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CR-SUBMANIFOLDS OF A KAEHLER
MANIFOLD. 1II

BANG-YEN CHEN

1. Introduction

A submanifold N in a Kaehler manifold M is called a CR-submanifold if (1)
the maximal complex subspace 9D, of the tangent space T,M containing in
T N, x € N, defines a differentiable distribution on N, and (2) the orthogonal
complementary distributiion D" of D is a totally real distribution, i.e., JD: C
T N, x € N, where J denotes the almost complex structure of M, and T N
the normal space of N in M at x.

In the first part of this series, we have obtained several fundamental results
for CR-submanifolds. In the present part, we shall continue our study on such
submanifolds. In particular, we prove that (a) the holomorphic distribution )
of any CR-submanifold in a Kaehler manifold is minimal (Proposition 3.9); (b)
every leaf of the holomorphic distribution of a mixed foliate proper CR-sub-
manifold in a complex hyperbolic space H” is Einstein-Kaehlerian (Proposi-
tion 4.4); and (c) every CR-submanifold with semi-flat normal connection in
CP™ is either an anti-holomorphic submanifold in some totally geodesic
CP"*P of CP™ or a totally real submanifold (Theorem 5.11).

2. Preliminaries
Let M™ be a complex m-dimensional Kaehler manifold with complex
structure J, and N be a real n-dimensional (» = 2) Riemannian manifold
isometrically immersed in M™. We denote by (,) the metric tensor of M™ as
well as that induced on N. Let ¥ and V be the covariant differentiations on N
and M respectively. Then the Gauss and Weingartan formulas for N are given
respectively by

(2.1) VY = vy +o(X,Y),
(2.2) Vb = -4, X + Dyt,
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for any vector fields X, Y tangent to N, and £ normal to N, where o is the
second fundamental form, and D the normal connection.
For any vector X tangent to N and £ normal to N we put

(2.3) JX =PX+ FX,

(2.4) JE=1§+ f§

where PX and t¢ (respectively, FX and f§) are the tangential (respectively,
normal) components of JX and J¢ respectively.

In the following we shall denote by M™(c) a complex m-dimensional
complex-space-form of constant holomorphic sectional curvature c. We have

R(X,Y)Z=45{(Y,Z)X — (X, Z)Y + (JY, Z)JX

(2:5) —(JX, ZYIY + A X, JY)IZ).

We denote by R and R' the curvature tensors associated with v and D
respectively. A submanifold N is said to be flat (respectively, to have flat
normal connection) if R =0 (respectively, R*=0). For any vector fields
X,Y, Z,W in the tangent bundle TN, and £, n in the normal bundle T+ N, the
equations of Gauss, Codazzi and Ricci are given respectively by
(2.6) RX Y Z,W) = R(X,Y; Z,W) + (o(X,W),0(Y, Z))

—(o(X, Z),0(Y,W)),
R(X,Y; Z,¢) = (Dyo(Y, Z) — o(vyY, Z) — o(Y, vyZ), £)
_<Dyo(X, Z) - O(VYX, Z) - O(X, VYZ), £>9
(28) R(X,Y;&m) =R (X,Y; &,n) — ([4,, 4,] X, V),

2.7)

where R(X,Y; Z, W) = (R(X,Y)Z, W), - - -, etc.

Definition 2.1. A submanifold N of a Kaehler manifold M is called a
CR-submanifold if there is a differentiable distribution %): x - 9, C T,N on N
satisfying the following conditions:

(a) 9 is holomorphic, i.e., JO, = 9 _for each x € N, and

(b) the complementary orthogonal distribution 9 : x - D C T, N is tot-
ally real, i.e., JD; C T+ N for each x € N.

If dim D7 = 0 (respectively, dim D, = 0), N is called a complex (respectively,
totally real) submanifold. A CR-submanifold is said to be proper if it is neither
complex nor totally real.

For a CR-submanifold N we shall denote by » the orthogonal complemen-
tary subbundle of J)* in T+ N. We have

(2.9) T*N=JD"®v, v,=T-NNJ(T-N).



CR-SUBMANIFOLDS. II 495

A subbundle p. of the normal bundle is said to be parallel if D ¢ € p for any
vector X € TN and section £ in .

A CR-submanifold N in a Kaehler manifold M is said to be anti-holomor-
phicif XN =J9, x €N.

3. Some basic lemmas

First we recall some basic lemmas for later use.
Lemma 3.1 [4]. Let N be a CR-submanifold of a Kaehler manifold M. Then
we have

(3.1) (VyZ, X)= (JA;;U, X),
(3.2) AW =A4;,Z,
(3.3) ApX=-AJX

for any vector fields U tangent to N, X in D, Z, W in D* , and £ in ».

Lemma 3.2 [4]. The totally real distribution D" of any CR-submanifold in a
Kaehler manifold is integrable.

Lemma 3.3 [1],[2],[4]. Let N be a CR-submanifold of a Kaehler manifold M.
Then the holomorphic distribution 9 is integrable if and only if
(3.4) (6(X,JY),JZ)=(o(JX,Y),JZ)

for any vectors X, Y in D, and Z in D™+ .
Lemma 34 [2]. Let N be a CR-submanifold in a Kaehler manifold M. Then
the leaves of D* are totally geodesic in M if and only if

(3.5) (a(D, D), JDH )= {0}.

Lemma 3.5. Let N be a CR-submanifold in a Kaehler manifold M. We have
the following statements: i
(a) If the leaves of D* are totally geodesic in M, then

(3.6) o( D, DY) = {0}, (o(D, D), JD")= {0},
(3.7) Hy(X,Z)=2lo(X, Z)I1* + 2{4,,JX, JA,; X)

for any unit vectors X in D, and Z in D, where Hp denotes the holomorphic
bisectional curvature of M.

(b) If (3.6) holds, the leaves of Dt are totally geodesic in M.

Proof. Let N be a CR-submanifold in a Kaehler manifold M. Then D* is
integrable (Lemma 3.2). Let N* be a leaf of ¢+ . We denote by 6+ and ¢” the
second fundamental form of N* in M and N, respectively. We have

ot (Z,W)=0"(Z,W)+0o(Z,W)
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for any vectors Z, W in " . Thus, by Lemma 3.4, the leaves of D* are totally
geodesic in M, if and only if (3.6) holds. )

Assume that the leaves of 9™ are totally geodesic in M. For any vector fields
X, Yin D and Z, W in D", equation (2.7) of Codazzi and (3.5) give

R(X,Y;Z,JW) =(Dyo(Y, Z) — o(Y, VyZ), JW)
—<DY°(X, Z) - O(X1 vYZ)’ JW>’
=(o(X, Z), IOy W)= (o(Y, Z), I Vx V)
A X, VyZ)— (A Y, Vi Z)
={o(X, Z), Jo(Y,W))— (o(Y, Z), Jo( X, W))
Ay X, VyZ) = (A;pY, VxZ).
Thus by applying (3.5) and Lemma 4.1 we find
R(X,Y;Z,JW)=(a(X,2Z2),s(JY,W))— (a(Y, Z),0(JX,W))
AW X, JA;ZY )= (A Y, JA;2X),
from which we obtain (3.7).

Corollary 3.6. Let N be a proper anti-holomorphic submanifold in CP"*?. If
the leaves of D™ are totally geodesic in CP"*?  then the holomorphic distribution
is not integrable.

This corollary follows from Lemmas 3.4 and 3.5.

For the holomorphic distribution %), we have

Lemma 3.7. Let N be a CR-submanifold in a Kaehler manifold M. Then

(1) the holomorphic distribution is integrable, and its leaves are totally geodesic
in N if and only if
(3.8) (a(D, D), JD* )= {0},

(2) the holomorphic distribution is integrable, and its leaves are totally geodesic
in M if and only if
(3.9 o(D, D) = {0}.

Proof. Let N be a CR-submanifold in a Kaehler manifold M. If (3.8) holds,
then also (3.4). Thus the holomorphic distribution 9 is integrable (Lemma 3.3).
Moreover, from (2.1), (2.2) and (2.3) we have

(VxZ,JY)=(VxZ,JY)= ~(VyJZ,Y)
= ~(A4;,X,Y)=~(o(X,Y),JZ)=0
for any vector fields X, Y in 9, and Z in 9" . Thus the leaves of D are totally

geodesic in N. The converse of this has been proved in [4],
Statement (2) follows from statement (1) and the following identity

o"(X,Y)=0'(X,Y) +0o(X,Y)
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for any vectors X, Y in %), where ¢’ and o7 are the second fundamental forms
of any leaf N7 of &) in N and M respectively.

Let I be a differentiable distribution on a CR-submanifold N (JC: x — I,
CT.N,x € N). We put
(3.10) $(X,Y) = (vyY)"

for any vector fields X, Y in I, where (VY )" denotes the component of V,Y
in the orthogonal complementary distribution 3C* in N. Then the Frobenius
theorem gives the following

Lemma 3.8. The distribution IC is integrable if and only if 6 is a symmetric on
I X IC.

Let X|,- - -, X, be an orthonormal basis in 3. We put

,
A=~ 3 (X, X).
i=1

Then H is a well-defined vector field on N (up to sign). We call H the
mean-curvature vector of the distribution JC.

A distribution IC on N is said to be minimal if the mean curvature vector H
of JC vanishes identically, and J(is said to be totally geodesic if 6 = 0.

Proposition 3.9. Let N be a CR-submanifold of a Kaehler manifold M. Then

(a) the holomorphic distribution ) is minimal, and

(b) the distribution 9 is totally geodesic if and only if %) is integrable, and its
leaves are totally geodesic in N.

Proof. Let N be a CR-submanifold of a Kaehler manifold M. For any
vector fields X in &, and Z in &), Lemma 3.1 gives

(3.11) (Z,VxX)=(A;;X,JX).
Thus we have

(3.12) (Z,V,xJX)=—(A,;X,JX).
Combining (3.11) and (3.12) we obtain

(3.13) (VxX+ Vv, JX, Z)y=0.

This implies statement (a). Statement (b) follows from (3.10) and Lemma 3.8.

4. Mixed foliate CR-submanifolds
Definition 4.1. A CR-submanifold is said to be mixed totally geodesic if
o(D, D) = {0). i
Definition 4.2. A CR-submanifold N in a Kaehler manifold M is said to be
mixed foliate, if it is mixed totally geodesic, and its holomorphic distribution is
integrable.
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In [2], Bejancu, Kon and Yano proved that there is no mixed foliate proper
CR-submanifold in M™(c) with ¢>0. In [4] the author proved that a
CR-submanifold in C™ is mixed foliate if and only if N is a CR-product (for
anti-holomorphic case, see [2]).

In this section, we shall study mixed foliate CR-submanifolds in a complex
hyperbolic space H™. For simplicity, we assume that H™ is a complex
m-dimensional complex hyperbolic space with constant holomorphic sectional
curvature —4.

Lemma 4.1. Let N be a mixed foliate CR-submanifold in H™. Then for any
unit vectors X € D and Z € D+,

(4.1) lA4,,XIl =1,
(4.2) lloll>=2hp,
where h = dim¢ D, and p = dimg D" . The equality sign in (4.2) holds if and
only if (a) the leaves of D* are totally geodesic in H™, and (b) Imo = JD™* .
Proof. Let N be a mixed foliate CR-submanifold in H™. Then Lemma 9.1
of [4] gives
(4.3) Hy(X,Z) = -2ll4,,XI?,
for any unit vectors X in %), and Z in D+ . This gives (4.1).
Inequality (4.2) follows immediately from (4.1). From (4.1) it is clear that
llall = 2hp if and only if we have
(4.4) Imo =JD*,
(4.5) A 01Dt = {0}.
The lemma thus follows from Lemma 3.5.
Let N be a mixed foliate CR-submanifold in H™, and N7 a leaf of the
holomorphic distribution ). Then N7 is a Kaehler submanifold of H”. We
denote by o7, DT,-- -, etc. the second fundamental form, the normal connec-

tion,---, etc. for N7 in H™, and by o', D’,---, etc. the corresponding
quantities for N7 in N. Then we have

(4.6) o'(X,Y)=0'(X,Y)+0(X,Y)

for X, Yin TNT. For any Z in 9" , this implies

(4.7) (ALX,YY=(JoT(X,Y), JZ)= (o(JX,Y), JZ)= (A, JX,Y),
(4.8) (AT, X, YY=(o(X,Y),JZ)=(A,,X,Y).

Because N is mixed foliate, these give

(4.9) ALX=A,,JX, AT,X=A,,X.
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Moreover, for any unit vector fields X in 9, and Z in )+, we have that

(4.10) JVYZ = VyJZ=-A,;,X+ D,JZ,
so that

(4.11) DyJZ = Fv,Z.

From

VyJZ =-AT,X + DTJZ
we also get
(4.12) DYJjZ =D,JZ.

Let n be any normal vector field in » (for the definition of », see (2.9)) and
X, Y any tangent vector fields in D, (2.5), (4.11) and (4.12) imply

(4.13) R(X,Y;JZ,9) =0,

(4.14) R+ (X,Y;JZ,n) =0.
Combining these with equation (2.7) of Codazzi we obtain

(4.15) [47,, 47 =0 forn€v,zED*.

Because N7 is a Kaehler submanifold, 47, = J4T = -47J. Thus by using
(4.15) we have

0= AT, AT — ATAT, = J(ATAT, + A5,47).

Since J is nonsingular, this gives

(4.16) ATAT, + AfZAZ =0.
Combining (4.15) and (4.16) we have
(4.17) Aszg =0.

Because N is mixed foliate, 4,,0 C ) for any Z in 9" . Thus using Lemma
4.1 and (4.9) we get

(4.18) NAZXI = 147, X1l =1

for any unit vectors X in TN7, and Z in 9™ . By linearity, this implies
(4.19) (AT, X, AT,YY=0

for orthogonal vectors X, Y in TNT. From (4.18) and (4.19) we find
(4.20) AL, AT, e € O(2h).

In particular, A7, is nonsingular. Thus we have, in consequence of (4.17),
Ag = 0 for any vector 7 in ». Since N is mixed foliate, (2.1) and (2.2) give

-ALX + DYZ = VyZ = vyZ = -A,X + Dy Z.
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from which we find D¥Z = D}Z. This shows that the normal subbundle
6)* |, is a parallel subbundle of the normal bundle of N7 in H™. Therefore we
have

(4.21) Ry (X,Y; Z,JW) =0

for any vector fields X, Y in TN7, and Z, W in 6Dl|Nr. Let Z,,---,Z, be an
orthonormal basis of D7, x € NT. (2.5), (4.21) and the Ricci equation for N7
in H™ give

(4.22) [4%,, 4T, ] =Ofora B, a,B=1,--,p.

Since A7,J = -JAT,, (4.20) shows that AT, has two eigenvalues 1 and -1
with the same multiplicity 2. We put

V= {XeTN|4Al, X=X}
Thus, for any X € V,, (4.22) gives
AleAZX = AgaAleX = AQﬂX, a=2,--,p.
Moreover, for any unit vector X in ¥V}, (4.22) implies that AQ‘X ,a=2--- plie

in ¥}, which are orthonormal by (4.18). Consequently, we obtain p < h + 1.
From (4.22), we may also get

A7 A7, + A7 A7 =0 fora+B.

From the equation of Gauss and (2.5), the sectional curvature K of N
satisfies
(4.23) K(X,Z)=-1+(o(X, X),0(Z, Z))
for any unit vectors X in ), and Z in 9D*. Since N is mixed foliate, we also
have

K(JX,Z)=-1-<(o(X, X),0(Z, 2)).
Combining this with (4.23) gives
K(X,Z)+K(JX,Z) = -2.

By summarizing the above facts we can state the next lemma.

Lemma 4.2. Let N be a mixed foliate CR-submanifold in H™. Then

(@) DYJZ =D,JZ = Fv,Z,

(b) D¥Z = D4Z = -tD,JZ,

(© Imo” =Dt ®JD*,

(d) A;, A;Z € O(Zh)’

epsh+1,

(D AZ45, + 45,47 =0,

(® K(X,Z)+ K(JX, Z)= -2, for any unit vector field X in TN”, and
orthonormal vector fields Z, W in D™ .
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From Lemma 4.2 and Proposition 3 of [2] we have the following.

Lemma 4.3. Let N be a mixed foliate proper CR-submanifold of M™(c),
¢#0.Thenc<0andp > 1.

Proof. Let N be a mixed foliate proper CR-submanifold of M"(c), ¢ # 0.
Then Proposition 3 of [2] implies ¢ < 0. If p = 1, then, for any unit vector field
Z in D*, statement (b) of Lemma 4.2 implies DYZ = D4Z = 0. Hence, Z is a
parallel normal vector field of the complex submanifold N7 in M™(c), ¢ < 0.
This contradicts a theorem of Chen and Ogiue [5].

Proposition 44. Let N be a mixed foliate proper CR-submanifold of H™.
Then

(a) each leaf NT of D lies in a complex (h + p)-dimensional totally geodesic
complex submanifold H"*? of H™,

(b) each leaf N7 is an Einstein-Kaehler submanifold of H"*? with Ricci tensor
given by
(4.24) ST(X,Y)=-2(h+p+ 1){X,Y),

h+1=2p=2;h=2, and

(d) the leaves of D* are totally geodesic in N.

Proof. Lemma 4.2 implies that the first normal space Im o7 is nothing but
D+ @JD . Since D ®JD* is a parallel normal subbundle of the normal
bundle of N7 in H™, by a theorem of Chen and Ogiue [5], N7 lies in a complex
(h + p)-dimensional totally geodesic submanifold H"*? of H™. Thus (a) is
proved.

Since N7 is a Kaehler submanifold of H™, equation (2.8) of Gauss gives

ST(X,Y)=-2(h+ 1)(X,Y)— D(A[ X, AL Y),

where £_’s form an orthonormal basis of 7+ N”. Thus by Lemmas 4.1 and 4.2
we obtain

ST(X, X)=-2(h+p+ 1){X, X),
which implies (4.24).

If 2 = dim 9 = 1, then from statement (b) it follows that N7 is of constant
curvature —2( p + 2). Since N T is a Kaehler submanifold of H™, a theorem of
Calabi [4] gives that p = 0. This is a contradiction. The remaining part of this
proposition follows from Lemmas 3.4 and 4.3.

Theorem 4.5. Let N be a mixed foliate CR-submanifold of H™. If dimg N <
5, then N is either a complex submanifold or a totally real submanifold.

This theorem follows immediately from statement (c) of Proposition 4.4.

Remark 4.1. The author believes that Theorem 4.5 holds for any mixed
foliate CR-submanifold of H™. However, he is unable to prove it at this
moment.



502 BANG-YEN CHEN

5. Semi-flat normal connection
First we recall the following definition [6].
Definition 5.1. A CR-submanifold N in a complex-space-form M"(c) is
said to have semi-flat normal connection if its normal curvature tensor R™*
satisfies

(5.1) R (X,Y; &, 1) = $(X, PY){J¢,n)
for any vectors X, Yin TN, and ¢, pin T+ N.

The main purpose of this section is to classify CR-submanifolds with
semi-flat normal connection.

Lemma 5.1. A CR-submanifold N in a complex-space-form M™(c) has
semi-flat normal connection if and only if

(52)  ([Ap 4] X, V)= §{IX, EXIY, m)y— (JX, n)(JY, )}

for any vectors X, Y in TN, and &, v in T+ N.
This lemma follows from Definition 5.1 and the equation of Ricci.
From Lemma 5.1 we obtain the following.

Lemma 5.2. Let N be a CR-submanifold with semi-flat normal connection in
M"™(c). Then

(5.3) ([4;, 4,] X, UY=0,
(5.4)  ([Ag 4| Z.Wy=${IZ,E)TW, )y~ (JZ, n)(JW, £)}

for any vectors Uin TN, X in D, Z, W in D* , and &, v in T+ N.
Moreover, we also have

Lemma 5.3. Let N be a CR-submanifold with semi-flat normal connection in
M"(c). Then

(5.5) A, = {0},
(5.6) (A D, 4,9 )= {0},

wherev, = T- N N J(T} N), x € N.
Proof. From Lemmas 3.1 and 5.2 we have

0=([4;, 4] X, TX)= -1l AIX > — | 4, X |I?

for any vectors X in %, and £ in ». Thus we get (5.5). Formula (5.6) follows
from (5.4) and (5.5).

Lemma 5.4 is an immediate consequence of Lemma 5.3.

Lemma 54. Let N be a CR-submanifold with semi-flat normal connection in
M"(c). If there is a & in v such that AN =D, then N is mixed totally
geodesic.
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From Lemma 5.2 we have
Lemma 5.5. Let N be a CR-submanifold with semi-flat normal connection.
Then
(5.7) 1A, 2W N2 = 5§+ (4122, Ay W)
for orthonormal vectors Z, W in D™ .
Proof. For orthonormal vectors Z and W in 9", Lemma 5.2 gives
§= Az AW Z WY = (AW, AjyW)— (A} Z, Ay W).

Thus by using Lemma 3.1 we obtain (5.7). 3
Let N be a CR-submanifold with semi-flat normal connection in M"™(c). By
Lemma 5.3 we obtain 4, = {0}. Define an endomorphism

A Dy - Dy
by
(5.8) Az=4.7
for any vectors § in 7, and Z in GDXl . Then /fg is self-adjoint.
Let Aj,---,A, be the distinct eigenvalues of /fg, and V,,---,V, the corre-
sponding eigenspaces. Then we have
(5.9) D=V, ®--- 8V, (V,,V;)=0 fori#.

Lemma 5.6. Let N be a CR-submanifold with semi-flat normal connection in
M™(c), ¢ # 0. Then, for any ¢ in v, A~§ is proportional to the identity endomor-
phism.

Proof. Under the hypothesis, Lemma 5.2 implies
(5.10) (AW, A;;Y Y= (AY, A; ;W)
for any vectors £ in », and Y, Z, W in D*. If /fg is not proportional to the
identity endomorphism, r =2. Let Z=W=Z, €V, Y=Z €V, fori #.
Then (5.10) and Lemma 3.1 imply

(5.11) (A4y2,Z;, Z;)= 0.
By linearity we have
(5.12) (A,ZJI/;,I/i)= {0} fori+#j.

Putting W=Z,€V,Y=Z € V,and Z = Z; € V) fori # j, (5.10) gives
AN A;z,2Z;, Z)= N A;2,2;, Z;) fori#],
which implies

(5.13) AV, CDOV,.
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On the other hand, by Lemma 5.3 we obtain
0= <(A;2X, 4:Z;)= A A,;2.Z;, X)

for any vectors X in 9, Z; € V}, and Z, € V,. This shows that 4,, ¥, C D™ if
A; # 0. Combining this with (5.13) yields

(5.14) A,;V, CV, wheneverA; # 0.
From (5.12) and (5.14) we get
(5.15) A;zV;=0ifj#iandA; # 0.

Since 4, has at least two distinct eigenvalues, we may assume that A, # 0.
From (5.7) of Lemma 5.5 and (5.15) we have
(5.16) 0= HAJZZZIHZ =51 (4,2,2,, 4;2.Z))-

On the other hand, Lemma 3.1 and (5.12) imply

0= (AJZjZi, Zy= (AJZiZi, Zj) fori #j.

Combining this with (5.14) we find
(5.17) A, Z,EDDV,.
Since 4, Z, € V) by (5.14), equations (5.16) and (5.17) give ¢ = 0. This is a
contradiction.

From Lemmas 5.3 and 5.6 we immediately have the following.

Lemma 5.7. Let N be a CR-submanifold with semi-flat normal connection in
M™(c), ¢ # 0. Then for any x € N, there is a unit normal vector 7 € v, such that

(5.18) A;X=0, A;Z=AZ,
(5.19) A =0
for any vectors X inD_, Z in D, and & in v, with (¢, 7)= 0.

Lemma 5.8. Let N be a CR-submanifold with semi-flat normal connection in
M™(c), ¢ # 0. If \ is nowhere zero on N, then N is mixed foliate.

Proof. Under the hypothesis, Lemmas 5.4 and 5.7 imply that N is mixed
totally geodesic.

For any vector fields X, Y in &, Z in D", and £ in T+ N, equation (2.9) of
Codazzi gives

R(X,Y; Z,£) =(o([X,Y], Z), &)
+{o(X,VyZ) — o(Y,VyxZ), ).

In particular, if we choose ¢ to be the vector 77 of Lemma 5.7, we can reduce
this to

0= <0([X1 Y]’ Z)’ ﬁ): }‘<[X’ Y]’ Z>
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by applying (2.6) and Lemma 5.7. Since A # 0, this shows that the holomor-
phic distribution is integrable.

Lemma 5.9. Let N be a CR-submanifold with semi-flat normal connection in
M™(c), c #0.

(1) Then A is constant, and for any vectors X, Y in TN and Z in D+ we have
F(R(X,Y)Z)=0(X,PvyZ) —o(Y, PVxZ)

+N{(Y, Z)FX — (X, Z)FY},

(5.21) D,JZ =FvyZ + NX, Z)J7,

(@) If A = 0, then N lies in a totally geodesic complex submanifold M"*?(c) of
M™(c) as an anti-holomorphic submanifold. _

() If A # 0, then N is a mixed foliate CR-submanifold with fD7 = 0.
Proof. For any vectors X, Y in TN, and Z in D+, we have

A, X+ DyJZ=Jv,Z+ (X, Z).

(5.20)

Thus

(5.22) DyJZ =FvVyZ + fo( X, Z).
By applying Lemma 5.7, this gives

(5.23) D,JZ = FvyZ + NX, Z)J7.

Therefore by considering the normal component of ¥ DJZ we obtain

DyDyJZ = Dy(FvyZ) + X(XY, Z))J7

(5.24) —N(Y, ZYFX + MY, Z)/D, 7.

On the other hand, by equation (3.9) of [4] and Lemma 8.1 of [4] we have
Dy(FVyZ) =fo(X,VyZ) — o( X, PVyZ) + F(VxVyZ).
Substituting this into (5.24) we obtain
DyDyJZ = fo(X,VyZ) — o(X, PVyZ) + F(VxVyZ)
+X(NY, ZY)Jq — NY, ZY{FX — fDy7}.

Thus the normal curvature tensor R* is given by

R (X,Y)JZ=F(R(X,Y)Z) + fo( X, VyZ) — fo(Y, V4 Z)
—o(X, PvyZ) +o(Y, PV, Z) — N[ X, Y], Z)J7
+ {X(XY, Z)) = Y(MX, Z))}J7
—N{(Y, ZYFX — (X, Z)FY)
MY, Z)fDyit — (X, Z)[Dyii}.
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By applying Lemma 5.7 this gives
RY(X,Y)JZ=F(R(X,Y)Z) — M{PX, PVvyZ)— (PY, PxZ)}J7q
—o(X, PvyZ) +o(Y, PVyZ)
F{(XAXY, Z) = (YAX X, Z)}J7n
(5.25) — N{{Y, Z)FX — (X, Z)FY}
MY, Z) Dy — (X, Z)fDy7 }.

It follows from Lemma 5.7 that both ¢(X, PVZ) and o(Y, PVyZ) lie in
JD* . Since R* (X, Y)JZ = 0 by (5.1), equation (5.25) gives (5.20) and

(5.26) (XA)Y, Z)— (YAXX, Z)= A(PX, PvyZ)— (PY, PVyZ)},
(5.27) MY, Z)fDyin — (X, Z)[Dyq } = 0.

If N is a complex submanifold of M™(c), then ) = TN and » = T N.
Lemma 5.5 shows that N is a totally geodesic complex submanifold of M"(c).

Now we assume that N is not a complex submanifold. We have dimg D" = p
> 0.

Case (a). If p =0, then we have Imo C JD* . Moreover, for any vector
fields Xin TN, Z in D, and £ in », Lemma 5.7 gives

0=(0(X,Z),&)=(VyJZ, JE)= (DyJZ, Jt).

Since this is true for all £ in », J* is a parallel normal subbundle. Because the
first normal spaces of N lie in J* , the fundamental theorem of submanifolds
shows that N lies in a totally geodesic complex submanifold M"*7(c) of
M™(c). In this case, N is an anti-holomorphic submanifold of M"*7(c).

Case (b). If A=0, then N’ = {x € N|A(x) # 0} is an open nonempty
subset of N. Lemma 5.8 tells us that each component of N’ is a mixed foliate
CR-submanifold M™(¢), ¢ # 0.

If ¢ > 0, then N is totally real (Lemma 4.3). Thus (5.26) gives

(5.28) (XAKY, Z)— (YA X, Z)=0,

for any vectors X, Y in TN, and Z in D" . Because dimg D; = dimg N =2
and A? is differentiable, (5.28) implies that A is a nonzero constant on N. Thus
by (5.27) we get fD7 = 0. '

If ¢ <0, then Proposition 4.4 and Lemma 5.8 show that dimp D; = p > 1.
Thus for any unit vector Z in " there exists a unit vector W in D+ so that
(Z, W)= 0. From (5.26) we find

(5.29) Z(X)=0 forZeD*.
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Let X and Z be any unit vector fields in %) and D~ respectively. Then (5.26)
gives

(5.30) X(A\)? =20 X, v,2Z).
On the other hand, for such X and Z we have
(X, VzZ)y=(JX,VJZ)= —(A;,Z, IX)Y= —(o(Z,JX), JZ).

Thus by using (5.30), Lemma 5.8, and the continuity of A?> we get X(A?) =0
for any vector X in ). Combining this with (5.29), we conclude that A is a
nonzero constant on N. The equation fD7 = 0 then follows from (5.27).

Lemma 5.10. Let N be a CR-submanifold with semi-flat normal connection in
M"™(c), ¢ # 0. If A # 0, then the sectional curvature of N satisfies

(5.31) K(ZAW)=N
for any orthonormal vectors Z, W in D* .

Proof. Let N be a CR-submanifold with semi-flat normal connection in
M"(c), ¢ # 0. If A # 0, then N is mixed foliate (Lemma 5.8). For any vector U
in TN, PU € 9. Thus for any orthonormal vectors Z, W in 9D+, (5.20) of
Lemma 5.9 gives

F(R(Z,W)Z) = -NFW.

From this we obtain (5.31).

Now we give the following classification theorem.

Theorem 5.11. Let N be a CR-submanifold in a complex-space-form M™(c),
¢ # 0. Then N has semi-flat normal connection in M™(¢) if and only if N is one
of the following:

(1) a totally geodesic complex submanifold M"(c),

(2) a flat totally real submanifold of a totally geodesic complex submanifold
M?(c) of M™(c),

(3) a proper anti-holomorphic submanifold with flat normal connection in a
totally geodesic complex submanifold M"*7(c) of M™(c),

(4) a space of positive constant sectional curvature immersed in a totally
geodesic complex submanifold M?*Y(¢) of M™(c) with flat normal connection as
a totally real submanifold.

Proof. Let N be a CR-submanifold with semi-flat normal connection in
M™(c), ¢ # 0. If N is a complex submanifold of M™(c), N is a totally geodesic
complex submanifold of M™(c) (Lemma 5.5). Thus N is itself a complex-
space-form M"(c).

Assume that N is nor a complex submanifold of M™(c). Then p > 0, and
there exists a unit normal vector field 7 satisfies (5.18) and (5.19) for some
constant A (Lemmas 5.7 and 5.8).
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If A = 0 and N is totally real, (5.20) shows that N is flat.

If A =0 and N is neither complex nor totally real, then N lies in a totally
geodesic complex submanifold M”*7(c) as an anti-holomorphic submanifold
(Lemma 5.9). In this case, (5.1) implies that N has flat normal connection.

If A # 0, Lemma 5.9 gives

(5.32) Dy €D
for any vector X in TN. On the other hand, Lemma 5.7 also gives
(5.33) DyJi = v,J7 = -JA;X + JDy.

From Lemma 5.7 and (5.32) we see that 4; X € &+, JDyq € TN. Thus (5.33)
gives
(5.34) Di=0.

Now, since N is mixed foliate (Lemma 5.8), the holomorphic distribution is
integrable. Let N7 be a leaf of ¢). Denote by A7 and DT the second

fundamental tensor and normal connection of N7 in M™(c) as before. Then
we have

~ATX + D= V1= -A; X+ Dy =0for X € TN

by virtue of (5.34) and Lemma 5.7. This shows that 7 |yr is parallel in the

normal bundle of N7 in M™(c). This contradicts a theorem of [5] unless N is

totally real in M™(c). If N is totally real, N is of positive constant sectional

curvature A* (Lemma 5.10), and N has flat normal connection (Definition 5.1).
From (5.33) and (5.34) we find

(5.35) DyJi = -JA; X € JD*

for any vector X in TN. Therefore by (5.21) of Lemma 5.9, (5.34) and (5.35),
we see that p = JOD* ®Span(, Jij} is a parallel normal subbundle, and
i D Imo. From these we conclude that N lies in a totally geodesic complex
submanifold M?*!(¢) of M™(c) as a totally real submanifold with flat normal
connection.

The converse of this is trivial.

Remark 5.1. From Lemma 5.9 it follows that the assumption of compact-
ness in Theorem 2 of [7] can be omitted.
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