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UNIQUENESS OF L1 SOLUTIONS FOR THE
LAPLACE EQUATION AND THE HEAT

EQUATION ON RIEMANNIAN MANIFOLDS

PETER LI

In this paper, our goal is to derive an optimal geometrical assumption on a
complete Riemannian manifold which will ensure uniqueness properties for L1

solutions of the Laplace equation and the heat equation. We say that a
manifold has Ricci curvature with negative quadratic lower bound if there
exists a point x0 e M and a constant C > 0, such that the Ricci curvature at
any point x e M satisfies

where r(x) denotes distance from x0 to x. It turns out that the above Ricci
curvature condition is the optimal assumption to guarantee uniqueness in both
equations. In fact, we prove the following theorems.

Theorem 1. Let M be a complete noncompact Riemannian manifold without

boundary. If the Ricci curvature of M has a negative quadratic lower bound (1),

then any L1 nonnegative subharmonic function on M must be identically constant.

In particular, any Lι harmonic function on M must be identically constant.

Theorem 2. Let M be a complete noncompact Riemannian manifold without

boundary. If the Ricci curvature of M has a negative quadratic lower bound (1),

and ifv(x,t)isa nonnegative function defined on M x[θ,oo) satisfying

( Δ - |")ι;(jc, 0 > 0, f υ(x91) dx < oc

for all t > 0, and

lim / v(x, t) dx = 0,

thenv(x, t) = 0 for all x G M and t e (0, oo).
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In particular, any Lι solution of the heat equation on M is uniquely determined
by its initial data in Lι(M).

We would like to point out that in [6], the author and Schoen proved that if
the Ricci curvature of M satisfies

Ric(jc) > - C ( l + r2(x))[log(l + r\x))\ " β ,

then M does not admit any nonconstant nonnegative L1 subharmonic function.
In the same article, an example was given with sectional curvature behaving
like

for C, ε > 0, and admits nonconstant nonnegative L1 harmonic functions.
Hence Theorem 1 can be viewed as a sharp improvement of the theorem in [6].
Uniqueness for Lp nonnegative subharmonic functions were proved in [10] and
[6] for the casesp e (1, oo) and/? e (0,1) respectively. Nonexistence of bounded
harmonic functions was proved by Yau in [9], and the case of bounded
subharmonic functions was discussed in [7]. We refer to [6] for a more detailed
account on the history of the subject.

As for the case of the heat equation, uniqueness of bounded solutions and
nonnegative solutions were proved in [5] and [4], [7] respectively. When
p G (1, oo), similar to the case of nonnegative subharmonic function, unique-
ness is automatic for any complete manifold as indicated by the following

Proposition. Let M be a complete Riemannian manifold. If v(x, t) is a
nonnegative function defined on M X [0, oo) with

i — -r- I v(x, t) > 0, / vp(x, t) dx < oo

for all t > 0, and

lim J vp{x,t) dx = 0,

then v(x, t) = 0 for all x e M and t > 0.

In particular, any Lp solution of the heat equation is uniquely determined by its
initial data in LP(M).

Proof. Let φ(x) be a cut-off function with the property that

, , „ ( 1 on B(R),
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with 0 < φ < 1 and |Vφ| < 3/R, where r(x) denotes distance from x to x0

and BX{)(R) is the geodesic centered at x0 with radius R. Consider

Γ f φ2(x)up-1(x,t)^(x,ΐ)dx dtf

(2) >Γ f Ψ2v^
κ > Jo JM όt

Uf 2pd\dt \( 2(^Γ Uf Ψvdx\dt = \( Ψ

2(x)v'(x9T)dx9p Jo ot\JM j pJM

by the assumption on v. On the other hand, integrating by parts gives

(3) = -lΓ f φvp-ι(vψ,Vv)-(p-l)[T f ψ2υP
J0 JM J0 JM

(p - 1) JQ JM p JO JM

Hence combining with (2) and the assumption on | Vφ|, we have

JO JM ' ' (p-l)R2jo JM
, \ 2

(p-l)R2

Letting R -> oo, we obtain both

f vp(x,T)dx = 0 and Γ f | v ( ^ / 2 ) | 2 = 0,
JM J0 JM

hence v = 0.

We would like to point out that when/? e (1, oo), the uniqueness of strongly

continuous contractive Lp semigroup for the heat equation was proved by

Strichartz in [8]. In [6], the uniqueness of strongly continuous contractive L1

semigroup for the heat equation was proved under the Ricci curvature assump-

tion as in Theorem 2. However, the situation when there might be an isolated

solution which does not come from a semigroup was not covered.

The sharpness of our curvature assumption in Theorem 2 can be seen by

Azencott's [1] example. He constructed complete two-dimensional surfaces

which have sectional curvature behaving like

K{x)~ -Cr2+ε(x)

for C, ε > 0, at infinity. Moreover these surfaces admit infinitely many funda-

mental solutions of the heat equation with the property that K(x, y, t) ^ 0
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and

/„
for all JC e M, / e [0, oo). If we denote H(x, y, t) to be the minimal funda-

mental solution obtained by taking the limit of the fundamental solutions with

Dirichlet boundary condition of any compact exhaustion of M, then it is

known that H(x, y, t) < K(x, y, t) on M X M X (0, oo). Hence if we define

for any fixed x e M, then fx is a nonnegative L1 solution of the heat equation

with

lim ί fx(y, t) dy = lim ί K(x, y, t) dy - lim f H(x9 y91) dy = 0.

However, clearly fx ^ 0. This gives a counterexample to the L1 uniqueness of

the heat equation.

Proof of Theorem 1. Let g(x) be a nonnegative Lι subharmonic function

defined on M. We consider the solution of the heat equation

(4) (e"'g)(x)= f H(x,y,t)g(y)dy,

with g(x) as initial data. Partial differentiating with respect to t, we have

Yt\e g)(χ) = / γt

H(χ>y*t)g(y)dy
ot JM at

(5)
= / (&yH(x9y9t))g(y)dy.

JM

We claim that integration by parts is valid and (5) becomes
3

[e-g){x) =
JM

To justify this, we argue by considering the integrals over the geodesic ball

of radius R, centered at x0. Green's identity yields

(6) J-t{e*'g){x) = f H(x, y, t)Δg(y) dy > 0.

(7)

/ (ΔyH(x,y,t))g(y)dy- [ H(x, y, t)Ag(y) dy

f Άx,y,t)g(y)-f H{x,y,t)ψ{y)dy

\vyH\(x,y,t)g(y)+[ H(x, y, t)\vg\(y).
(R) J9B(R)
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Obviously, it suffices to show that both boundary integrals on the right-hand
side vanish as R -> oo. By considering only large values of R, we may assume

In [6, Theorem 2.1], it was shown that any nonnegative subharmonic
function g(x) must satisfy

sup g(y)
BXQ(R)

g(y) dy
Q BXQ(2R)

for some constants C, a > 0 depending only on n. The term Vol(2? (2Λ))
denotes the volume of the geodesic ball BXQ(2R) and -k(R) is the lower
bound of the Ricci curvature on Bx (10.R). Applying the curvature assumption,
we have the estimate

(8) sup g(y) < Ce"R2Vol-ι{BXo(2R))\\g\\LL

Consider φ(y) = φ(r(y)) to be a cut-off function satisfying

with 0 < φ < 1 and | Vφ| < 3. By the subharmonicity of g, we have

= -2 f φg<Vφ,Vg>-/ φ2[
M

f

M
- i f φ2lvg|2.

Therefore,

M

<12||g||Li sup

On the other hand,

ί
JB

Vg

ι/2
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Hence, we deduce that

PETER LI

To control the heat kernel, we consider the estimate obtained in [7] by Yau
and the author. It was proved [7, Theorem 3.3] that for any ε > 0 there exists a
constant C(ε) > 0, such that

for J C J G BXQ(R) a n d some constant a depending only on n. Applying a
volume comparison argument (see [2]),

Vol{Bx(f))

< Vol(By(r(x, y) + ft)~ By{r{x, y) - ft"))

Vo\(B{k(R),r(x,y)-
< -\o\(B{k{R),r{x,y)-ft))

'vo\(B(k{R),fi))

V / ;

tn/

where B(k(R),/t ) denotes the geodesic ball of radius \/t in the constant
— (w — l)~1k(R) curvature, simply connected space form. Combining this
with the assumption on the Ricci curvature, we deduce that

(10)

H(x, y, t) O/ί ))rnn/i

Xexp a(R2 + R~2)t + aR(r(x, y) + ft )].
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It was also proved in [3, Lemma 7 and (4.18)] that

\x,y,t)dy

) l/2

R2

( 1 1 ) +CΓιHι'2(x,x,t)

<c(^-2Voi-1/2(5;c(y27)) + r1Voi-1 / 2(^(^)))

/ \1/2

Xcxp(k(R)t) / H2(x,y,t)\ .
\JM-BXo{R/D j

On the other hand, by Theorem 3.1 of [7],

f H2(x, y, t) < CVoΓ\B x(ft )) sup
JM-BXQ(R/2) yeM-B (R/2)

Hence together with (8) and (11), we have

ί \vH\{x,y,t)g{y)dy
JB(R + l)-B(R)

f \vH\(x, y, t)
BXΰ(R)

+ 1) ~ BXo(R))

\1/2

\vH\2(x,y,t)\

J

By choosing T sufficiently small, we deduce that for t e (0, T),

(12)
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for some fixed constant β > 0 and C(x, g) depending only on n, the point x

and the function g.

Similarly, we estimate the term

H{x,y,t)\vg\(y)dy

H(x,y,t))f \vg\(y)dy
) } JBXQ(R + 1 ) - BXQ(R)

sup ( )
} J ( R + 1 ) - BXQ(R)

ί - ( ^ - ^ o ^ ) ) + a{R2 + R-2)tXexp

by applying (9) and (10). Also, by choosing T sufficiently small, we have for

t e (0, T)

ί H{x,y,t)\vg\{y)dy
(13) JB(R + l)-B(R)

To prove the vanishing of the two boundary integrals of (7), we apply the

mean value theorem to (12) and (13). Hence there exists R e (R, R + 1), such

that,

/ \vH\(x9 y, t)g(y) dy + / _ H(x, y, t)\vg\(y) dy
J*BXQ(R) ^SJΛ)

= / {\vH\(x, y, t)g(y) + H(x, y, t)\Vg\(y)) dy
JB(R + l)-B(R)

This establishes our claim, and (6) is valid for / e (0, T). However, the

semigroup property gives
9 (^+l)) l ( ^ ' ) ^l(")

which implies that (6) is valid for all t > 0.

For any x e M, the function eAtg(x) is a monotone increasing function in

the /-variable because of (6). On the other hand, it was proved in [5] that with

the assumption on the Ricci curvature, the kernel satisfies jMH{x, y, t) dx = 1
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for ally e M and / > 0. Hence the Lι norm of eAtg can be computed as

V'g\\ύ=j / H(x,y,t)g(y)dydx

H(x,y9t)dxg(y)dy

j /

/

= ί g{y)dy=\\g\\ϋ for all / > 0.

This contradicts the fact that eAtg is monotone in /, unless eΔ'g = g. In which

case, the function g must be harmonic to start out with.

To show g is constant, we consider the function gγ = min{ g, γ} for any

positive constant γ. By the harmoniticity of g, gγ is superharmonic. Also

0 ^ £ γ < g implies gγ e U{M). Clearly, gγ satisfies the estimates which g

does, namely (8) and (9). Applying a similar argument which yields (6), we

conclude that

Hence eAtgy now is a monotone decreasing sequence in t and also ||eΔ/gγ | |Li =

||gγ | | Li. This implies, again, gγ must be harmonic. By the regularity of harmonic

functions, this is impossible unless gγ = g or gγ = γ. Since γ is an arbitrary

nonnegative constant and g is nonnegative, this implies g must be identically

constant.

To show the nonexistence of nonconstant L1 harmonic functions we simply

use the fact that the absolute value of a L1 harmonic function is a nonnegative

L1 subharmonic function.

Proof of Theorem 2. Let υ(x, t) be a nonnegative function in Lι(M) for all

t > 0, with

Δ - -r-)υ(x9t) > 0.

We consider the solution of the heat equation

e\(x)= [ H(x9y,t)υ(y9e)dy[
with υ(x, ε) as initial data. Define the function

(14) Fe(x, t) = max{0, v(x91 + ε) - e%
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This function is nonnegative and satisfies

KmFAx9t) = 0 and f Δ - | "W ε (x, 0 > 0.
/->o \ or /

By integrating the /-variable from 0 to Γ, we have/(;c) = /0

7Fε(x, t}dt, which

satisfies

(15) ^f{x) = Γ AFe(x, t) dt > Γ ^f(x, t) dt

= Fε(x,T)>0.

Moreover, its L1 norm can be computed as

f f(x)dx= Γ f Fe(x9t)dxdt ^ Γ f \υ(x, t + e) - e\(x)\dx dt

< Γ ί \υ(x,t + e)\dxdt+ F [ \e\(x)\dx dt < oo.

The first term on the right is finite by virtue of the assumption on υ, and the

second term is finite because eAt is a contractive semigroup on Lι(M).

Applying Theorem 1 to the nonnegative L1 subharmonic function f(x), we

conclude that/is identically constant. However by (15), Fε(x, T) must be zero.

Since x and T are arbitrary, the function Fε must be identically zero. This

implies that

(16) e^υε(x)>υ{x,t + e).

Now we consider the function

e\(x)=ί H(x,y,t)o(y,e).
JM

By applying the upper bound (10) of H(x, y, t) and setting R = 1 + 2r(x, y),

we have

X JM [ e x p ( " / ^ ' > ; ) + «(r2(x, y) + l)ί) X v(y, ε)] dy.

For sufficiently small values of / > 0, the right-hand side can be estimated by

Hence as ε -> 0, eLtυε(x) -> 0 since ||f( , ε)||Li -> 0. However, by the semi-

group property, e^υε(x) -> 0 for all x e M and t > 0. Together with (16), this

shows 0 > v(x, t). By the assumption that f is nonnegative, we conclude the

vanishing of υ.
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To prove that any L1 solution is uniquely determined by its initial data, we
simply consider its absolute value and apply the first half of the theorem.

We would like to remark that if M is a simply connected manifold with
nonpositive sectional curvature, then it was shown in [6] that L1 uniqueness is
valid for harmonic functions. The standard comparison theorem also implied
that the heat kernel of M is bounded above by the Euclidean heat kernel.
Therefore, the argument to prove Theorem 2 can be carried over to establish 1}
uniqueness for the heat equation on simply connected nonpositive sectional
curvature manifolds.
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