (4.8) and (4.9) imply

(4.10) |τj ( 2 )(JV,gβ)|<c(4/-l)Vol(Λ0.

Since any two finite coverings have a common finite covering, it follows that

(4.11) limη(JV,gε) = Kmp(N,Ne)
O O

exists and is independent of the particular collapse with bounded covering
geometry.

In order to remove the hypothesis that N is profinite, we now define the
invariant ή ( 2 ) ( ^ 4 / 1 ) for possibly infinite normal coverings N. We will show
that if Nε in (4.9) is replaced by N, then (4.10) remains valid. Moreover, for a
pair of metrics g0, g on Y4l~ι,

(4.12) ή ( 2 )(y, g l ) - ή ( 2 )(y, g o ) = η ( r , g l ) - η ( y , g o ) .

If we put

(4.13) p ( 2 )(y) = η ( x , g ) - τ ) ( 2 ) ( y , g ) ,

then by (4.12), ρ(2)(Y) is independent of g. Using the new (4.10), we obtain
Theorem 4.1. Let (N4l~ι, gε) be a volume collapse with bounded covering

geometry. Then

(4.14) l i m η ( ^ ' - 1 , g e ) = p(2)(7V4'-1).
ε—»0

The invariant η(2)(Y) is defined by

(4.15) ϋ(2)(y) = ϊ ^ y j f r- 1 / 2trΓ( e-
A-") dt,

where e~^2'-χt is the heat kernel on Ϋ. To see that this makes sense, we observe
that standard arguments based on the elliptic estimate for Δ2/_i show that
*de~K2lιt (initially defined by the spectral theorem) is given by a smooth
kernel. In fact, since geo(7) < 1, the usual parametrix construction applies. If
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P(x, y, t) is a parametrix for c'^2'-1', D is the heat operator and Q = ΠXP,

then

(4.16) E = P- P*Q + dP*Q*Q-

(see e.g. [12]). This is one way of seeing that we have the uniform pointwise

estimate

(4.17) tr( ίfe-Δ"-i') ~ tr(*dP(t)) = O(tι/2)

on Ϋ.

Using the spectral theorem, a trivial modification of the argument of [6]

shows that the integral in (4.15) converges. In the same way, it follows that the

estimate (4.10) holds with a constant which, a priori, might depend on the

higher covariant derivatives of the curvature tensor (as does Q in (4.16)). The

proof in [6] that the constant can be estimated only in terms of the bound

geo(7V) < 1, utilizes a regularization theorem ([6, Theorem 2.5]) for the metric

gε on Nε. This is combined with an estimate (see Lemma 2.6 of [6]) which

compares η(Nε, gε) with the η-invariant of the regularized metric (the covariant

derivatives of whose curvature tensor are bounded). Since in [6], Nε is a finite

covering, there is no need for the regularized metric to be the pullback of a

metric on N (in order for its η-invariant to be defined). But in the present case,

it is necessary to stay within the class of such metrics on the infinite covering

space N, so that the expression trΓ in (4.15) makes sense. Equivalently, we must

regularize the metric gε on N. Thus we cannot appeal to the hypothesis

geo(Λf, gε) < 1, which is required for Theorem 2.5 of [6]. However, according

to a recent result of [3] (whose proof depends on analysis), the conclusion of

Theorem 2.5 of [6] is actually valid without assuming a lower bound on the

injectiυity radius. So gε can be approximated by a metric, the covariant

derivatives of whose curvature are bounded. The proof of (4.10) is then

completed as in [6] (to which we refer for further details).

To finish the proof of Theorem 4.1 it suffices to establish (4.12). As in the

case of the ordinary η-invariant this is a simple consequence of the formula for

the variation of trΓ(*de~^2l-ιt) under change of metric. We now indicate the

derivation of this formula, following closely the arguments of [4].

Put gu = (1 - u)g0 + ugv It is convenient to define &(t): A2l~1(N) ->

A2/-\N)by

(4.18) e(0(«) = f E(x9 z, t) *z Λω.

Then,

(4.19)

f
Then, in the (usual) sense of Γ-trace of linear operators, we wish to compute
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Write (DuhameFs principle)

(4.20) = j Γ * [*od&'o(t - s)®0(s) - *odΦu(t - s)G'0(s)] ds

If we take the Γ-trace, the second term of the last line in (4.20) can be rewritten
as

£ ~ ε trΓ{[*o<ί<lu(ί - ί)to(i/2)][δo(ί/2)Ao]} ds

(4.21) = j'~ε trr{[e0(S/2)Δ0] [•„</£„(' " *)$a{s/2)\) ds

£* tττ{*Qdλ0®u(t - s)®0(s)) ds.

Here, note that range (&u(t — s) c dom Δo, as a consequence of the fact that
the constants in the elliptic estimates for ΔM are mutually bounded independent
of u (gu is induced from gu). Thus, (4.20) yields

tττ(*od&u(t - ε)©0(ε)) - tττ(*od®u(ε)&o(t - ε))

( 4 2 2 ) = Γε trΓ{*0 J(Δ0 - Δje κ ( ί - s)&0(s)} ds.

If we differentiate (4.22) with respect to u and set u = 0, the right-hand side
becomes

-Γ~ εtrΓ{*</A&(0} &

( 4 2 3 ) =-(r-2ε)trΓ(*^e(ί))

= (/- 2ε)tiΓ{*did*d§(t) + *d*did&2(t)}.

By permuting factors as in (4.21) this yields

(4.24) -2(/-2ε)tr Γ (*ί/Ae(ί)) .

Taking the limit ε -* 0, we get

(4.25) 2tjttvτ(*dd{t)).

To make the corresponding evaluation for the left-hand side of (4.22), note
that

(4.26) ( t r Γ (*ί/e( ί))) '= trΓ(* <*£(')) + trΓ( έ/6(0).
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Also, for fixed ε,

(4 27) ( t rrM©(0))'= trΓ(*£/6(0) + M
1 ' } + t r Γ

Letting ε -> 0 and comparing (4.26) with (4.27) gives

(4.28) lim trΓ(*rf@(/ - ε)@(ε)) = 0.
ε-»0

So the derivative at u = 0 of the left-hand side of (4.22) is

lim tττ(*dfe(t - ε)@(ε)) - tr Γ (*d&(t - ε)&(ε))
(4.29) ^°

(the corresponding point in [4] was somewhat muddled although the correct-

ness of the answer was unaffected). Combining (4.25) and (4.29) gives

(trτ{*dE{t)))'=trΓ(* dβ(t)Y

(4-30) . d

= tτΓ(*d&(t)) + 2t-tττ(id(S(t)),

which is the formula we are seeking. To obtain the analogous formula with

d ( O replaced by &(t) = e~^2l-χt, replace trΓ by tr in (4.30).

To complete the proof of (4.12) we write

( 4 3 1 )

= lim lim — l—(At-W\xτ{*de-κ ')dt,
A^OO ε^O I (1/2) Jε

where the limits are uniform with respect to u. For the lower limit, this follows

for example from the uniform convergence of (4.16). For the upper limit it is a

direct consequence of the fact that the metrics gu are all uniformly quasi-

isometric.

In view of (4.30) and (4.31)

4-Vm= urn lim —1—I (A Γι/2trMe-*') dt

and so, integrating the second term by parts,

(4.33) - f η ( 2 ) = lim 2/ 1 / 2trΓ(*de~K t) - lim 2/ 1 / 2 t r Γ (*de~ l t ) .

Let dEλ denote the spectral measure for Δ. Note that for any fixed λ > 0
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Letting A -> oo in (4.34) and recalling that

(4.35) lim dim Γ (£ 0

± n £ λ ) = 0,
λ —* o

it follows that the first term in (4.32) vanishes. In the second term, * de~^ can

be replaced by a parametrix. This gives

(4-36) £ϋw = £„,
which suffices to complete the proof of (4.12). Thus Theorem 4.1 follows as

well.

Remark 4.1. It is tempting to try to generalize Theorem 4.1 to the in-

variants P(N4l~ι) by considering η-invariants with coefficients in suitable

(rational combinations of) bundles associated to the tangent bundle of N41'1.

In this more general case, (4.10) is still valid but, a priori, (4.12) is not. The

difficulty is well known. Namely, the kernel of ΔM is now no longer indepen-

dent of u and the possible spectral flow across 0 gives a correction to (4.12). In

more concrete terms, the discussion of lim^^^ in (4.32)-(4.35) no longer

applies.

5. Conformal changes of metric

In this section we consider riemannian manifolds (M", g) for which

(5.1) g = e-2*g0,

where (M, g0) is complete and satisfies

(5-2) μy«i,
(5.3) V o l j M ) < oo.

Since the Pontrjagin forms are conformal invariants, the geometric Pontrja-

gin numbers satisfy

(5.4) P(M,g) = P(M,g0).

In particular, we have immediately

Theorem 5.1. //(5-l)-(5.3) hold and

(5.5) geo(Af,g 0 )<l ,

then

(5.6) σ(M,g) = σ(2)(M,g0),

where the right-hand side is a proper homotopy invariant.
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The Chern-Gauss-Bonnet form, however, is not a conformal invariant. Thus,

to obtain information on the geometric Euler characteristic, we put additional

conditions on the function φ.

Let HgQ(φ) denote the Hessian of φ with respect to g0. By a standard

calculation, for any 2-plane T G Λ 2 ( M X ) ,

(5.7) \Kg(r) -

So, if in addition to (5.1)—(5.3) we assume

(5-8) I M Φ L « c , K | g o

it follows that

(5-9) x(M,g)-( i> χ (Ω g )<oo.
M

Moreover, we have

Theorem 5.2. Let (M, g0) be complete with \KgQ\^\ and Volgo(M) < oo.

Then g = e~2φg0, \\dφ\\go < c, | |# g 0 (Φ) | | g 0 < c imply

(5-10) x(M,g) = χ ( M , g 0 ) .

If also geo(M, g0) < 1, then

(5.Π) x(M,g) = χ ( 2 ) (M,g 0 )

is a homotopy invariant.

In order for Theorem 5.2 (as well as (5.4)) to be of interest there must be

conditions on g which guarantee the existence of g0, φ. These will be given in

Theorem 5.5 below.

The proofs of Theorems 5.2 and 5.5 depend on the following lemma (the

point of which is that no bound on the injectivity radius is required). If Y

is a riemannian manifold, Y its completion and x e 7, we put x, oo =

dist(x,F\7).

Lemma 5.3. Let Y be a riemannian manifold with \K\ < 1. Let f be a function

on Y such that for some ε > 0,

(5.12) \f(χ)-f(y)\<c

ifx,y<ε and x, oo > ε. Then there exists a function f# such that

(5.13) |/#(*)-/(*)|<c,

(5.14) \\df\\ < c c(«)ε-\ \\H(f)\\ < c • c («) e - 2 .

Note that (5.12) holds if /satisfies a uniform Lipschitz condition.
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Proof. Let ψ(r) be a nonnegative C°°-function on [0,1/2] such that ψ = 1
near r = 0 and ψ = 0 near r = 1/2. Put ψε(r) = ψ(r/ε). Let ̂ ( O J denote the
ball of radius ε about the origin in Yx equipped with the pulled back metric,
and dy the associated volume element. Set

(5.15) / * ( * ) = / f(™pxy)φε(j70~x)dy/f φε(J^~x) dy.
JBε/2(Ox)

 JBε/i(Ox)

Note that for z, x < ε/2 and z, Ox < ε/2, we have

(5.16) f*(y)= I f(εxpxy)tE(JJ)dy/[ ψε(JJ) dy,
JBe/iCz) JBε/i(z)

where Bε/2(z) c Yx. Also (5.12) clearly implies

(5.17) |/(exp x j))-/(exp J c z) |<c

if jc, z < ε. Finally, since \K\ < 1 and we may assume ε < 7r/2, a standard
comparison argument bounds the Hessian of ψε(j, z) in terms of ε"2. The
claim now follows by differentiating under the integral as in the well-known
Euclidean case.

Proof of Theorem 5.1. Fix I G M , and apply Lemma 5.3 to the function
ψΛ(y, x) (where ψΛ is as in Lemma 5.3). Using (5.7), we have

(5.18) P(M9 g) = lim P(M, e2***«go) = P(M9 g 0).

Here, the second equality follows from the fact that e2φψ*g0 and g0 agree at
infinity.

In order to give conditions under which g0, φ can be produced from g, we
introduce functions p(x\ β(x) as follows.

If (M, g) is a riemannain manifold which is not complete and flat, set

(5.19) p ( * ) = sup \K(τ)\1/2.
TGΛ2(Mχ)

If (M, g) is complete and flat let p(x) denote any nonnegative upper bound
for the right-hand side of (5.19) such that p ^ 0 and fM* pn < oo.

Let M be the universal covering space of M and X G M . Define ί(x) to be
the supremum of r, such that exp^ is defined on By(0) c Mχ and is a diffeomor-
phism. Put

(5.20) /?(*) = max(p(x),lΛ(x)).

Roughly speaking, we would like to set g = p~2g0, g = β~2g0, to produce
conformally related metrics satisfying \KgJ < 1 (respectively geo(M, g0) < 1)
with the smallest possible volume (which might still be infinite). Then
Volgo(M) < oo if and only if

(5.21) ( p"<oo, ί
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respectively. However p~2g, β2g need not be complete and (5.8) does not hold

for p = eφ, β = eφ, in general.

To remedy these defects, we first replace p, β by functions p, β which do not

vary too rapidly. Then p, β are further regularized by a suitable local

application of Lemma 5.3. If we denote the resulting functions by p*, β* and
s e t So = (P*)2£> So = (β*)2g> ώen the rough argument outlined above is

actually valid.

Let (M, g) be a riemannian manifold which might not be complete and let

k(x) be a nonnegative locally bounded function on M such that k ̂  0. Put

(5.22) k(x) = inf{ j
1

R < x,oo , sup k(y) < —
yeBR(x) A

Lemma 5.4 (Harnackproperty). If 8 ^ 1/2,

(5.23) x9y

(5.24) k(y)<k(x),

then

(5.25) \±

Proof. It follows immediately from (5.22) that if x, >> < A:(x), then

(5.26) k(y)>k(x)- x,y.

This, together with (5.23) and (5.24) yields (5.25).

Theorem 5.5. Let k denote p or β.

(1) There exists k* such that

(5.27) it/3 < Λ*(^) < 3ϊfc(jc),

(2) //Λ* = eφandg = e~2<t>g0, then

(5.28) \\dφ\\8o<c(n)9 K

(3) (M, g 0 ) w complete. \Kgo\ < 1 if k = p (respectively geo(M, g0) < 1 ι/

k = β). Moreover, Vol g o(M) < oo if and only if

(5.29) f ^ " < o o .

(4) //(5.29) holds, then

(5.30)

/5 a homotopy invariant.



VON NEUMANN DIMENSION OF L2-COHOMOLOGY 31

Remark 5.1. It is simple to check the converse. Let g = e'2φgQ, where g0 is
complete, \Kgo\ < 1 (respectively geo(M, g0) < 1, Volgo(M) < oo, and (5.8)
holds). Then (5.29) holds as well.

Proof of Theorem 5.5. Let {x,} be a maximal set of points such that for all

(5.31) xx~ j

Then for all z e M, there exists xt such that

(5.32) x~Γz <{k{xι)+k(z))/Ί.

It follows from (5.25) that

(5-33) zeB-kiXι)/3(Xi),

and hence that

(5.34) M = \JB-kiXι)/3(Xi).

The multiplicity of this covering can be bounded as follows. If Z G
#£ ( λ. ) / 3(jt,), then using (5.25) we have

(5-35) B-kω/uiXi) c BMχ,Vi c ^WysW

If instead of g we use the rescaled metric Ϊt2(z)g on B2-k(z)/3(z% then (5.35)
becomes

(5.36) Bl/l4(x,) c BMxι)/ΊM2)(Xi) c B2/3(z).

By construction, the balls 5^( ) / 7 (x f ) in (5.35) are disjoint for different values
of /. Hence, so are the balls £ 1 / 1 4 ( x ; ) in (5.36). By (5.19), (5.20) and (5.22), on
B2/3(z) we have

(5.37) \K-k2(z)g\ < 1.

So using the relative volume estimate as in [15, 2.2.A], we find that the
multiplicity TV of the covering in (5.34) satisfies

(5.38) N <c(n).

Apply Lemma 5.3 to the function ψ2/3( x:/' y) o n t n e ball B2/3(xi), where the
distance in each case is measured with respect to the rescaled metric ^2(jc/)g.
Then construct a partition of unity Σ α, Ξ 1 by putting

(5.39)

In view of the preceding discussion, it is clear that for all z,

(5 40)

\\H(())\\ ()
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Set

(5.41) k*{z) = Σ«,(*)*(*,)

(1) It follows from (5.25) that if af(z) Φ 0 and as(z) Φ 0, then

(5.42) k{χ.) ^ 3k(xj), k(xj) < 3k(Xi).

This gives (1).

(2) By (5.40) and (5.42), a straightforward calculation gives

where k* = eφ. But this (together with (5.27)), easily implies (5.28).

(3) Notice that each point z G M i s contained in a ball of radius 1/3 with

respect to g0, which does not meet infinity. This follows from the condition

R < x, oo in (5.22), together with (5.27). Thus M is complete. The remaining

assertions are direct consequences of the definitions (5.19) and (5.20) together

with (5.27).

(4) This is an immediate consequence of the fact that (5.29) implies

Volg o(M) < oo and Theorem 1.1.

Example 5.1 (\K\_^ c/r2, Vol(Br(x)) ^ rn~ε). Let (AT, g) be complete. Fix

x e M and put x, y = r. Suppose that for some constant c, the relation

(5.44) sup |AΓ(τ)| < -2

τ€=Λ2(Λ/v)
 r

holds outside a compact set. For example, if Mn is diffeomorphic to the

interior of a compact manifold with boundary Nn~ι, then such a metric can be

chosen to be of the (exterior conical) form

(5.45) g = dr2 + r2h, r > 1,

where h is some metric on Nm~ι. For g of this form,

(5.46) Vol(£ r(*)) - r\

Applying Theorem 5.5 yields the cylindrical metric

(5.47) go = ^ 2 + Λ,

which, of course, has infinite volume.

However, if in addition to (5.44), we have

(5.48) f < oo,

e.g., if

(5.49) Vol(Br(x)) < rn

then

(5.50) Vol g oM<oo.
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To obtain examples of the above type, let dMn = Nn~ι and let X be a

nonvanishing Killing field on W7"1 for the metric h. Let q be the restriction of

hioX^. Put

(5.51) hι/r =hι/r r l

Then as r -> oo,

(5.52) Vol(tf, A1 / Γ) = r" 1 Vol(JV, A)

but

(5.53) \KHJ<C9

(see [6], for details). If

(5.54) g = ί / r2 + r 2 ( ^ ) = J r 2

then Theorem 5.5 exhibits the conformal equivalence between g and the

cusp-like metric

(5.55) go = ds2 + he-s

with \K\ < c and Volgo(M) < oo, which was constructed in [6].

More generally, by starting with the metric in (5.55) and multiplying by

those functions/(s) for which log/is uniformly Lipschitz, we obtain examples

of complete metrics and incomplete metrics for which (5.8) holds

Remark 5.2. We have only stated explicitly those applications of the

present section which relate to earlier sections of this paper. However, there are

analogous applications in connection with the results of [6].
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