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GLOBAL UNIQUENESS IN THE DISC LIFTING
PROBLEM

C. DENSON HILL & GERALDINE TAIANI

1. Introduction
In a previous paper [1] the authors have considered the problem of

characterizing families of analytic discs in Cn whose boundaries lie on a
prescribed CR submanifold. We obtained rather precise results which de-
scribe each such disc in the ambient space as the lift of a corresponding
parameter disc in the tangent space to the manifold. The construction of each
lifted disc involves solving a certain system of nonlinear singular integral
equations in which the parameter discs occur as parameters. For a more
complete discussion of these and related matters see [1].

In the work mentioned above we were concerned only with the local
problem: we showed that there exists a unique local lifted disc, corresponding
to each parameter disc, when the parameters occurring in the nonlinear
integral equations are sufficiently small. This local problem has an interesting
global analogue: does there exist a unique lifted disc associated with each
parameter disc of arbitrary size? In fact, as the parameters in the system of
nonlinear singular integral equations become larger and larger, one might
well expect some kind of bifurcation phenomenon to take place.

In this paper we are concerned with the global uniqueness question. In the
case where the prescribed CR submanifold has real codimension one, we
show that no such bifurcation occurs; i.e., global solutions are unique. In §3
we prove such a uniqueness theorem under rather weak assumptions on the
boundary values of the disc. In §4 we give a simpler proof which requires all
the discs to be continuous on D. In §5 we give a counterexample to global
uniqueness for a submanifold having codimension two.

The authors would like to express their appreciation to Harold Widom for
his enlightening conversations and especially for his help in the construction
of the counterexample in §5.

Communicated by A. Nijenhuis, October 2, 1978. Research supported by National Science
Foundation Grants.
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2. Formulation of the problem

Let M be a real (2n — l)-dimensional hypersurface embedded in C1. In
what follows we will merely need to assume that M satisfies a Lipschitz
condition (so for example M could be a piecewise linear manifold). But our
main assumption will be that M can be globally represented as a graph over
some real linear affine hyperplane H in C" (for example H might be the real
tangent space to M at some point). Without loss of generality we may assume
that ^ = RX Cm, with m = n - 1, and C" = C X Cm with holomorphic
coordinates (z, w) = (z, wl9 . . . , wm), z = x + iy, such that H = {y = 0}.
Thus our assumptions imply that M is globally defined by an equation of the
form
(1) M:y = h(x,w),

for all (x, w) G R X C where h : R X Cm —> R is Lipschitz continuous.
Let D be the open unit disc in the complex f-plane with closure D and

boundary S1. We define an analytic disc in Cn to be a map g : D —»C1 which
is holomorphic in Zλ To be consistent an analytic disc in R should be thought
of as a real constant map c : D —• R. Therefore an analytic disc in H — R X
Cm, which will be called & parameter disc, is actually a pair (c, w) = (c, w(ζ))
where c is a real constant and w : D -> Cm is an analytic disc in Cm. Here we
are concerned with analytic discs g in Cm whose boundaries g(S!) lie on M.
Any such disc is of the form

g(f) = (/tfO, *<£))), f e D
with/ = u + iυ an analytic disc in C, H> an analytic disc in Cm, and where

(2) v(eiθ) = h{u{eiθ\ w{eiθ)\ eiθ G Sι.

To each such disc g we will associate the parameter disc (c, w) where
c = Re/(0), and call g the lift of (c, w). This situation can be summarized by
the commuting diagram

M

Let T be the Hubert transform on the circle; i.e., the bounded linear
singular integral operator on L\Sι) given by

Tu(eiβ) = ±

7" is the operator which takes the boundary values u of a harmonic function
£/ to the boundary values v of the harmonic conjugate V with the normaliza-
tion F(0) = 0. We will restrict our attention to analytic discs g, /, u>, etc.,
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whose components are all in the Hardy space H2. Within this context there is

a one-to-one correspondence between the possible liftings g of a given

parameter disc (c, w) and the possible L2 = L2(Sι) solutions u of the nonlin-

ear singular integral equation

(3) u(eiθ) = c - T[h(u{e»\ w{eiθ))\ eiθ E S\

Thus the question of uniqueness in the disc lifting problem is equivalent to

the question of uniqueness of solutions of (3).

3. Global uniqueness in codimenson one

We have the following theorem.

Theorem 1. Let M be uniformly Lipschitz continuous on compact subsets of

R X Cm, and let (c, w) be any parameter disc with bounded measurable

boundary values. Then

(a) bounded measurable solutions u of (3) are unique,

(b) liftings g of (c, w) with bounded measurable boundary values are unique.

Remark. Our proof shows that the boundedness assumptions above can

be relaxed as follows: assume that M is uniformly Lipschitz continuous on

R X Cm with Lipschitz constant L, and consider a paramater disc whose

boundary values are finite almost anywhere. Then solutions u of (3), or

liftings g, which are in Lp for some/? > (1 - (2/π) tan"1 L)~\ are unique.

Proof. From what we have said above it suffices to prove part (a): let w,,

u2 be two bounded measurable solutions of (3) corresponding to the same

parameter (c, w),

uλ = c - T[h(uv w)], u2 = c - T[h(u2, w)].

Then u = uι — u2 satisfies the equation

(4) (/ + TK)u = 0,

where K is the operator on L\Sι) of multiplication by the function

0, otherwise.

Note that A: is a bounded measurable function, bounded by the uniform

Lipschitz constant for h on an appropriate compact set in R X Cm. In order

to conclude that u = 0 almost anywhere, it will suffice to show that the

bounded measurable function φ = Ku vanishes almost anywhere on Sι, since

u = -7φ by (4).
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The function φ satisfies the equation

(5) (/ + KT)ψ = 0

obtained by applying the operator K to (4). Let

00

(φ + iTφ){eiβ), Z = eiβ,

00

, , s -u 2 2, α-«z ' z e £,
Φ-(Z) = „_!

_(φ-lTφ)(β ), Z = eiβ,

with £ equal to the complement of D in the Riemann sphere, and where

ψ(eW)= Σ ane
inβ

n = -oo

is the Fourier series for φ. Then Φ + and Φ~ are holomorphic in D and E,
respectively, with boundary values in Lp for all 1 < p < oo, and Φ+(0) =
Φ"(oo) = a0. Moreover

φ ( ^ ^ ) = l [ Φ + (z) + φ-(z)], z - β *

and

/(7φ)(e^) =^[Φ + (z) - Φ"(^)], ^ = e®,

are valid in L^ίS'ι). Inserting these relations in (5) we obtain

(6) Φ+(eiθ) + G(eiθ)φ-(eiθ) = 0,

where the function

has its range contained in .S1 — {-1}, since k is real and bounded. Then

φ(eiθ) = log G(e») = / Arg G(eiθ)

is a well defined bounded measurable function with

-77 < -γ 0 < Arg G(eiθ) < γ0 < π,

for some constant γ0.
In exactly the same way that the functions Φ + and Φ" were constructed

from φ, we construct the functions 2Ψ+ and -2Ψ~ from ψ. Then Ψ+ and Ψ~
are holomoφhic in D and E, respectively, with the boundary values in Lp for
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all 1 < p < oo:

Moreover, Ψ+(0) = -Ϋ"(oo) = ̂ 60 and

ψ(e*) = * + ( z ) - ψ-(z), z = * *

Next we show that the functions e~ψ+ and e~ψ have boundary values in Lp

for 1 < p < 1 + δ, where δ > 0 is chosen small enough so that γ =

(1 + δ)γ 0 < 7Γ. In fact

f\e-*y+'-f \s**
s s

However since -/ψ/γ0 is real valued, with absolute value bounded by one,

and 0 < γ/2 < π/2, a well known theorem about conjugate functions [2,

Theorem 1.9, p. 70] implies that the last integral above is bounded by

cos γ/2 '

Since e~ψ+ and e~ψ are holomorphic in D and E9 respectively, it follows, as is

well known, that their boundary values are assumed in an Lp sense for

1 < p < 1 + δ.

Multiplying (6) by e~*+ and using the relation
^ ψ+ _ψ-
G = e -e

on S \ we obtain the equation

(7) F + (eiθ) + F-(e») = 0, eiθ E S\

where

(8) F + (z) = e" ψ + ( z ) Φ + (z), z G A

F-(z) = e-ψ(2>φ-(z), z G £

are holomorphic in D and £, respectively. Moreover F+ and F " have L1

boundary values, assumed in an L1 sense, because in particular Φ + and Φ"

have boundary values in £ ( 1 + δ ) / δ . Next consider the function F defined by

-F-(z), z e E.

It now follows from (7) that F satisfies the Cauchy-Riemann equations across

5 λ in the sense of distributions and therefore is an entire function. However F
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is bounded, as

hence F(z) = c by Liouville's theorem.
By the definition of b0 we have that b0 is purely imaginary and |f>0| < π by

the mean value property; therefore e±bo/2 cannot be purely imaginary. From
the relations Φ+(0) = Φ"(oo) = a0, Ψ

+(0) = -Ψ"(oo) = bo/2, and the defini-
tion of F, we obtain c = a0e~b°/2 = -aoe

b°/2. Thus c2 = -a\, and a0 is real.
Therefore c = 0 since c cannot be purely imaginary. It follows from (8) that
Φ + Ξ Φ ' Ξ 0 , and therefore φ = 0 almost anywhere on Sι. This completes
the proof of the theorem.

4. A simple proof for the case of continuous boundary values

In this section we make no explicit assumptions about the smoothness of
M; we merely assume that it is expressible as above by a real valued function
h which is defined on all of R X Cm, m = n — 1. Instead, we will assume that
all analytic discs under consideration have components which are holomor-
phic in D and continuous on D. Let (c, w) be such a parameter disc. Suppose
that gx = (/j, w) and g2 = (/2, w) are two such liftings of (c, w). We will show
that gλ and g2 must coincide.

Consider the complex valued function/ £ S ( D ) n C(D) defined by/ = fx

— f2. We will denote the boundary values of fvf2 and/by ux + iυx,u2 + iv2

and u + iv, respectively. Consider the mapping / from D to the complex
u + iv plane: let K be the compact set on the real line formed by the
intersection of f(D) with the pure imaginary axis. We will assume that/ ^ 0
and derive a contradiction.

On the one hand K must have nonvoid interior. Since Re/(0) = 0, u has
mean value zero; but u ^ 0, therefore u assumes both positive and negative
values. By continuity there exist a point in the open right half plane and a
point in the open left half plane which belong to f(D). However f(D) is
connected, hence K π f(D) ψ 0 ; but/(Z>) is open, so K must have nonvoid
interior.

On the other hand K must reduce to a point, namely the origin. The
continuous coordinate function υ in the u + iv plane attains its maximum
value v* and its minimum value v+ on the compact set K. The point
v* Gf(Sι) because f(D) is open. But going back to the boundary values
u + iv of/, we observe that v = 0 at a point of Sι if u = 0 at that same point,
since v = h(ux, w) — h(u2, w). Therefore v* = 0; likewise v+ = 0. This com-
pletes the proof.
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5. An example of bifurcation in codimension two

The uniqueness problem for the hypersurface M discussed above has an

analogue for a submanifold M = M2n~ι of codimension /: now set m = n —

I and introduce holomorphic coordinates

(z, w) = (zl9 - - - 9zl9wl9' - - , wm)9 z = x + iy9 on Cn = C X C w .

Assume that the /-codimensional submanifold M is globally defined by the

vector equation
(9) M:y = h(x,w),

for all (JC, w) G Rι X Cm, where A R ' x C " ^ R7. The formulation of the

disc lifting problem for codimension / is exactly the same as in §2, except for

these minor changes: c = (cv , c7) G Rz is a constant vector, / =

(/i> ' * * >//) : D -* R7 denotes the first / components of a lifted disc g, and (2)

becomes a vector equation. Likewise (3) becomes an / X / system of nonlin-

ear singular integral equations. As before the question of uniqueness in the

disc lifting problem is equivalent to the question of uniqueness of solutions of

(3).

Unfortunately neither the method of proof of §3 nor the method of proof

of §4 extends in a straightforward manner to the case of codimension greater

than one; in fact in codimension 2 we have the following counterexample.

Consider the real 4 dimensional manifold M4 embedded in C3 which has

the defining equations

y2= h2(x, w) = (x\ + xξ)xv

Note that M 4 is a graph over the 2-codimensional real linear subspace

R2 X C. The results of [1] apply to this M 4 in a sufficiently small neighbor-

hood of the origin; namely, corresponding to any parameter disc (c, w) E R2

X C, with sufficiently small C α norm there is a unique local lifting to an

analytic disc g in C3 with boundary on M. However, corresponding to any

parameter disc (0, w) e R2 X C, even those with arbitrarily small C α norm,

we have, for this example, two distinct global liftings:

g l ( f ) = (0, 0, w{ζ)\ s e A

g 2 ( ί ) = (?> & w(f)), ξ G D.
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