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COMPACT FOUR-DIMENSIONAL EINSTEIN
MANIFOLDS

YOSHIHIRO TASHIRO

There are few known examples of compact four-dimensional Einstein mani-
folds (see N. Hitchin [1]), and all of them are symmetric. The purpose of this
paper is to give a class of Einstein manifolds having the following properties:
They are diffeomorphic to a product S? X S? of two 2-spheres, not symmetric,
and their sectional curvatures are not definite. The source is a theorem in [2] on
a conformal diffeomorphism of a product Riemannian manifold to a 4-dimen-
sional manifold with parallel Ricci tensor.

1. We consider a function p of a variable x satisfying the differential
equation

(1.1) {0'(x)}* = —4Cp* + 2Bp — 4,

which is rewritten in the form

(12)  {p(x)}=-4C(p—a)(p—B)p—7) (a<B>7),
where A, B, C are constants, C > 0, and p’(x) denotes the ordinary derivative
of p with respect to x. Then the constants «, 8 and y satisfy

at+pB+y=0,

(1.3) 2C(apB + By + ya) = -B,
4Cafy = -A,

a >0,y <0, and B and A have the same sign.

The function p is a real periodic elliptic function in the range [ 8, a]. By use
of Jacobi’s elliptic functions with modulus k = \Ja — B / Ja— ¥, the function

p is expressed as
B — yk*sn? u
1.4 =
(14) P dn’u

where we have put u = {C(a — y) x for simplicity. We denote by 4K the
periodicity modulus of Jacobi’s elliptic functions, and put L = K/ {C(a — v) .
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The function p is of period 2L, and takes the minimum value 8 at x = 0 and
the maximum value a at x = L. The derivative of p in x is given by

2/C(a—B)(B—y)snucnu
Ja —ydnlu .

The second derivative p”(x) satisfies the differential equation

(1.5) p'(x) =

(1.6) p”(x) = -6Cp* + B,

and takes the values

(1.7) p”(0) =2C(B — v)(a —v) >0,
(1.8) p’(L) =2C(a—y)(B—a)<0

in consequence of the relations (1.3).
Now let S be a 2-dimensional manifold with metric form

(1.9) ds® = dx? + {p'(x) )} dy?,

where y is the arc-length of a circle. We shall show that S is diffeomorphic to a

2-sphere, because p has the period 2L and p’(x) vanishes at x = 0 and x = L.

Let O and O’ be the points corresponding to x = 0 and x = L respectively.
The complementary modulus k’ of k is defined by

Kr=1-k2=bY
a—vy’

We define a parameter 6(x) by
6(x) = 2arc tan[sn u/ (cn u)k'z].
This parameter 8 has the limits

limf(x) =0, lim0(x)=m,
x—0 x—L

and varies in the closed interval [0, 7] as x varies in [0, L]. Deriving 6§ in x, we

have
40 2yC(a—vy)dn’u

4 (enu) ™ + (cnu)¥ sn’ u

and the relation
d6 _ _bdx
sin @ p'( x) ’
where we have put b = 2C(a — B)(8 — v). The metric form of S is given by

’ 2
ds? = (l’:—s(h’l%) [d62 + b2sin® 6 dy?].
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The expression in the brackets is the polar form of the metric of an ellipsoid of
revolution. We can verify that the factor p’(x) /(b sin 8) has the value

(g _ (&) -]
bsin @ 0 dé 0 2v/C(a—y) ’
and is differentiable at x = 0. Therefore the open subset S — {O’} of S is
conformal to the ellipsoid of revolution excluded with a point and has a
differentiable structure.

On the other hand, we put

x':L—X, u’:K_u9

the former x’ is the arc-length of the x-coordinate curves measured from the
point O’, and the latter u’ is related to x’ by ¥’ = yC(a — y) x’. Since

’

N _ Cnu N _ g, Snu
sn(K—u)—m, CH(K_u)—k dnu’
' k'
dn(K—u)=dnu,,

the function p is expressed as
o'(L—x")=(Bdn?u’ — yk*cn? u’) /K"
with respect to x’. The derivative of p in x’ is equal to
p'(L—x")=-2/C(a —y)(a—B)snuwcnu'dnu.
We define a parameter §’ by
6’ = 2arc tan[sn u'(dn u’)kz/k'z/ (cn u’)l/k'z] .

Then we have

40’ 2yC(a —y) (cnu’dn u’)kz/kl2

dx’ (cn u')z/kl2 + sn? u’(dn u’)ZkZ/k’2

and the relation

do’ adx’

snd  p(L—x)’

where we have put a = 2C(a — B)(a — v). The metric form of S is expressed
as

’ ! 2
ds? = (-p—%;l%)) [alﬂ’2 + a?sin? B’dyz],
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and we can verify that the factor p’(L — x") /(asin 8’) has the value
( p'(L—x') ) _ 1
asinf’ |, 2v/C(a —9) ’

and is differentiable at x’ = 0. Therefore the open subset S — {O} of S has
also a differentiable structure. Hence the manifold S with metric form (1.9) is
diffeomorphic to a 2-sphere S2.

The Gaussian curvature of the manifold S is equal to

(1.10) LCI TN
p'(x)

2. Let p,(x) and p,(z) be elliptic functions satisfying the equations of the
same type as (1.1), in which the constants B and C are common, and 4 may be
different ones, say 4, and 4, for p, and p, respectively. The constants in (1.2)
for p, and p, will be indicated by suffixing 1 and 2 respectively.

Let M, and M, be 2-dimensional Riemannian manifolds such as S con-
structed in §1 with the functions p,(x) and p,(z) for p respectively, and
(x") = (x, y) and (x?) = (z, w) their local coordinate systems. We consider
the Pythagorean product M = M, X M,, and denote the totality (x", x?) of
the coordinate systems by (x*). Latin indices run on the ranges

h,i, j,k=1,2; p,q,r,s = 3,4,

and Greek indices run on the range from 1 to 4.

The metric tensor g,,, the Christoffel symbol {,}, the curvature tensor
K,,,\" and the Ricci tensor K, of the product manifold M = M, X M, have
pure components only. The scalar curvature k of M is defined by

1

K= ﬁK A g""
and related to the scalar curvatures, i.e., the Gaussian curvatures k, and «, of
M, and M, by the equation

6k = Kk, + k,.
Taking account of (1.10) and putting
(2'1) 0’:pl +p2’
we see that the scalar curvature k of M is expressed as

k = 2Co.
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The curvature tensors of the 2-dimensional manifolds M, and M, are given
respectively by

Kyl = 12CP1(8/’3g/i - 6,'hgki),

(2.2)
Ksrqp = 12Cp2(8spgrq - 8rpqsq)’

which are the pure components of the curvature tensor K,,,* of M.
We indicate by Vv covariant differentiation in M = M, X M,. For p, in M,
and p, in M,, (1.1) and (1.2) are rewritten in the tensor equations

| Vo, |* = -4Cp} + 2Bp, — 4,,
| Vo, |> = -4Cp3 + 2Bp, — A,;

(2.3)

V,V,«pl = (—6Cp21 + B)gjl’

(2.4)
V,V,0, = (-6Cp} + B)g,,,

where | vp, |* is the length of the gradient vector v,p,. If we put ¢, = V,g,
then o, = v,p, and o, = vqu, and we have

(2.5) oo™ =| vp, * + | Ve, .

For our purpose we construct a 4-dimensional Riemannian manifold M*
from the product manifold M by a conformal change of metric

1
(2.6) g = 28,

with the associated scalar field o given by (2.1). The scalar field o takes the
minimum value 8, + B,, and we suppose that 8, + 8, > 0 or equivalently

A +4,>0

in order that o be always positive.

We denote quantities of M* by asterisking the characters corresponding to
those of M. Under the conformal change (2.6), we have the transformation
formulas

K K
(2.7) {:}\} {“}\} (6,1‘0)\ + 830, — 8.0 ),

Y ¢

vpuA vp.)\" + ; (8: V;LUA - 8: V,,O')\ + gp)\vvo"c - gv}\VMO'K)

- 0_0 0”(8 gp)\ 8:8,;)\)
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Referring the last equation (2.8) to the separate coordinate system (x”, x?),
noting (2.5) and using (2.2), (2.3) and (2.4), we obtain the nontrivial compo-
nents

Kkah (A +4,+ 4Co’ )(g/’:hgﬁ - gfhg/':i)’
(2.9) K}, = (A4, + 4, —2Co’)g* g%,
K;qup (AI + A2 + 4C0 )(g:pg;kq - g:‘qg:p)’

of the curvature tensor of M* and the other components vanish.

The product structure F = (F,*) of M = M, X M, has eigenvalues 1,1,
—1,-1, and composes an almost product structure together with the metric
tensor g;f)\ of M*, ie.,

S INES = g

We put £ = F,"gX,, which is a symmetric tensor. Then equations (2.9) turn to
the tensor equation

Kvp)\x (A + A2 + CO' )(g:ng:)\ - g:xg:‘/\)

(2.10)
+3Co ( VK p.)\ F;w v)\)

Since F,» = 0, transvection of this equation with g*** gives
(2.11) ow= 3(4,+4 )g,n\a

that is, the manifold M* is Einsteinian.

Covariantly differentiating the almost product structure F,* with respect to
the metric g, of M*, substituting the formula (2.7), and taking account of the
integrability v, F\* = 0 in M, we obtain

(212)  VrR. = (Ehe, + Eioy — ghE%o, — ghFle,).

The covariant derivative of the curvature tensor (2.10) of M* is equal to
VEK e = 3C0”[0,(ghgh — gh8h)
(213) +30, ( VK y.)\ F;.u: v)\)
+0’V (F;m A F;m v)x)]

The covariant tensor (£} ) has components

=% )

—Eap
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with respect to a separate coordinate (x", x?). By means of (2.12), nontrivial
components of V,*F¥, are only

2 2
(2.14) VirEL = 5 81i% ViF, = -850

The covariant derivative of the curvature tensor of M* has for example
nontrivial components

V:K:jih = lzcoz%(glthgfi - gfhglti)'
The manifold M* is therefore not symmetric.

Denote by k*(X, Y) the sectional curvature belonging to tangent vectors
X, Y. If both X and Y are tangent to one of the parts M, and M, of M as the
underlying manifold of M*, by means of the first and third expressions of
(2.9), the sectional curvature k*( X, Y) is equal to
(2.15) k*(X,Y) =4, + 4, + 4Cq?,
which is always positive. On the other hand, if X and Y are tangent to M, and
M, respectively, then the sectional curvature k*( X, Y) is equal to
(2.16) k*(X,Y)=4,+ A4, — 2Co?

by means of the second of (2.9).

We suppose here A; = A4,. Then the functions p,(x) and p,(z) are the same
and have the same constants, so we omit the suffices 1 and 2. The constants 4,
a and B are positive. By means of (1.3), the minimum of the sectional curvature
(2.16) is equal to

min k*(X,Y) =24 — 16Ca’® = 8Ca(2a + B)(B — a),

which is negative. Therefore in this case the manifold M* has saddle points.
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