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1. Introduction

A submanifold N in a Kaehler manifold M is called a Ciί-submanifold if (1)

the maximal complex subspace 6ΐlx of the tangent space TXM containing in

TxN,x G N, defines a differentiate distribution on TV, and (2) the orthogonal

complementary distributiion 6ΰ± of Φ is a totally real distribution, i.e., Jtyχ C

Tx N, x G N9 where / denotes the almost complex structure of M, and Tx N

the normal space of N in M at x.

In the first part of this series, we have obtained several fundamental results

for CR-submanifolds. In the present part, we shall continue our study on such

submanifolds. In particular, we prove that (a) the holomorphic distribution ̂D

of any GR-submanifold in a Kaehler manifold is minimal (Proposition 3.9); (b)

every leaf of the holomorphic distribution of a mixed foliate proper CΛ-sub-

manifold in a complex hyperbolic space Hm is Einstein-Kaehlerian (Proposi-

tion 4.4); and (c) every CΛ-submanifold with semi-flat normal connection in

CPm is either an anti-holomorphic submanifold in some totally geodesic

CPh+p of CPm or a totally real submanifold (Theorem 5.11).

2. Preliminaries

Let M m be a complex m-dimensional Kaehler manifold with complex

structure /, and iV be a real w-dimensional (n ̂  2) Riemannian manifold

isometrically immersed in Mm. We denote by ( , ) the metric tensor of Mm as

well as that induced on N. Let V and V be the covariant differentiations on N

and M respectively. Then the Gauss and Weingartan formulas for N are given

respectively by

(2.1) VXY= VxY+σ(X,Y),

(2.2) vxξ = -AιX+Dxξ9
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for any vector fields X, 7 tangent to N, and ξ normal to N, where σ is the

second fundamental form, and D the normal connection.

For any vector X tangent to N and ξ normal to N we put

(2.3) JX=PX+FX9

(2.4) Jξ = tξ+fξ

where PX and tξ (respectively, FX and fξ) are the tangential (respectively,

normal) components of JX and Jξ respectively.

In the following we shall denote by Mm(c) a complex m-dimensional

complex-space-form of constant holomorphic sectional curvature c. We have

R(X9 Y)Z = i{(Y, Z)X- (X, Z)Y + (JY, Z)JX

^ ' } - (JX, Z)JY + 2(X, JY)JZ).

We denote by R and R1- the curvature tensors associated with v and D

respectively. A submanifold N is said to be flat (respectively, to have flat

normal connection) if R = 0 (respectively, R±= 0). For any vector fields

X, y, Z, W in the tangent bundle 7W, and ξ, η in the normal bundle Γ x N, the

equations of Gauss, Codazzi and Ricci are given respectively by

R(X9 7; Z, W) = R(X9 7; Z, W) + (σ(X, »F), σ(7,

(2 7)
-<2)yσ(X, Z) - σ(v yX, Z) - σ(Jf, V y Z),

(2.8) Λ(Z, 7; ί, η) = ^ (X, 7; | , η) - < [ ^ , Aη] X, 7 ) ,

where Λ(^, 7; Z, JΓ) = <Λ( Jf, Y)Z, W),-', etc.

Definition 2.1. A submanifold TV of a Kaehler manifold M is called a

CR-submanifold if there is a differentiable distribution <>D: JC -> ^ C ΓxiV on iV

satisfying the following conditions:

(a) ^ is holomorphic, i.e., J6ϋx = ^ for each x G N, and

(b) the complementary orthogonal distribution 6ΐ)± : c -> ^ C TXN is tot-

ally real, i.e., J 6 ^ C Γ^ Λ̂  for each x <Ξ N.

If dim ^ = 0 (respectively, dim 6ύx = 0), Λ̂  is called a complex (respectively,

tota//y reα/) submanifold. A CΛ-submanifold is said to be proper if it is neither

complex nor totally real.

For a CR-submanifold TV we shall denote by v the orthogonal complemen-

tary subbundle of Jfy -1 in T1- N. We have

(2.9) T±N = J<%±®v, vx=Tx

LNΠJ(Tx

LN).



CR-SUBMANIFOLDS. II 495

A subbundle μ of the normal bundle is said to be parallel if Dxξ G μ for any

vector X E TN and section ξ in μ.

A CR-submanifold N in a Kaehler manifold M is said to be anti-holomor-

phic if T^N = / ^ , JC E ΛΓ.

3. Some basic lemmas

First we recall some basic lemmas for later use.

Lemma 3.1 [4]. Let N be a CRsubmanifold of a Kaehler manifold M. Then

we have

(3.1) (VuZ9X)=(JAJZU9X)9

(3.2) AJZW = AJWZ,

(3.3) AjζX=-AζJX

for any vector fields U tangent to N, X in fy9 Z, W in ^ , and ξ in v.

Lemma 3.2 [4]. The totally real distribution ^ of any CR-submanifold in a

Kaehler manifold is integrable.

Lemma 3.3 [ 1 ], [2], [4]. Let N be a CR-submanifold of a Kaehler manifold M.

Then the holomorphic distribution D̂ is integrable if and only if

(3.4) (σ(X9 JY)9 JZ)= (σ(JX9 7 ) , JZ)

for any vectors X, Y in fy, and Z in όD"L.

Lemma 3.4 [2]. Let N be a CR-submanifold in a Kaehler manifold M. Then

the leaves oftf)± are totally geodesic in M if and only if

(3.5) <σ(Φ,^D-L),/^-L>={0}.

Lemma 3.5. Let N be a CR-submanifold in a Kaehler manifold M. We have

the following statements:

(a) If the leaves ofty1' are totally geodesic in M, then

(3.6) σ(6D-L,6D±) = {0}, <σ(<Φ, ^ X ) , J ^ >= {0},

(3.7) HB{X9 Z) = 2\\o{X9 Z)\\2 + 2(AJZJX, JAJZX)

for any unit vectors X in βύ9 and Z in ̂ , where HB denotes the holomorphic

bisectional curvature ofM.

(b) If (3.6) holds, the leaves ofβi)± are totally geodesic in M.

Proof. Let N be a CΛ-submanifold in a Kaehler manifold M. Then ^ is

integrable (Lemma 3.2). Let Nx be a leaf of όDJ-. We denote by σ^ and σ" the

second fundamental form of N1- in M and N9 respectively. We have

σ± (Z, W) = σ"(Z, W) + σ(Z, W)
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for any vectors Z, W in ̂  . Thus, by Lemma 3.4, the leaves of ̂  are totally

geodesic in M, if and only if (3.6) holds.

Assume that the leaves of ̂  are totally geodesic in M. For any vector fields

X, Yin <$ and Z, Win 6D±, equation (2.7) of Codazzi and (3.5) give

R(X, Y; Z, JW) = (Dxo{Y, Z) - σ(Y, VXZ), JW)

-(Dγσ(X, Z) - o(X, VγZ), JW),

= (σ(X, Z), JVYW)- (a(Y, Z), JvxW)

+ (AJWX, vγZ)- (AJWY, VXZ)

= (σ(X, Z), Jσ(Y, W))- (σ(Y, Z), Jσ(X, W))

+ (AJWX,VYZ)-(AJWY,VXZ).

Thus by applying (3.5) and Lemma 4.1 we find

R(X9 Y; Z, JW) = (σ(X9 Z), σ(JY9 W))~ (σ(7, Z), σ(JX9 W))

+ (AJWX, JΛJZY)- (AJWY, JAJZX)9

from which we obtain (3.7).

Corollary 3.6. Let N be a proper anti-holomorphic submanifold in CPh+p. If

the leaves ofty1' are totally geodesic in CPh+p, then the holomorphic distribution

is not integrable.

This corollary follows from Lemmas 3.4 and 3.5.

For the holomorphic distribution Φ, we have

Lemma 3.7. Let N be a CR-submanifold in a Kaehler manifold M. Then

(1) the holomorphic distribution is integrable, and its leaves are totally geodesic

in N if and only if

(3.8) (o(%^)9J^)±)={0}9

(2) the holomorphic distribution is integrable, and its leaves are totally geodesic

in M if and only if

(3.9) σ(*D,6D)= {0}.

Proof. Let N be a CΛ-submanifold in a Kaehler manifold M. If (3.8) holds,

then also (3.4). Thus the holomorphic distribution φ is integrable (Lemma 3.3).

Moreover, from (2.1), (2.2) and (2.3) we have

(VXZ9 JY)= (VXZ, JY)= -(VXJZ9 Y)

= -(AJZX9 Γ > = - < σ ( * , 7 ) , JZ)= 0

for any vector fields X, Y in <>D, and Z in fy1-. Thus the leaves of ̂  are totally

geodesic in N. The converse of this has been proved in [4].m

Statement (2) follows from statement (1) and the following identity
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for any vectors X, Y in 6D, where σ' and στ are the second fundamental forms

of any leaf Nτ of tf) in N and M respectively.

Let % be a differentiable distribution on a CΛ-submanifold JV (%: x -> 3CX

C 7;;V, JC G TV). We put

(3.10) *(Λr,y) = ( v ^ y ) x

for any vector fields X, Y in %, where (v^Γ)" 1 denotes the component of V^y

in the orthogonal complementary distribution %± in TV. Then the Frobenius

theorem gives the following

Lemma 3.8. The distribution % is integrable if and only if 6 is a symmetric on

%X%.

Let Xx, , Xr be an orthonormal basis in %. We put

Then H is a well-defined vector field on N (up to sign). We call H the

mean-curvature vector of the distribution %.

A distribution % on N is said to be minimal if the mean curvature vector H

of % vanishes identically, and % is said to be totally geodesic if σ = 0.

Proposition 3.9. Let N be a CR-submanifold of a Kaehler manifold M. Then

(a) the holomorphic distribution Φ is minimal, and

(b) the distribution Θ is totally geodesic if and only if D̂ is integrable, and its

leaves are totally geodesic in N.

Proof. Let N be a CR-submanifold of a Kaehler manifold M. For any

vector fields X'm D̂, and Z in όD± , Lemma 3.1 gives

(3.11) (Z,VXX)=(AJZX,JX).

Thus we have

(3.12) <Z, V / x / ^ > = - < 4 , z * , /Jf>.

Combining (3.11) and (3.12) we obtain

(3.13) <V*X+ VjXJX, Z)= 0.

This implies statement (a). Statement (b) follows from (3.10) and Lemma 3.8.

4. Mixed foliate CΛ-submanifoIds

Definition 4.1. A CR-submanifold is said to be mixed totally geodesic if

σ(*D, ̂ ) = {0}.

Definition 4.2. A CΛ-submanifold N in a Kaehler manifold M is said to be

mixed foliate, if it is mixed totally geodesic, and its holomorphic distribution is

integrable.



498 BANG-YEN CHEN

In [2], Bejancu, Kon and Yano proved that there is no mixed foliate proper

CR-submanifold in Mm(c) with c > 0. In [4] the author proved that a

Ciί-submanifold in Cm is mixed foliate if and only if N is a Ciί-product (for

anti-holomorphic case, see [2]).

In this section, we shall study mixed foliate CΛ-submanifolds in a complex

hyperbolic space Hm. For simplicity, we assume that Hm is a complex

m-dimensional complex hyperbolic space with constant holomorphic sectional

curvature -4.

Lemma 4.1. Let N be a mixed foliate CR-submanifold in Hm. Then for any

unit vectors X e ^ and Z G ̂  ,

(4.1) \\ΛJZX\\ = 1,

(4.2) \\σ\\2>2hp,

where h — d i m c Φ, and p = d imR^" 1 . The equality sign in (4.2) holds if and

only //(a) the leaves of^ are totally geodesic in Hm, and (b) Im σ = Jty1'.

Proof. Let N be a mixed foliate CR-submanifold in Hm. Then Lemma 9.1

of [4] gives

(4.3) HB(X,Z) = -2\\AJZX\\\

for any unit vectors X in ^D, and Z in ty1-. This gives (4.1).

Inequality (4.2) follows immediately from (4.1). From (4.1) it is clear that

|| σ || = 2hp if and only if we have

(4.4) I m σ ^ ^ ,

(4.5) Aj^ < * D X = { 0 } .

The lemma thus follows from Lemma 3.5.

Let TV be a mixed foliate CR-submanifold in Hm, and Nτ a leaf of the

holomorphic distribution ^D. Then Nτ is a Kaehler submanifold of Hm. We

denote by σ r, Z>Γ, , etc. the second fundamental form, the normal connec-

tion,- , etc. for Nτ in Hm, and by σ\D',- -, etc. the corresponding

quantities for Nτ in N. Then we have

(4.6) στ(X, Y) = σ'(X, Y) + σ(X, Y)

for X, Y in TNT. For any Z in ^ , this implies

(4.7) (AT

ZX, Y)= (Jστ(X9 Y), JZ)= (σ(JX9 7), JZ)= (AJZJX, 7),

(4.8) (AT

JZX, 7 > = (σ(X9 7 ) , JZ)= (AJZX, 7>.

Because N is mixed foliate, these give

(4.9) AT

ZX = AJZJX, ATjZX = AJZX.
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Moreover, for any unit vector fields Xin βΰ9 and Z in ̂  , we have that

(4.10) JvxZ = VXJZ = -AJZX + DXJZ,

so that

(4.11) DXJZ = FVXZ.

From

V /Z = —Aτ X + DTJZ

we also get

(4.12) DXJZ = DXJZ.

Let TJ be any normal vector field in v (for the definition of v, see (2.9)) and

X, Y any tangent vector fields in όD, (2.5), (4.11) and (4.12) imply

(4.13) R(X, Y;JZ,η) = 0,

(4.14) Rτ(X, Y\ JZ9η) = 0.

Combining these with equation (2.7) of Codazzi we obtain

Because Nτ is a Kaehler submanifold, Ajη = JA^ = -A^J. Thus by using

(4.15) we have

0 == AJZAη — AηAjZ — JyAηAJZ + AJZAη J.

Since / is nonsingular, this gives

(4.16) AT

vA^z + A^zA
T

v = 0.

Combining (4.15) and (4.16) we have

(4.17) AT

JZA[ = 0.

Because iV is mixed foliate, Aj^ C D̂ for any Z in ®ύ^ . Thus using Lemma

4.1 and (4.9) we get

(4.18) \\AT

ZX\\ = \\AT

JZX\\ = 1

for any unit vectors X in TNT, and Z in 6Ϊ)± . By linearity, this implies

(4.19) (AT

JZX,AT

JZY)=0

for orthogonal vectors X, Y in TNT. From (4.18) and (4.19) we find

(4.20) Aτ

z, ΛJ Z GE O(2h).

In particular, AjZ is nonsingular. Thus we have, in consequence of (4.17),

A^ = 0 for any vector η in v. Since N is mixed foliate, (2.1) and (2.2) give

-AZX + DT

XZ = VXZ = VXZ = -AZX H- Z^Z.
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from which we find DXZ = D'XZ. This shows that the normal subbundle
(Sύ± \Nτ is a parallel subbundle of the normal bundle of Nτ in Hm. Therefore we

have

(4.21) R^(X,Y\Z, JW) = 0

for any vector fields X, Y in TNT, and Z, W in ^^T. Let Zu -9Zp be an

orthonormal basis of fy^ , x G Nτ. (2.5), (4.21) and the Ricci equation for Nτ

in Hm give

(4.22) [Aτ

Za, A T

J Z \ = 0tσraΦβ9a9β=l9. .9p.

Since A^ZJ = -JA^Z, (4.20) shows that ^4jz has two eigenvalues 1 and -1

with the same multiplicity h. We put

Thus, for any X E Vl9 (4.22) gives

= AT

ZX, a = 2, ,p.
Z

Moreover, for any unit vector Xin K,, (4.22) implies thatA^X, a = 2, •,/? lie

in F,, which are orthonormal by (4.18). Consequently, we obtain/? < h + 1.

From (4.22), we may also get

Aza

Azβ + ̂ z / z α = 0 for α φ β.

From the equation of Gauss and (2.5), the sectional curvature K of N

satisfies

(4.23) K(X, Z) = -1 4- <σ(X, X), σ(Z, Z)>

for any unit vectors X in D̂, and Z in ̂ ^ . Since iV is mixed foliate, we also

have

K(JX9 Z) = - l - (σ(X9 X), σ(Z, Z)>.

Combining this with (4.23) gives

K(X9Z) + K(JX9Z) = -2.

By summarizing the above facts we can state the next lemma.

Lemma 4.2. Let N be a mixed foliate CR-submanifold in Hm. Then

(a) DT

XJZ = DXJZ = FVXZ,

(b) DT

XZ = DXZ = -tDxJZ9

(c)lmστ = ^)±ΦJ^±

9

(d)AZ9A
τ

Jzeθ(2h),

(g) K(X, Z) + Jf(/Jf, Z) - -2,/or α«j imiY vector field X in TNT, and

orthonormal vector fields Z, Win ̂  .
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From Lemma 4.2 and Proposition 3 of [2] we have the following.

Lemma 4.3. Let N be a mixed foliate proper CR-submanifold of Mm(c),

cΦO. Then c<0 and p> 1.

Proof. Let N be a mixed foliate proper CΛ-submanifold of Mm(c), c φ 0.

Then Proposition 3 of [2] implies c < 0. If p = 1, then, for any unit vector field

Z in fy1-, statement (b) of Lemma 4.2 implies ΌT

XZ = DXZ = 0. Hence, Z is a

parallel normal vector field of the complex submanifold Nτ in M m (c), c < 0.

This contradicts a theorem of Chen and Ogiue [5].

Proposition 4.4. Let N be a mixed foliate proper CR-submanifold of Hm.

Then

(a) each leaf Nτ of ty lies in a complex (h + p)-dimensional totally geodesic

complex submanifold Hh+P ofHm

9

(b) each leaf Nτ is an Einstein-Kaehler submanifold of Hh+P with Ricci tensor

given by

(4.24) ST(X, Y) = -2{h +p + l)(X, 7>,

(c) h + 1 > p > 2; h > 2, and

(d) the leaves oftf)± are totally geodesic in N.

Proof. Lemma 4.2 implies that the first normal space I m σ Γ is nothing but

^ ΘJfy1-. Since ^ ΘJty1- is a parallel normal subbundle of the normal

bundle of Nτ in Hm, by a theorem of Chen and Ogiue [5], Nτ lies in a complex

(h +/?)-dimensional totally geodesic submanifold Hh+P of Hm. Thus (a) is

proved.

Since Nτ is a Kaehler submanifold of Hm, equation (2.8) of Gauss gives

sτ(x, Y) = -2(* + i)<*, y>- 2 <4*,4/>,
where £α's form an orthonormal basis of T^~ Nτ. Thus by Lemmas 4.1 and 4.2

we obtain

ST(X, X) = -2{h+p+ \){X, X),

which implies (4.24).

If h — d i m c D̂ = 1, then from statement (b) it follows that Nτ is of constant

curvature -2(p + 2). Since Nτ is a Kaehler submanifold of Hm, a theorem of

Calabi [4] gives that p = 0. This is a contradiction. The remaining part of this

proposition follows from Lemmas 3.4 and 4.3.

Theorem 4.5. Let N be a mixed foliate CR-submanifold ofHm. //dim R N <

5, then N is either a complex submanifold or a totally real submanifold.

This theorem follows immediately from statement (c) of Proposition 4.4.

Remark 4.1. The author believes that Theorem 4.5 holds for any mixed

foliate CΛ-submanifold of Hm. However, he is unable to prove it at this

moment.
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5. Semi-flat normal connection

First we recall the following definition [6].

Definition 5.1. A CR-submanifold N in a complex-space-form Mm{c) is

said to have semi-flat normal connection if its normal curvature tensor Rx

satisfies

(5.1) R± (X, Y; ξ, η) = i(X9PY)(Jξ9 η)

for any vectors Xy Y in TN9 and ξ, η in T^ N.

The main purpose of this section is to classify Ci^-submanifolds with

semi-flat normal connection.

Lemma 5.1. A CR-submanifold N in a complex-space-form Mm(c) has

semi-flat normal connection if and only if

(5.2) <μ € , Aη]x, Y)=i{(jχ, ξχjγ9η>- (jx,ηχjγ9 0 }

for any vectors X, Y in TN, and ξ, η in Γ1 N.

This lemma follows from Definition 5.1 and the equation of Ricci.

From Lemma 5.1 we obtain the following.

Lemma 5.2. Let N be a CR-submanifold with semi-flat normal connection in

Mm(c). Then

(5.3) ([A^AV]X9U)=O,

(5.4) ([Ai9 Aη]Z, W)=i{(JZ, ξχjJV9 η)~ <JZ, ηXJW, £>}

for any vectors U in TN, X in % Z, W in ̂  , and ξ, η in T^ N.

Moreover, we also have

Lemma 5.3. Let N be a CR-submanifold with semi-flat normal connection in

Mm(c). Then

(5.5) ^ = { 0 } ,

(5.6) <^^,^±>={0},

where vx=T^N Π J(T^ N\ x G N.

Proof. From Lemmas 3.1 and 5.2 we have

for any vectors X in 6D, and i in v. Thus we get (5.5). Formula (5.6) follows

from (5.4) and (5.5).

Lemma 5.4 is an immediate consequence of Lemma 5.3.

Lemma 5.4. Let N be a CR-submanifold with semi-flat normal connection in

Mm(c). If there is a ξ in v such that yl^όD"L= ̂ , then N is mixed totally

geodesic.
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From Lemma 5.2 we have

Lemma 5.5. Let N be a CR-submanifold with semi-flat normal connection.

Then

(5.7) \\A

for orthonormal vectors Z, W in ^ .

Proof. For orthonormal vectors Z and W in ^ , Lemma 5.2 gives

ί=([AJZ9AJW]Z,W)= (AJZW,AJWW)- (AJZZ,AJWW).

Thus by using Lemma 3.1 we obtain (5.7).

Let N be a CR-submanifold with semi-flat normal connection in Mm(c). By

Lemma 5.3 we obtain Afi) — {0}. Define an endomorphism

by

(5.8) AiZ = AiZ

for any vectors ξinvx, and Z in ̂  . Then Aς is self-adjoint.

Let λ,, ,λr be the distinct eigenvalues of A^ and Vv —9Vr the corre-

sponding eigenspaces. Then we have

(5.9) ^ = K 1 Θ . ΘK r ,<^.,^>=0 ίori^j.

Lemma 5.6. Let N be a CR-submanifold with semi-flat normal connection in

Mm{c), c ^ O . Then, for any ξ in v, A^ is proportional to the identity endomor-

phism.

Proof. Under the hypothesis, Lemma 5.2 implies

(5.10) (AtW, AJZY)= (AtY, AJZW)

for any vectors ξ in v, and 7, Z, W in ό D ± . If A^ is not proportional to the

identity endomorphism, r ̂  2. Let Z = W = Zι^ E Vi9 Y= Zj E VJ9 for i φj.

Then (5.10) and Lemma 3.1 imply

(5.11) (AJZZi,Zi)=0.

By linearity we have

(5.12) {ΛJZV,,V,)= {Q) ioriΦj.

Putting W=Z,e V,, Y=ZjE V} and Z = Zk e Vk for i φj, (5.10) gives
λi(AjzkZj, Z<> = λj(AjZtZj, Z,) for i ^y,

which implies

(5.13) AJZVJQ^®VJ.
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On the other hand, by Lemma 5.3 we obtain

0 = (AJZX, A,Zj)= λj(AJZZj, X)

for any vectors X in <*D, Zj G Vj9 and Zk G Vk. This shows that AJZVj C ty1- if

λj φ 0. Combining this with (5.13) yields

(5.14) AJZVj C Vj wheneverλy Φ 0.

From (5.12) and (5.14) we get

(5.15) AJZV^ 0 if jΦiandλiΦO.

Since Aξ has at least two distinct eigenvalues, we may assume that \λ Φ 0.

From (5.7) of Lemma 5.5 and (5.15) we have

(5.16) 0 = \\AJZZγ\\2 = i + {AJZZ2,AJZZX).

On the other hand, Lemma 3.1 and (5.12) imply

0 = (AJZZit Z,> = (AJZZ,, Zj) for i Φj.

Combining this with (5.14) we find

(5.17) V ^ 6 8 8 ^

Since AJZ Zx G Vλ by (5.14), equations (5.16) and (5.17) give c — 0. This is a

contradiction.

From Lemmas 5.3 and 5.6 we immediately have the following.

Lemma 5.7. Let N be a CR-submanifold with semi-flat normal connection in

Mm(c), c Φ 0. Then for any x G N, there is a unit normal vector i ) G ^ such that

(5.18) Λη-*=0, A^Z^λZ,

(5.19) ^ = 0

for any vectors X in 6ΐ)x, Z in fyχ9 and ξ in vx with (£, η) = 0.

Lemma 5.8. Let N be a CR-submanifold with semi-flat normal connection in

Mm(c)9 c φ 0. Ifλ is nowhere zero on N9 then N is mixed foliate.

Proof. Under the hypothesis, Lemmas 5.4 and 5.7 imply that N is mixed

totally geodesic.

For any vector fields X, Y in <$>, Z in ̂  , and £ in T^ Ny equation (2.9) of

Codazzi gives

+ (σ(X9VγZ) - σ(Y9VxZ)9ξ).

In particular, if we choose ξ to be the vector η of Lemma 5.7, we can reduce

this to

0 = (σ([X9Y]9Z)9rj)=λ([X9Y]9Z)
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by applying (2.6) and Lemma 5.7. Since λ ^ O , this shows that the holomor-

phic distribution is integrable.

Lemma 5.9. Let N be a CR-submanifold with semi-flat normal connection in

Mm{c\ c φ 0.

(1) Then λ is constant, and for any vectors X, Y in TN and Z in ̂  we have

F(R(X, Y)Z) = σ(X, PvγZ) - σ(7, PVXZ)

+λ2{<y, Z)FX- (X, Z)FY),

(5.21) DXJZ = FVXZ + \(X, Z)Jrj,

(2) Ifλ — 0, then N lies in a totally geodesic complex submanifold Mh+P(c) of

Mm{c) as an anti-holomorphic submanifold. m

(3) Ifλ ¥= 0, then N is a mixed foliate CR-submanifoldwith fDη = 0.

Proof. For any vectors X, Y in TN, and Z in 6ΐ)1~, we have

-AJZX + DXJZ = JVXZ + σ(X, Z).

Thus

(5.22) DXJZ = FVXZ +fo(X, Z).

By applying Lemma 5.7, this gives

(5.23) DXJZ = FvxZ + λ<ΛΓ, Z>/η.

Therefore by considering the normal component of vxDγJZ we obtain

(5 24) J W Z = £*(^V yZ) + X(λ(Y, Z))Jrj

-λ\Y, Z)FX + λ(Y, Z)fDxτj.

On the other hand, by equation (3.9) of [4] and Lemma 8.1 of [4] we have

DX(FVYZ) =fσ(X, VγZ) - σ(X, PvYZ) + F(vxVγZ).

Substituting this into (5.24) we obtain

DxDYJZ=fσ(X, VγZ) - σ(X, PVYZ) + F(vxVYZ)

+X(λ(Y, Z))Jrj - λ(Y, Z){FX-fDxrj).

Thus the normal curvature tensor Rx is given by

R±(X,Y)JZ = F(R(X,Y)Z) + fo{XfVYZ) -fo{Y,VxZ)

-σ(X, PVYZ) + a(Y, PVXZ) - λ([X, Y], Z)Jη

+ {X(λ(Y, Z» - Y(λ(X, Z))}Jη

-\2{(Y, Z)FX- (X, Z)FY}

, Z)fDxη-(X, Z)fDYη).
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By applying Lemma 5.7 this gives

R±(X, Y)JZ = F(R(X, Y)Z) - λ{(PX, PVYZ)- (PY, PxZ)}Jη

+ {(Xλ)(Y,Z)-(Yλ)(X,Z)}Jrj

(5.25) - λ2{<Y, Z)FX - (X, Z)FY)

+ \{(Y,Z)fDxη-(X,Z)fDγη}.

It follows from Lemma 5.7 that both σ(X, PvYZ) and σ(7, PVXZ) lie in

J ^ . Since R± (X9 Y)JZ = 0 by (5.1), equation (5.25) gives (5.20) and

(5.26) (Xλ)(Y, Z>- (Yλ)(X9 Z>= λ{(PX, PvγZ)- (PY, PVXZ)}>

(5.27) λ{<7, Z)fDxη - (X9 Z)fDγη} = 0.

If TV is a complex submanifold of Mm{c\ then ty = TN and v-T^N.

Lemma 5.5 shows that iV is a totally geodesic complex submanifold of Mm(c).

Now we assume that TV is not a complex submanifold. We have dimR ̂  = p

> 0 .

Case (a). If μ = 0, then we have IraσC Jty1'. Moreover, for any vector

fields X in 77V, Z in ̂  , and ξ in Ϊ', Lemma 5.7 gives

0 = (σ(X9 Z), 0 = (V^/Z, /€>= < ^ / Z , /f>

Since this is true for all ξ in v, Jfy^ is a parallel normal subbundle. Because the

first normal spaces of N lie in J ^ , the fundamental theorem of submanifolds

shows that iV lies in a totally geodesic complex submanifold Mh+P{c) of

Mm(c). In this case, N is an anti-holomorphic submanifold of Mh+P(c).

Case (b). If λ ̂  0, then Nf - {x ̂ N\ λ(x) φ 0} is an open nonempty

subset of N. Lemma 5.8 tells us that each component of N' is a mixed foliate

CR-submanifold Mm(c% c^O.

If c > 0, then N is totally real (Lemma 4.3). Thus (5.26) gives

(5.28) (*λ)<y, Z > - (Yλ)(X9 Z>= 0,

for any vectors X, Y in TN9 and Z in fy1-. Because dimR ̂  = dimR TV ̂  2

and λ2 is differentiable, (5.28) implies that λ is a nonzero constant on N. Thus

by (5.27) we get/Dη = 0.

If c < 0, then Proposition 4.4 and Lemma 5.8 show that dimR

6D^ = p > 1.

Thus for any unit vector Z in 6ϋ± there exists a unit vector W in ̂  so that

(Z, W> = 0. From (5.26) we find

(5.29) Z(λ 2) = 0 for
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Let X and Z be any unit vector fields in Θ and ̂  respectively. Then (5.26)

gives

(5.30) X(λf = 2λ2(X,VzZ).

On the other hand, for such X and Z we have

(X, VZZ>= (JX, VZJZ)= -(AJZZ9 JX)= -<σ(Z, JX), JZ).

Thus by using (5.30), Lemma 5.8, and the continuity of λ2 we get X(λ2) = 0

for any vector X in 6ΐ). Combining this with (5.29), we conclude that λ is a

nonzero constant on N. The equation/Dry = 0 then follows from (5.27).

Lemma 5.10. Let N be a CR-submanifold with semi-flat normal connection in

Mm(c), c Φ 0. Ifλ Φ 0, then the sectional curvature ofN satisfies

(5.31) K(ZΛ W) = λ2

for any orthonormal vectors Z, W in Φ1" .

Proof. Let N be a CΛ-submanifold with semi-flat normal connection in

Mm(c\ c Φ 0. If λ φ 0, then N is mixed foliate (Lemma 5.8). For any vector U

in TN, PU G Φ. Thus for any orthonormal vectors Z, W in 6ΐ)-L, (5.20) of

Lemma 5.9 gives

F(R(Z,W)Z) = -λ2FW.

From this we obtain (5.31).

Now we give the following classification theorem.

Theorem 5.11. Let N be a CR-submanifold in a complex-space-form Mm{c),

c Φ 0. Then N has semi-flat normal connection in Mm(c) if and only if N is one

of the following:

(\) a totally geodesic complex submanifoldMh(c\

(2) a flat totally real submanifold of a totally geodesic complex submanifold

Mp(c)ofMm(c\

(3) a proper anti-holomorphic submanifold with flat normal connection in a

totally geodesic complex submanifold Mh+P(c) ofMm(c),

(4) a space of positive constant sectional curvature immersed in a totally

geodesic complex submanifold Mp+\c) of Mm(c) with flat normal connection as

a totally real submanifold.

Proof. Let N be a CΛ-submanifold with semi-flat normal connection in

Mm(c\ cΦOAίNisdL complex submanifold of Mm(c), TV is a totally geodesic

complex submanifold of Mm{c) (Lemma 5.5). Thus N is itself a complex-

space-form MH(c).

Assume that N is not a complex submanifold of Mm(c). Then p > 0, and

there exists a unit normal vector field η satisfies (5.18) and (5.19) for some

constant λ (Lemmas 5.7 and 5.8).
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If λ = 0 and N is totally real, (5.20) shows that N is flat.

If λ = 0 and N is neither complex nor totally real, then N lies in a totally

geodesic complex submanifold Mh+P(c) as an anti-holomorphic submanifold

(Lemma 5.9). In this case, (5.1) implies that N has flat normal connection.

If λ -φ 0, Lemma 5.9 gives

(5.32) DxηGJ^

for any vector X in TN. On the other hand, Lemma 5.7 also gives

(5.33) DxJη = VxJη = -JA-X + JDxη.

From Lemma 5.7 and (5.32) we see that A-X E Φ"1, JDxη G TN. Thus (5.33)

gives

(5.34) Dη=0.

Now, since N is mixed foliate (Lemma 5.8), the holomorphic distribution is

integrable. Let Nτ be a leaf of 6ϋ. Denote by Aτ and Dτ the second

fundamental tensor and normal connection of Nτ in Mm(c) as before. Then

we have

-Aτ-X + D$η = Vxη = -A-X + Dxη = 0 for X G TNT

by virtue of (5.34) and Lemma 5.7. This shows that η \Nτ is parallel in the

normal bundle of Nτ in Mm(c). This contradicts a theorem of [5] unless N is

totally real in Mm(c). If N is totally real, JV is of positive constant sectional

curvature λ2 (Lemma 5.10), and N has flat normal connection (Definition 5.1).

From (5.33) and (5.34) we find

(5.35) DxJη = -JA-X G J ^

for any vector X in TN. Therefore by (5.21) of Lemma 5.9, (5.34) and (5.35),

we see that μ = / 6 D ± ΘSpan{η, /η} is a parallel normal subbundle, and

/iDlmα. From these we conclude that N lies in a totally geodesic complex

submanifold Mp+](c) of Mm(c) as a totally real submanifold with flat normal

connection.

The converse of this is trivial.

Remark 5.1. From Lemma 5.9 it follows that the assumption of compact-

ness in Theorem 2 of [7] can be omitted.
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