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AN IMPROVED TOPONOGOV COMPARISON
THEOREM

FOR NONNEGATIVELY CURVED MANIFOLDS

DOUG ELERATH

INTRODUCTION
The main result of this paper is a global comparison theorem of Topono-

gov type which gives improved estimates in open nonnegatively curved
manifolds. Previously, estimates on such a manifold could only be made by
comparison with R2. It is apparent that further improvements can be made,
which lead towards an integral formulation of the theorem.

The application presented in section 5 is intended primarily as an example
of the usefulness of this comparison theorem, and not as the optimal ap-
proach to the conjecture of Cheeger and Gromoll. It does in fact seem to me
that this approach must be stretched to its limit if it is intended to be used in
an effort to prove the conjecture.

The following is a list of the contents of this paper:
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4. GLOBAL COMPARISON THEOREMS
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4.2. Two global comparison theorems

5. MANIFOLDS DIFFEOMORPHIC TO EUCLIDEAN SPACE

5.1. The soul of a manifold
5.2. Compact half spaces and shriveled souls.

Portions, particularly §§3 and 4, are rather technical; but this is perhaps
unavoidable.

1. PRELIMINARIES

This section recalls certain elementary aspects of differential geometry
which are cited in the body of this paper, and establishes notation to be used
throughout. A proof will be given only for Corollary 1.3.2 which, to the best
of the author's knowledge, is not standard. All proofs and definitions which
are omitted from this section are most easily found in Cheeger and Ebin [2].

1.1. Notation

Mn will denote a complete n-dimensional Riemannian manifold with
metric <( , > and Levi-Civita connection V. Unless otherwise specified, all
geodesies in M will be assumed to be normal; | |γ'| | = 1, where γ'(ί) denotes
the tangent vector to γ at y(t). If x and y are points in M, then Cur(x, y),
Geo(x, y) and Geom(x, y) will denote respectively those curves, geodesies and
globally minimal geodesies which begin at x and end at y. Elements of
CUΓ(JC, y) are required to be at least piecewise smooth. Thus if γ E Cur(x, y)
is parameterized on [0, b], then γ(0) = x and y(b) = y. Similarly, if N C M,
then Cur(W), Geo(iV) and Geom(JV) will denote respectively those curves,
geodesies and globally minimal geodesies which have images contained in N.
Again, elements of Cur(iV) are required to be at least piecewise smooth. If the
parameter range of any curve γ is not specified, it is understood to be
[0, L[y]], where L[y] denotes the length of γ. Finally, if γ E Gco(x,y) and
η E Geo(*, z), we let <$ (γ, η)(x) = arc cos<γ'(0), η'(0)>, 0 < $ (γ, η) < π.

If γ : [0, b] -> M, define -γ : [0, b] -> M by -γ(/) = y(b - t). If γ i E
Cur(*,>>) and γ2 E Cur(>>, z) are parameterized on [0, bj and [0, b2] respec-
tively, define yι V Ύi ' [0, bλ + b2] -» M by

v V Y f Y l ( 0 UtGl°>b>]'
2(t-bι) if / e[6 1 ; t, + b2].

Thusγ, Vγ 2
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Sometimes we shall, without further warning, let the same symbol denote

both a curve and its image.

If TV c M is any subset and r G R is any positive real number, Tr(N) = {x

G M\d(x9 N) < r) is an (open) tubular neighborhood of N. Here, of course,

d denotes distance in the metric space structure induced by the connection.

1.2. Curvature and conjugate points

If x G M, and σ is a plane in Mx, then K(σ) will denote the sectional

curvature of M at x determined by any two vectors spanning σ. The notation

K(x) will occur only in conjunction with an inequality sign, and will denote

either inΐ{K(σ)} or s\xp{K(σ)} over all planes σ in Mx according as we have

K(x) > or K(x) < .
If γ G Geo(x, y), we will say that γ is free of conjugate points when we

mean that γ(/) is not conjugate to x along γ for any t in the domain of γ.

1.2.1. Lemma. Let Mn and Mζ+k be Riemannian manifolds, let γ : [0, b] ->

M and γ 0 : [0, b] -^ Mo be normal geodesies, and suppose that K(yo(t)) >

K(y(t))for all t G [0, b]. Then ify0 is free of conjugate points, so is y.

1.2.2. Remark. If M and λf0 are both 2-dimensional this lemma follows

immediately from the Sturm comparison theorem for second order ordinary

differential equations. See, for example, [10, p. 118]. Thus, despite the applica-

tion of this relatively modern result [ca. 1950] to surfaces in §2, the techniques

there should be considered entirely classical.

13. Rauch-Berger comparison theorem

Suppose that x andy are points in Mn. If γ G Geo(x, y), we will say that γ

is free of focal points when we mean that y(t) is not a focal point of the

(n - l)-dimensional embedded submanifold defined by restricting exp to a

sufficiently small neighborhood of 0 G γ'(O)"1- c Mx.

13.1. Theorem (Berger). Let Mn and Mζ+k be Riemannian manifolds. Let

γ : [0, b] -» M and γ 0 : [0, b] —» M o be normal geodesies with γ 0 free of focal

points. Assume for each t G [0, b], each υ G M γ ( / ) and each v0 G M^^ that the

sectional curvatures of the sections σ and σ0 spanned respectively by (y'(t), v)

and (y'0(t), v0) satisfy K(a0) > K(σ). Let T(t) = γ '(0 and T0(t) - γ^(0, and let

J and Jo be Jacobi fields along y and y0 respectively satisfying

(1) (Vj^XO) and (VΓ(/0)(0) are tangent to y and γ 0 respectively,

(2) HVp/IKO)- | |VΓ/ 0 | |(0),

(3) (T,J}(0) = (To,JoX0),and

(4) μil(θ) = ||/0||(0).
Then II/IKO > \\J0\\(t) for each t G [0, b],



190 DOUG ELERATH

The following corollary, although well known, appears nowhere in the
literature, so a proof of it is given here.

13.2. Corollary. Let γ : [0, b] -> Mn and γ 0 : [0, b]-+ M£+k be normal
geodesies, and let E and Eo be parallel unit vector fields along γ and γ 0

respeciυely with (E, γ'> = (Eo, γό>. Suppose that c : [0, b] -» Mand cQ : [0, b]
-» Mo are defined by

c(ή = expγit)(f(t)E(ή),

where f: [0, b] -> R is smooth. Let ηt : [0, 1] -» M and ηOt : [0, 1] -> Mo be
defined by

ηt(s) = expγit)(sf(t)E(ή),

ηOt(s) =

Assume that for each (/, s) e [0, b] X [0, 1], K(ηt(s)) < K(ηOt(s)), and that for
each t e [0, b], ηOt is free of focal points. Then L[c] > L[c0].

Proof. Since c and c0 are both parameterized on [0, b], it suffices to
compare the lengths of their tangent vectors.

If tι e [0, b] is fixed, and a : (-ε, ε) X [0, 1] —» M is a variation given by
γ(ί, s) + ηtι+t(s), then V(s) = (da/dt)(0, s) is a Jacobi field along η^ with end
values V(0) = y'(tx) and F(l) = c'(^). Note further that since VγE = 0 and

Similarly, we find that (V^KQXO) = f\tx)EQ(tλ). This shows that K and F o

satisfy condition (1) of Theorem 1.3.1. Evidently they satisfy the other
conditions, and thus ||F||(1) > ||FO||(1). Hence \\c\tλ)\\ > ||cό(Ί)ll f ° Γ any
tx G [0, b\ and thus L[c] > L[c0].

Remark. Note that <J£, γr> and <£O, γό> were not required to be zero in
this corollary.

2. THE CUT LOCUS ON A FLATTENING SURFACE

OF REVOLUTION

Interest in the cut locus on surfaces dates back to Poincare [15], and Myers
[13], [14]. They both proved that the cut locus of a point x on a surface S can
contain no closed curve, and that the end points of the cut locus of x are
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conjugate to x. In addition, Myers proved that on an analytic surface the cut
locus of any point is a tree with finitely many nodes in any compact subset of
S.

To illustrate the notion of the cut locus, Myers describes the cut locus on
several standard surfaces such as the plane, the sphere and the ellipsoid, and
then states that "examples of well-known simply connected surfaces on which
the (cut) locus assumes a complicated, but determinable, form are naturally
hard to give." It is in fact extremely difficult to calculate the cut locus on a
specific surface unless the surface is quite nice. Gluck and Singer [8] have
recently shown that any smooth manifold of dimension > 2 can be given a
Riemannian metric with a non-triangulable cut locus, and they construct such
a metric on the 2-sρhere.

Previously, "quite nice" has commonly meant a quadric surface, or perhaps
a cylinder or torus. Even in the case of a surface of revolution, where
geodesies can be explicitly exhibited in integral form, the cut locus is not
generally known. This problem was, however, solved for paraboloids and
hyperboloids in a beautiful paper by von Mangoldt [12]. In this paper he
sidesteps the task of calculating the elliptic integrals defining geodesies on
these surfaces, and computes the conjugate locus directly. The cut locus is
then immediately apparent.

In this section we will extend the results of von Mangoldt to the class of
flattening surfaces of revolution. The techniques will not be his; but, as
mentioned in §1, the techniques are essentially classical.

2.1. Preliminaries

Let (r, θ, z) : R3 -+ [0, oo) X [0, 2τr) X R be cylindrical coordinates. Let
S2 c R3 be a smooth surface of revolution about the z-axis, with the induced
metric, such that (r, θ)\s is 1-1. Let/? = r\~s\0) be the vertex of S9 and let
p : S -> R be defined by p(s) = d(p, s), where the distance d is measured in
the surface S.

Using (a) the integral expression for a geodesic on a surface of revolution
and (b) Clairaut's theorem (see for example [7]), one can easily deduce the
following qualitative description of the behavior of geodesies on 5.

2.1.1. Description. On each infinite normal geodesic γ : R -» S there is a
unique point, denoted σγ, which is nearest to the vertex of S, about which γ is
symmetric, and at which γ is tangent to a parallel of S. The two branches of γ
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proceed in either direction from this point and spiral in opposite senses

around the axis of S heading monotonically towards infinity, so that p ° γ

satisfies a maximum principle.

Ling [11] provides a more detailed discussion of geodesies on a slightly

more restricted class of surfaces.

2.1.2. Definition. Such a surface of revolution S will be said to be

flattening if dK/dp < 0, where K denotes the Gauss curvature of the surface

and p was defined above.

Thus we add to our notion of a surface of revolution the requirement that

the curvature decreases as distance from the vertex increases.

2.13. Notation. We let S be a flattening surface of revolution, and set

(1) S + = S nθ-ιφ9iτ),

(2) Px = the parallel (z = constant) through a point x E S,

(3) μx = the meridian (θ = constant) through a point x E S with μx(0) =

P,

(4) βx = the meridian opposite x, i.e., βx(t) = exp^-ήi^O)). If γ G

Geo(S), domain (γ) = R, then

(5) τγ = inf/ (γ(0),/€ΞR,

(6) σγ = that unique point in S o n γ for which r(σy) = τγ. If γ E Geo(S),

domain (γ) φ R, then

(7) γ E Geo(S) denotes the unique extension of γ so that Im(γ) c Im(γ)

and domain (γ) = R,

τ γ =

(60 σγ - σ-.

Suppose that γ E Geo(S+), domain (γ) = [0, b]9 γ not a meridian.

(8) θγ : [0,b]^[0,π) by θγ(t) - |0(γ(O))|. That θy is 1-1 follows from

Description 2.1.1.

(9) Fγ : Im(0γ) -* p(γ) by F γ = p ° γ ° θ~ι, so that γ can be viewed as the

graph of Fγ.

2.1.4. Definition. If γ, η E Geo(5+), we say that η lies below (above) γ if

(i) 0(γ) C 0(τ?), and (ii) for each / E domain (γ), p(η n ^ < (>)p(γ(0)

The same terminology will be used if γ is simply a point. Note that if η lies

below γ, it is not necessarily the case that γ lies above η.

Finally, we need the following result which is implicit in the paper [14] of

Myers.

2.1.5. Lemma (Myers). Suppose M2 is a smooth complete surface, and

x E M, y E M. Given g E Geow(x, y), h E Geom(x, y) with g U h the

boundary of a simply connected region D, then there exists z E Cl(D) such that

x and z are conjugate along a geodesic g0 E Geom(Cl(D)).
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2.2 Results

In Lemmas 2.2.2, 2.2.3 and 2.2.4 we assume the following data.

2.2.1. Data (see Fig. 1).

S

FIG. 1

7Γ

(1) x e ΘSV with θ(x) = 0;

(2) y G S+ with p(x) < p(y);

(3) y£Geom(x,y),y:[0,a]^S;

(4) z E Py Π S + is such that 0(z) > 0(> )̂ (S+ is open);

(5) ηGGeoJ^zXηiiαil^S.

The following three technical lemmas explore in detail the behavior of the

geodesies γ and η.
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2.2.2. Lemma, γ, η c S+ and η lies below y.
Proof. The first claim follows immediately upon observing that (i) S is

symmetric with respect to reflection through the plane determined by dS+,
and (ϋ) γ and η are minimal. Thus if, for example, h is any geodesic from x to
z, we may reflect all portions of h not in S+ through the plane determined by
dS+. If h £ Cl(S+), the result is a non-smooth curve from x to z of the same
length as h, and hence h could not have been minimal. (This shows that S+ is
convex.)

Since 0(z) > θ(y), γ, η c S+ and 0γ, θη are 1-1, we have 0(γ) c 0(η). Since
both γ and η are minimal, η π γ = {x} Thus TJ lies either above γ or below
γ. Let H{t) = Fη(t + 0η(O)) and G(ί) = Fγ(ί + 0γ(O)) map 0(γ) to R. If η lies
above γ, H > G, and in particular H(θ(y)) > G(θ(y)). Then H(0) < H(θ(z))
< H(θ(y)), while 0 < θ(y) < 0(z). This is of course impossible since H
cannot achieve a maximum at an interior point (cf. Description 2.1.1).

2.23. Lemma. L[γ] < L[η],
Proof. Suppose that Py is parameterized, not by arc length, but such that

0(z) - θ(Py(s)) = s, and let zs = Py(s). From η\θ) > 0, P;(θ) < 0 and P;(p)
= 0, it follows that <τj', Py(z)} < 0. Now choose a smooth variation
α : (-8, δ)X[0,b]^>Sofη with a(s, 0) = x, a(s, b) = zs and α(0, 0 = η(f).
Then <3/3^(α), r)'}\s=o;ί-b = (Py, η'X^) < 0, and so the first variation for-
mula implies that d/ds\smmQL[a, (s, )] < 0.

Since both Lemma 2.2.2 and the argument of the preceding paragraph
apply as well to each ηs G Geom(jc, zs) for all relevant s, i.e., when θ(y) < zs

< 0(z), it follows that L[ηs] decreases monotonically as s increases. Thus

2.2.4. Lemma. p(γ(0) > p(?\(t))for each t > Oin the domain ofy.
Proof. Let P be any parallel with τγ < ρ(P) < p(y). Let tx be such that

y(tx) G P and F^(tλ) > 0, and thus for all t > tl9 ρ(γ(0) > p(^) (That such a
tx exists is clear from Data 2.2.1 and Description 2.1.1). Let sx be similarly
defined in terms of η. The argument given in Lemma 2.2.3 applies, mutatis
mutandis, to show that tx <sx.

If P π γ is but a single point, P π η will likewise be a single point, and
necessarily these intersections will be the y(tx) and η(sx) described in the
previous paragraph (p(y)p(z) = p(x)). Thus, since P lies above η|[0, sx]9

If P π γ is two points (the only other case), P Γ) η will also be two points,
and it must be that Fγ'(0) < 0. Define t0 so that y(t0) G P and Ffi0) < 0, and
let s0 be similarly defined in terms of η. Thus if t0 < t < tv p(γ(0) < p(P)\
while if s0 < t < sx, p(η(t)) < p(P). Let w = y(t0) and let Pw be para-

meterized so that θ(w) - θ(Pw(s)) = s. Let vv, = Pw(s) and let ys G
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Geom(x, ws) for 0 < s < θ(w). It is easily seen that F^(θ(ws)) < 0: Rotate γ so

that γ(/0) passes through ws; it is then clear that ys is trapped above this

rotated version of γ, and thus F;(θ(ws)) < Ffi0) < 0. Thus <γ5', P'\ < 0,

and using a first variation argument as in Lemma 2.2.3 we see that .s0 < t0

(the geodesies are parameterized by arc length).

Now given any t G domain(γ) we construct P γ ( 0 , with s0, sl9t0 and tx as

above. The foregoing argument implies that s0 < t0 < t < tι < sl9 and thus

that p(η(0) < ftτiisj) = p(γ(^)) = p(γ(0) q.e.d.

In the following we let C(x) denote the cut locus of x.

2.2.5. Theorem. Let S be a flattening surface of revolution and x E S. Then

C(x) c fix.
Proof. Without loss of generality we may suppose that x G dS+, Θ(S+) =

(0, TΓ), and 0(x) = 0. If C(x) Π S+Φ0y then the convexity of S+ (shown in

Lemma 2.2.2), the characterization of cut points given in Lemma 5.2 of [2],

and Lemma 2.1.5 together imply that there exists a j G S + such that x a.ndy

are conjugate along a minimal geodesic in S+. By relabeling, if necessary, we

may suppose that p(x) < ρ(y). We will now see that such a situation, i.e., x

conjugate to such a y in S+, is not possible, and thus that C(x) Π S+ = 0 .

The theorem is then apparent.

So, suppose we are given Data 2.2.1 on 5. Then, since S is flattening,

P(η(θ) < P(Y(O) for / E domain(γ) implies that K(η(t)) > K(y(t)). Moreover,

since η is minimal, x can have no conjugate points along η for a distance

equal to L[η] > L[y]. Thus Lemma 1.2.1 shows that j> is not conjugate to x

along γ, and we are done.

23. Example

This example shows that Theorem 2.2.5 is sharp in the following sense:

Given 8 > 0, there exist a surface of revolution S and a point x 6 95 + such

that (i) dK/dp < 0 except on a set E c S, (ϋ) m(E) < δ, where m denotes

Lebesgue measure, and (iii) C(x) ( 1 5 + ^ 0 . Equivalently, by multiplying

the metric by a constant, we can replace (ϋ) by (ii') dK/dρ\E < δ.

We will construct a surface which is only piecewise smooth, and in fact

does not satisfy our requirements for a surface of revolution (cf. §2.1.). But

standard approximation theorems, see for example Aleksandrov and Zalgaller

[1], imply that this is sufficient.

23.1. Let/ : [0, oo) -^ R2 be the curve

(t, 0) 0 < t < 1,
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and let S be the surface generated by revolving / about the vertical axis. See

Fig. 2. Let γ : R -> S be a geodesic with 0 < τγ < 1, and σγ = (τγ, 0, 0). Then

for some ε > 0, y\[-ί0, /0] c S+, where t0 = (1 - τ 2 ) 1 / 2 + ε, and both y(tj

and γ(-ί0) a r e i n ^ e cylindrical part of S. Thus there is another geodesic

η G Geo(γ(-f0), γ(ί0)) Π Geo(S + ) which is distinct from γ, and so C(y(tJ) Π

S+ φ 0 . Now we can find an approximation to S for which (i) and (ϋ), or (i)

and (ii') hold, and a point x on the approximation such that (iii) holds.

η in cylindrical part of

FIG. 2

23.2. With a little more care, (i), (ii) and (ii') can all be made to hold

simultaneously. Here we let/^ : [0, oo) -> R2 be the curve

l ~ COSW' s i n W ) 0<t <θ < flr/2,

( 1 - cos(#), t-θ + sin(β)) θ < U

and let 5^ be the surface generated by revolving/about the vertical axis. Just

as in §2.3.1 we find, for a given θ < π/2, that there is an x e ΘS+ with

C(x) nS + ^0.
If we now approximate Sθ by a smooth surface of revolution Tθ which

satisfies (i) and (ii') (Tθ may differ from Sθ by a confoπnal factor), then, if θ is

sufficiently near π/2, Tθ will satisfy (i), (ii), (ii') and (iii).

3. HINGES, TRIANGLES AND BRANCHED COVERINGS

In this section we define hinges and geodesic triangles in a Riemannian

manifold, and then prove several technical lemmas which examine hinges

more closely on flattening surfaces and their branched coverings. The idea is

to replace part (1) of the proof of Toponogov's theorem as presented in [2]

with a lemma appropriate to a flattening surface of revolution. The reasons

for going to the branched coverings are somewhat subtle, and will be

indicated later in the paper.
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3.1. Definitions and notation

Throughout this section, any geodesic written γf. is assumed to be para-
meterized on [0, 6,], and we let <?, = %(&,). Furthermore, if {γ/*} is a family of
geodesies which is parameterized by α with each γ" parameterized on [0, £J,
then set e« = γ«(6, ).

If (Λf, d) is any metric space with A c M, B c M, let dA(B) =
sup{y(Λ, Λ:)|Λ: E 5}, and define the Hausdorff distance between A and B by

hd(Λ, 5) = max{^(^), dB(A)}.

If 5 is a surface of revolution and γ E Geo(S), we may extend 2.1.3(8) and
define θγ as follows: We may suppose that 0 E domain(γ). If x E range(γ),
we may orient S in R3 so that x E dS+, θ(x) = 0. Let (a, b) be the domain of
the connected component of y\s+ such that y(a) = x. Then we require that (i)
0γ(O) = 0 and (ii) if t E (α, b), θy(t) - θγ(a) = θ(t). It is easily seen that θγ is
1-1 for any nonmeridional geodesic γ on S.

Let M be a Riemannian manifold.
3.1.1. Definition. A hinge in M is a triple (γ^ γ2, α) with
(1) γ, E Geo(M),
(2) e0 = Yl(0) = Ϊ2(0), and

(3) <ί(γ1,γ2)(eo) = «.
By a family of hinges {(γf, γ2, «)} we mean that for each α in some interval
(YΓ> Ϊ2> α ) ίs a hώge in M with each γf parameterized on [0, bY]. Note that
eι ~ ϊΓ(*i) is a continuous function of α.

Sometimes, given a hinge (γ^ γ2, αo)>
 w e w ^ speak of increasing or

decreasing α0 by moving, say, γ^ This procedure may be viewed formally by
constructing the family of hinges {(γf, γ2, «)}, « E [α, fc], with α0 E [α, 6].
Then, if aλ E [α, α0), to "decrease α0 to αj" means to consider γf1 to be the
geodesic resulting from this "movement".

3.1.2. Definition. A triple of geodesies (γ0, γj, γ^ on M is a geodesic
triangle (on M) if γ,(fc,) = γl+i(0), i E Z3. Note that if each γ, is minimal,
then it is apparent that the γ, satisfy the triangle inequality, i.e.,

L[Ύi] + L[yi+ι] > L [ γ / + 2 ] , i E Z3.

3.2. Hinges in flattening surfaces

For the remainder of §3, S will denote a flattening surface of revolution

with vertex p, R will be a fixed positive real number, and attention will be

restricted to the compact ball Cl(T2R(p)) in S.
The following lemma is a bit unwieldy, but not without purpose. In this

lemma we define a number of constants δl9 - , δ5 associated to a given
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flattening surface of revolution. Having five instead of just one allows us to

more easily point out exactly what hypotheses are needed in later proposi-

tions.

3.2.1. Lemma. Let S be a flattening surface of revolution and fix i ? £ R .

(1) There exists δx > 0 so that if γ E Geo(T2R(p)) with L([y] <

d(y(0),p) + 2δx, then y is free of conjugate points.

(2) There exists 82>0so that if y E Geo(T2R(p)) with L[y] < δ2, then y is

free of focal points.

Let G denote the set of normal geodesies in TR{p) such that if y E G, then

L[y] < d(y(0\p) + δv Each y E G is parameterized on [0, L[γ]].

(3) There exists δ3 > 0 such that if y EL G and η is any geodesic with

hd(γ, η) > δ3, then η is unique between its end points among all those geodesies

whose hd distance from y is less than δ3.

(4) There exists δ 4 > 0 such that if y E G and z E Γδ4(γ(0)), then there

exists η E Geo(γ(L[γ]), z) with hd(τj, γ) < δ 3 and L[η] < L[y] + δv We may

furthermore require that <J (γ, η)(τf(O)) < TΓ unless y\JηE Geo(γ(0), z) (this

is used only in Lemma 3.2.3).

(5) Given ε > 0 and φ E (0, ττ/2], there exists a δ5 E (0, δ4) such that the

following holds'. Let (yv γ2, a) be a hinge with yγ E G, L[y2] < δ5 and a E

[φ, π-φ]. Let η be the unique geodesic from ex to e2 whose hd distance from yλ is

less than δ3. Recall that et was defined in §3.1. Then, up to reparameterization,

η(t) = cxpγ(t)f(t)E(t), where E is the parallel unit vector field arrived at by

parallel translating y2 along yv andf : [0, b] —»[0, ε) is smooth.

Proof. In each case we shall produce the δ for an arbitrary geodesic. Then

a uniform δ can be found using continuity and compactness arguments.

(1) Suppose γ e Geo(x,>>), and let μ be the meridian segment from x top.

Since x and p are not conjugate along μ, μ can be extended a small amount

beyond p and still be free of conjugate points (C(x) is closed). Thus,

assuming tht μ has been so extended, L[ μ] > d(x, p) and μ contains the

meridian segment from x to p. If p E γ, we are evidently done. Otherwise,

since μ is minimal from x top, d(μ(t),p) < d(y(t),p) foτO<t< d(x,p), and

thus d(μ(t),p) < d(y(t),p) holds for 0 < t < d(x,p) + 2δx for some δ! > 0.

Since S is flattening K( μ(t)) > K(y(t)), and the proof is completed by

applying Lemma 1.2.1.

(2) This is clearly true on any compact manifold.

(3)-(5) These all follow easily from the facts that γ is free of conjugate

points, and that exp .̂ v is a continuous function of both x E S and v E Sx.

Remark. Any δ, appearing in the remainder of this paper will be assumed

to have been chosen in accordance with the above lemma.
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3.2.2. Lemma. Let {(γf, γ2, α)}, α E [α, b]9 be a family of hinges in S+.

Then d/da(d(e?, *2» > °for alί « e [*> *]•
Proo/. This is a straightforward analogue to step (1) in the proof of

Theorem 2.2 in Cheeger and Ebin [2], Here it is important to observe that if

x E c/(s+), c(χ) n s+ = 0.
3.23. Lemma. L«tf {(γf, γ2, α)}, α e [0, IT], 6e a family of hinges in TR(p)

C S. Suppose that
(1) L[γΠ <«/(**/>)+«i,<™*
(2) L[γ2] < δ4.

Lei γ α denote the unique geodesic from e2 to e? whose hd distance from γj* w
fe^ /Λα/z δ3. 7%e« (d/da)L[ya] > Ofor all a e [0, π].

Proof. Since γ{* is free of conjugate points for a E [0, π], ̂ 4 = {ej*} is a
smooth submanifold (with boundary). Clearly, by choice of δ φ γ α is also free
of conjugate points for each α. This, using the fact that Tδ (γf) (in the hd
metric on Geo(S)) is open, implies that L[ya] is a smooth function of α. It is
therefore reasonable to compute (d/da)L[ya].

The variation vector field for the variation {γα} is zero at e2 and tangent to
A at e?. Since yf'(ef) is orthogonal to A and <£ (γf, ya)(e?) < m for
a E (0,7r) (by choice of δ4), γ α is never orthogonal to A for a E (0, TΓ). Thus,
using the first variation formula, we see that (d/dά)L[ya] ψ 0. But it is quite
clear that

L[y°] = \L[Ύι] ~ L[y2]\<L[yι] + L[γ2] = L[γ ],

so that (^/Jα)L[γα] > 0.

33. Hinges in branched coverings of flattening surfaces

If S is a flattening surface of revolution with vertex p, S* will denote the
infinite-sheeted branched covering space of S9 branched over p, with the
induced geometry. For computational purposes we may view S* in the
following manner.

Suppose R2 is represented in polar coordinates (r, θ), and let H = [0, oo) X
R. Define ττ0 : H -> R2 by

and topologize H so that π0 is continuous. Now consider the diagram

5* -<^V H
I

πl π 0
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where S* is the (p, 0)-pullback of H. Let the geometry of S* be the

7r-ρullback of the geometry on S, and p* = π~\p). It is clear that the

topology on S* which is induced by the geometry is the same as the topology

which S* inherits as a pullback of H. Note that S* is not geodesically

complete at/?*, but that otherwise geodesies are simply lifts of geodesies in S.

Note also that minimal paths in S* are either lifts of minimal geodesies in S,

or else can be written as μx V Ih. where μλ and μ^ are meridian segments in

S*, μλ ending and μ2 beginning at/?*.

Let p* = (p, θ)* followed by projection into the first factor of H, and

θ* = (p, θ)* followed by projection into the second factor of H, and note that

as a map from S* to H, (p*, 0*) = (p, 0)*. Finally, if γ G Geo(S*), let

θy* = θ<?r o γ ) .

33.1. Lemma. On S* \ {/?*}

(1) (p*, θ*) is one to one, and hence a homeomorphism between S* \ {p*}

and H \ ({0} X R),

(2) each simple closed path determines a bounded and an unbounded

component in 51*,/?* £ bounded component, and

(3) there are no closed geodesies.

Proof. (1) Since (p, θ) is one to one, so is (p*, 0*). Since π and (p, θ) are

open maps, so is (p*, 0*).

(2) This is standard, using the homeomorphism of (1).

(3) Suppose γ : [0, b] -+ S*, γ G Geo(x, x). Then using (2) it is clear that

0γ (O) = θγ.(b), which is impossible since 0γ (= θ^ β γ)) is one to one. q.e.d.

Let S*. denote some connected component of τr"1(5+). The following

lemma along with Lemma 3.3.5 provide the primary motivation for working

in S* rather than in S. This will be discussed further in §4.

33.2. Lemma. If x G S% and y G S%, then Geo(x,j>) contains precisely

one element, andGeo(x,y) c GeoίS^).

Proof. That there is some γ G Geo(;c,>>), γ c S%, is clear since the

geometry on S* is the π-pullback of the geometry on S, and the minimal

geodesic between π{x) and π(y) remains in S+. That Geo(;c,.y) Π Geo(S"$.)

contains only one element follows immediately from Theorem 2.2.5 which

describes the cut locus on S. If η G Geo(jc,>>), V ̂  Y> then it must leave S%.

But Lemma 3.3.1(2) then implies that θ* is not one to one. q.e.d.

Much of the technical difficulty which we will encounter throughout the

remainder of this paper is due to the fact that S* is not complete. This next

lemma provides us with the degree of completeness needed however. Note

that we continue to apply the notation of §2.1 to S* whenever the meaning is

clear.



TOPONOGOV COMPARISON THEOREM 201

333. Lemma. Ifx£S*9y£ S*9 y G Geo(x9y), and y lies below z G S*9

then Geo(x, z) φ 0 . If y is also a minimal curve, so that L[y] = d(x9 y)9 then
there exists a minimal geodesic from x to z.

Proof Suppose z φy and γ is not contained in a meridian (in either case
the lemma is obvious).

Let ft denote the meridian through z, and v the meridian through x with
v(0) = p*. See Fig. 3. Let φ = <£ (γ, v)(x). Define a family of geodesies {γα},
α G [0, φ], each geodesic of which begins at x9 lies above γ in some neighbor-
hood of x, and such that <£ (γ, ya)(x) = α. Since, for a Φ φ, γα is not a
meridian, each γα can be extended indefinitely and in particular, at least for
small α, until γα crosses μ. Furthermore, it is clear that γα Π μ depends
continuously on α, and thus A = {γα π μ|α G [0, φ]} is a connected set.

FIG. 3

It is clear that γφ π μ is empty and, by the continuous dependence of ya on
α, that C = {α|γα Π μ = 0} is closed. Let a0 be the smallest element in C,
and let {α,} be a sequence of real numbers, 0 < α, <α,+i < tf0, which
converge to αo Let mf = γ^ Π μ, and we claim that p*(m?) -^ oo : if not,
mi-^m G μ; but again by continuous dependence of ya on α, we see that
Ίa Π μ = w, a contradiction.

Thus, since p*(γ Π μ) < p*(^) and A is connected, γα n μ = z for some
a G [0, φ].

If γ is a minimal geodesic, let c be any minimal path from x to z. If c
passes through p*9 then, since γ lies below z and meridians are the shortest
paths from /?*, c will cross γ. Since z Φy, either c or γ, or both, must
continue to minimize beyond c n y . But it is a standard fact that this cannot
happen.

Thus the minimal path from x to z cannot pass through p*9 and so it must

be a geodesic. That γ lies below this minimal geodesic is also quite easy to

see. q.e.d
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For x G S* we call y a cut point of x if there is a geodesic from x to y

which is minimal to, but not beyond, y. C(x) will denote the collection of all

cut points of x, and note that C(x) may well be not-closed and/or discon-

nected. For example, let S be a semi-infinite cylinder capped with a hemi-

sphere (Example 2.3.2 with θ = π/2) take out the vertex, and let x lie in the

interior of the hemisphere. Then C(x) = {p} U μx\(a, oo), where a ¥=0.

Jix(ά) $ C(x) since x and μx(a) are conjugate on S only along a geodesic

through/?. The same problem arises in S*.

The following lemma is the natural extension of the corresponding fact on

complete manifolds.

33.4. Lemma. Let γ G Geo^*) . Then y(t0) is a cut point of x = γ(0) //

and only if one of the following holds for t = t0, and none holds for any smaller

value of t:

(1) Ύ(Q=P*,
(2) x and y(t0) are conjugate along γ, or

(3) there exists η G Cur(>, y(t0)), η φ γ, with L[η] = L[γ].

Proof Since, if γ is not a meridian nearby geodesies are also not

meridians, the proof of the corresponding fact for complete manifolds, (see [2,

Lemma 5.2]) applies. The only difference being that perhaps η passes through

/?*, and is thus only necessarily piecewise geodesic.

33.5. Lemma. Let x G S* andy G C(x)\ {/?*}. Then d(x9y) > d(x9p*)

+ 2δlf where 8ι is chosen for the surface S with S* = -7r*(5f) and R » d(x9y).

Proof Let γ G Geom(x, y). If x and y are conjugate along γ, then TΓ(JC)

and π(y) are conjugate along 77 (γ). Thus, by Lemma 3.2.1, L[π(y)] >

d(π(x),p) + 2δj; and so L[γ] > d(x,p*) + 2δj.

Otherwise there exists η G Cur(;c,>>), L[η] = L[y]. But then τr(τj) and τr(γ)

are distinct elements of Cuτ(ir(x), π(y)) of the same length, and thus π(y) has

quit minimizing prior to π(y). Thus, by Lemma 5.6 of [2] and Lemma 3.2.1,

we once again see that L[y] > d(x,p*) + 2δ,.

33.6. Remark. Note that Lemma 3.2.1 parts (1), (2) and (3), with obvious

minor modifications, apply to S* as well as to S. The incompleteness of S*

prevents (5) from being applied in S*. Likewise Lemma 3.2.2 applies to

hinges in some 5*, but Lemma 3.2.3 does not apply to S*. Thus we need the

following lemma on S*.

33.7. Lemma. Let {(y?9 y2, a)}, a G [a.b], be a family of hinges in S*.

Suppose

(1) L[Ύί]<d(e0,p*),

(2) γ2 c S%, S% some given component ofπ~ι(S+), and
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(3) for each a E [a, b] and each t E [0, bx] there exists a geodesic from y"(t)
to e2 without cut points.
Then (d/da)(d(e?, e2)) > Ofor a E (α, b).

Proof. Let γα>' denote the unique minimal geodesic from y*(t) to e2 whose
existence is assumed. From supposition (1) and Lemma 3.3.5 it follows that
At = {yΐ(t)}9 a E [a, b], is a smooth submanifold for each t E [0, bx]. Since
γ2 is in S% and hence unique between its end points (Lemma 3.3.2), (γα'')'(0)
is not orthogonal to At lest γί*|[0, t] V ya>t be another geodesic from e0 to e2.
Furthermore, since e2 has no cut points in {At}, t E [0, bx\ except perhaps/?*,
it follows that L[ya'*] is a smooth function of both a and t. Thus, applying the
first variation formula as in Lemma 3.2.3, (3/9α)L[γα''] φ 0.

It is easy to see that sgn((θ/9α)L[γα>']) is independent of t, and thus it
suffices to prove the lemma for t small. But if t is sufficiently small the entire
family {γf}, a E [0, TΓ], is contained in S*, in which case the lemma is
apparent (cf. Lemma 3.2.2).

33.8. Remarks. (1) The geodesies required in Lemma 3.3.7(3) will always
exist if γf E S* or γf lies below e2 (Lemmas 3.3.2 and 3.3.3). The uniqueness
is insured if {γf} c S% U T^e^+β.te) (Lemmas 3.3.2 and 3.3.5).

(2) Note that in Lemma 3.3.7, γ2 was allowed to be fairly long while in
Lemma 3.2.3, γ2 was required to be very short. Note however that in Lemma
3.2.3 we need not be as restrictive as in Lemma 3.3.7 to insure the existence of
the γα .

4. GLOBAL COMPARISON THEOREMS

Toponogov's theorem ([18]; see [2] for proof in English) is a beautiful and
powerful global generalization of the Rauch comparison theorem. It gives
distance estimates on a Riemannian manifold M by comparison with a
surface of constant curvature. Specifically,

Theorem (Toponogov). Let M be a complete manifold with K(x) > H E R
for each x E M. Let (γ^ γ2, α) be a hinge in M with yλ minimal and, if H > 0,
L[γ2] < π/VΊΪ . Let (yγ, γ2, a) be a hinge in the simply connected surface of
constant curvature H with L[γJ = L[γJ, and γ, E Geo(e0, et). Then d(ev e^ <
d(el9 ej.

This theorem has provided estimates adequate for many important applica-
tions. It does, however, appear to be unnecessarily restrictive in the case of an
open nonnegatively curved manifold. Since on any such manifold the curva-
ture must come arbitrarily near zero (Bonnet's theorem), the comparison
surface must be flat or negatively curved. If, for example, Λf is a paraboloid
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and the hinge (yl9 γ2, a) has its vertex e0 at the vertex of Λf, it is obvious that
distance estimates on R2 will not be very accurate.

A natural question is: Can we improve the estimates on such a manifold?
In the following we will show that we can, and that in fact, instead of a
surface of constant curvature, an appropriate flattening surface of revolution
may be used for the comparison surface. We actually prove two very similar
such generalizations, the first serving as a lemma for the second.

4.1. Definitions and notation

Notational conventions established here will be used throughout this sec-
tion without further comment.

4.1.1. Let Λfn denote a complete, open, nonnegatively curved manifold,
let 8 > 0 and p G Λf. Let M denote a flattening surface of revolution with
vertex p. We say that Λf and Λf are δ-correspondent at p if, whenever
d(p, x) + 8 > d(p, x), then K(x) < K(x), where x G Λf and x G M. That is,
the curvature in Λf falls off with respect to distance from p faster than the
curvature in Λf falls off with respect to distance from/?. We will simply say
that Λf and Λf are correspondent at/? when we mean that δ = 0.

4.1.2. If Λf and Λf are ^-correspondent at/?, and (yv γ2, a) is a hinge in M
with e0 = p or eι = /?, then the hinge (γj, γ2, α) in Λf given by specifying that

(1) L[γJ = L[γ, ], and
(2) ei, = p => <?, = /?, where yx G Geo(e0, ej and

γ2 G Geo(έ0, e2),,

is said to correspond to (γ^ γ2, α). Since yλ is a segment of a meridian in Λf
which includes as one end point the vertex p of Λf, this correspondence is
uniquely determined up to rotation and reflection of M.

4.13. Given a hinge (γ l5 γ2, α), we call a hinge (gv g2, a) a subhinge if
g2 c γ2. We say that the subhinge faces inward (outward) if d(e2, e^) <
(>)d(e2, ε^, where gg G Geo(ε0, ε,.). See Fig. 4.

Inward Facing Subhinge Outward Facing Subhinge

FIG. 4

For the remainder of this section, a hinge (yl9 γ2, α) in Λf will be assumed
to have either e0 = p or eι = p and γ1 minimal. A subhinge will always be a
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subhinge of such a hinge, with/? not necessarily an endpoint of one of the two

geodesies making up the subhinge.

Let A = (γ l f γ2, a) and h = (γ l 5 γ2, α) be corresponding hinges in M and M

respectively. We say that the subhinges (γ^ γ2, α) of A and (gx, g2, a) of A are

corresponding subhinges if:

(1) L[gi] = L[gi],

(2) both face in the same direction, and

(3) d(e0, ε0) = d(e0, έ0), where ε0 is as above.

4.1.4. Let A = (yx, γ2, α) be a hinge in M and let Δ = (gx, g2, g3) be a

geodesic triangle in M with g2 C γ 2. If (γ!, γ2, a) is a hinge in M which

corresponds to A, we say that a geodesic triangle (gv g2, g3) in M corresponds

toΔif:

(1) L[g,.] = L[£.],

(2) g2 C γ2, and

(3) d(e0, g2(t)) = d(e0, g2(t)) as measured along γ 2 and γ 2 respectively.

Finally, note, that all of the above notions still make sense if we are working

in M* instead of M. The only situation which demands any care occurs when

(Yi> Ϊ2> α ) i s a hinge in M* with e0 = /?*. Then one must be sure that γj and

γ 2 lie on the same branch of M *.

In the following lemma we assume that M and M are δ-correspondent at

p E A/, and that (γj, γ2, α) and (yl9 γ2, α) are hinges (or subhinges) in M and

M respectively with L[γJ = L[γJ. In this instance we do not assume that

et = p for/ = Oor 1.

4.1.5. Lemma. Suppose that (yv γ2, a) and (yl9 γ2, α) are as above with

0 < θ0 < a < π - θ0. Choose δ5 with φ = θ0 and ε < min{δ/2, δ2}, and sup-

pose that L[y2] < δ5. Further suppose that d(yλ(t),p) < d(yλ(t),p), and let y

denote the unique geodesic from e2 to ex whose hd distance from yx is less than

δ3. Then L[y] > d(e2, ex).

Proof, It is quite straightforward to check that the hypotheses of Corollary

1.3.2 are satisfied.

Remarks. (1) Notice that if ex = p and d(eo,p) > d(eo,p), then the hy-

potheses of the lemma are satisfied. (2) This of course works as well in M* as

long as the necessary geodesies exist. Rather than check this, we occasionally

make the measurement in M and then pull back up to M*.

4.2. Two global comparison theorems

In both Theorem 4.2.1 and Theorem 4.2.2, Mn will denote a complete open

nonnegatively curved w-dimensional Riemannian manifold, and M a flatten-

ing surface of revolution such that M and M correspond at/? e M.
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4.2.1. Theorem Let {yλ, γ2, α0) and (γ,*, γ2*, α0) fee corresponding hinges in
M and M* respectively with yx minimal, ex— p and γ 2 * C M + * , assume that
γ, E Geo(e0*, ζ*). Let γ2 e Geom(e2, e )̂. Then:

(A) rffo, ^ < d(ex\ e2*), and _

(B) there exists a triangle (cl9 γ2*, c3) I/I M* wλi'c/i corresponds to (-γ,,

Y2> Y3X with

4.2.2. Theorem. Let (γ1? γ2, α0) αnrf (γ1? γ2, α0) fee corresponding hinges in
M and M respectively with yx minimal and e0 = p. Let γ 3 E Geo w (e 2 , βj).
ΓAen:

(A) d(ep ej < d(ev ej, and __
(B) there exists a unique triangle (c1? γ2, c3) in M which corresponds to

The proofs of these two theorems are quite similar, and will be
given simultaneously. The proof is divided into a number of steps each of
which is further broken down into discussions of the difficulties particular to
either Theorem 4.2.1 or Theorem 4.2.2.

F i x * GR,Λ > 2(L[γi] + L[y2]).
(1) We will make several simplifying assumptions, and then later show that

the theorems as stated are correct.
Assume that for some 8 > 0, M and M are δ-corresρondent. If x E γ2 and

yx E Geom(x,/?), then assume that <γ£, γ2)(x) E (-1, 1). Note that, among
other things, we have assumed that α0 E (0, π).

(2) Notation. As usual, notation established either in M or M* will actually
apply to both by insertion or deletion of a star (*).

Let A = {arc cos«γ2', γ,'>(x))l* e y2 and γ, E Geow(/>, *)}. Let 0, -
supΛ, and 0f = inf A, as JC and yx vary over all possibilities. Let θm =
min(0;, π — θs\ and note that θm E (0, π/2] by the assumptions of step (1)
and the compactness of γ2. Now choosen δ5 with ε < min{δ/2, δ2) and

Let {x0 = e0, xj, , xn_l9 xn = e2) partition γ2, xf = γ(/f), such that t,
< ti+ι and d(xi9 xi+χ) < S5. Choose σ, E Geom(x,, eλ) with σ0 = γ^ and as-
sume that σ, is parameterized on [0, λj. Let {3ζ*} be a corresponding
partition of y$, with Jc,* = y2*{tt). For i <y* define τ ι y = γ2|[//, tj\9 and let τ / y *
denote the corresponding pieces of y%.
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Call a geodesic σ in M*, with σ(0) = x*> interior if for all t sufficiently

small the unique geodesic γ* G Geo m 0£, σ(ί)) has <£(γ*, γ*)(ej) < α0. See

Fig. 5. Let {σ?} be a family of geodesies in M* so that (i) σfφ) = *,.*, (ϋ) the

subhinge (τ0 /, σ,, /?,) of (γj, γ2, α0) and the subhinge (fOl*, <?,*, βέ) of

(ϊi*> Ϋ2*» αo) a r e corresponding subhinges (note that this implicitly defines

/?,), and (ϋi) so that each σ,* is an interior geodesic. Let α, := π-β^

e.

• k + l

FIG. 6
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Finally, without loss of generality, assume in 4.2.1 that yx* G 9M + * and

γ2* G Λ/+ *, and in Theorem 4.2.2 that γ2 G dM+ and ft G Λf+. See Fig. 6.

(3) In addition to the assumption made in (1), also assume for Theorem

4.2.2 that the entire construction of part (2) is contained in Λf+. This is of

course another simplifying assumption which must be dealt with later. Fur-

thermore, we will postpone the proof of the uniqueness of the triangle in B of

Theorem 4.2.2 until step (11).

The proof will now proceed by induction.

(4) Let g0 be the unique geodesic from xx to ex with hd(g0, σ0) < δ3. It

follows from Lemma 4.1.5 that L[g0] > d(ex, xx); and thus, in Theorem 4.2.1

since g0 is a meridian and in Theorem 4.2.2 since g0 c M+, that d(ev xx) >

d(ex, xx). In Theorem 4.2.1 this estimate obviously applies on M* as well.

Hence (A) is true for the hinge (γ^ τox, a0) in both Theorem 4.2.1 and

Theorem 4.2.2.

FIG. 7

(5) Let h0 be the unique geodesic from x0 to α^X^ with hd(Ao, σx) < δ3.

We would now like to apply Lemma 4.1.5 to conclude that L[h0] > d(el9 x0).

To this end, note that: (i) for Theorem 4.2.1, the results of part (4) insure that

the hypotheses of Lemma 4.1.5 are met; and (ii) for Theorem 4.2.2, the

techniques of part (4) of Theorem 4.2.1 can be used to show that d(p, σj(/)) >

d(P> σ, (0) f o r * G [°> λ i l Thus L\So\ > L[θ\] a n d L[h^ > L[σ0] in both

Theorem 4.2.1 and Theorem 4.2.2.

Now, using Lemma 3.2.3, decrease α 0 by moving σ0 until d(σo(λ^), xx)> as

measured along the unique nearly geodesic, is L[σJ. Let hx denote the

geodesic resulting from this movement, and gx be the unique nearby geodesic

from xx to ^(λ 0 ) . We claim that the triangle (-A,, τ0 „ gx) corresponding to

(-σ0, τ 0 „ σ,) is the one required in part (B). See Fig. 7.
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Since <$(hl9 TO1)(Λ:O) < α0 by construction, the only thing left to check is
that 3 ( £i> -T ĵXJFi) < βv But it is quite easy to see that if βι is decreased by
moving δx until d(σx(kx), x0), as measured along the nearby geodesic, is L[σ0],
then the resulting geodesic must be gv Since/ is not in the interior of the
bounded region determined by_(-hl9 f01, gx), the triangle, in the case of
Theorem 4.2.1, can be lifted to M*.

Hence (B) is true for the triangle (-σ0, τ 0 1 , σγ) in both Theorem 4.2.1 and
Theorem 4.2.2. __

Remark. In this step of Theorem 4.2.1 we had to work on M since there
was no a priori guarantee that h0 could be lifted to M*.

•k+i

FIG. 8
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(6) Now suppose that d(e0, xk) < d(e0, xk) and that (B) is true for the

triangle (-σ0, τOk, σk). In the following two parts several families of hinges

shall be used. To avoid a surfeit of subscripted superscripts, we introduce the

following notation:

(cf. §3.1);

We consider γ2, and thus fu for 0 < i <j < n, to be fixed; so that

increasing or decreasing angles φ, χ, or Ψ will be by moving the σ,. Let

(-σo(Φi)> ^o,*' σk(Xι)) ^ e the triangle in M which corresponds to (-σ0, τOk, σk).

Observe that <pj < φ 0 and Xi > Xo by the induction hypothesis. It may help to

refer to Fig. 8. Then again, it may not.

Note that in Theorem 4.2.2 (-σ^φ^ τOk, α^Oo)) is contained in Λf+, while

in Theorem 4.2.1 we have no such assurance. This is one of the reasons why

in Theorem 4.2.1 it is convenient to work in M*.

Since Theorem 4.2.1 will be used as a lemma for Theorem 4.2.2, it is

necessary to first finish Theorem 4.2.1, and then come back to Theorem 4.2.2.

Steps (7) and (8) refer only to Theorem 4.2.1.

(7) We will first show that as φ is decreased from φ 0 to φ^ the distance

from σo(φ) to xk+ι* is decreased. Specifically, since σo(<po) c M + * U/*,

Lemma 3.3.7 implies that (d/dφ)d(eo(φ), ^ + 1 * ) | φ β φ o > 0. This remains true,

as φ is decreased, so long as

σo(φ) C ( M + * U ^(χ Λ + 1 v-*) + δ l (^ + 1 *)),

and σo(φ) is either in Λf+* or below 3^+!*. The latter condition clearly

remains in force as φ is decreased. To see that the former does also, suppose

that

eo(ψ) e C l ( Γ ^ + l V - ) ( ^ + 1 * ) )

for some φ. But since the hypotheses of Lemma 3.3.7 are satisfied, we see that

d(eo(φ), xk+ι*) continues to decrease, which forces eo(φ) to remain in

Td(5ξk+i.j.)+δι(xk+ι*). This of course applies as well to each point on σo(φ), so

that

d(eo(ψι)9 xk+i*) < d(eo(ψo), xk+ι*) = d{ex*, xk+ι*).
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This same argument applied to σk(χ) implies that

d(eo(Ψι), xk+ι*) = d(ek(Xι), xk+ι*) > d(ek(χ0), xk+ι ) .

Now just as in step (4) we conclude that

d{ek(χ0\ xk+ι*) >L[σk+ι] = d(ev χk+ι).

Combining all inequalities yields

d(*\*>Xk+i*) >d(e\>xk+\\

which is (A).
(8) We will now show that (B) holds for (σ0, τ 0 k+ 1 9 σk+ι).
The techniques of step (5) show that (B) is true for the triangle

(-σ*>τ*,*+i>3+i) L e t (σik(X3)»τw+i*»σΛ+i(*3)) denote the corresponding
triangle in M*. Note that Ψ3 > Ψo, and that increasing Ψ3 will bring ek+ι(Ψ)
still closer to xk*.

Decrease φί to φ2, so that d(eo(φ2), ^ + i * ) = L[σk+ι\. Clearly Lemma 3.3.7
continues to apply during this movement. Let Ψ2 ^

e t n e angle determined by
the (unique) geodesic σk+ι(Ψ2) e Geo(xk+ι*, ^(φ^).

As noted above, φ2 <ψ\ < Ψo T o s e e t n a t ^2 > ô> observe that
d(eo(φ2), xk*) < L[σk], and thus (working in M if needed) Ψ3 must be in-
creased to bring ek+ι(Ψ) nearer to xk*\ i.e., so that d(ek+ι(Ψ2), xk*) < L[σk],

Hence B is true for (σ0, τO f Λ + 1, σΛ+1), and the proof of Theorem 4.2.1 is
complete.

We now repeat steps (7) and (8) for Theorem 4.2.2, using Theorem 4.2.1 as
needed.

(9) Since (-α^ j ) , τOk, σ^Od)) c M+ by the induction hypothesis, it is
clear that d(ev xk+ι) > d{ek{χ^ Λ:Λ + 1). Since σk(χ0) c Af+, it is clear that
d(ek(χx), xk+ι) > d(ek(χ0), xk+ι). Theorem 4.2.1, applied to the hinge
(τo,*> σk> βk)> implies that d(σk(t),p) < d(σk(t),p). Thus Lemma 4.1.5 implies
that d(ek(χ0), xk+ι) > d(ex, xx+ι). Hence d(ev xk+ι) > d(el9 xk+λ).

(10) We again apply Theorem 4.2.2, this time to the hinge
O o,*+i>σ*+i>&+i)> a n d conclude that d(σk+ι(t),p) < d(σk+ι(t),p). Thus
Lemma 4.1.5 implies that </(<?*+i(Ψ0)> *k) ^ L[σk\- (P) n o w follows for the
triangle (-σ0, rOk+ϊ, ok+ι) in a manner analogous to that in step (8). Unique-
ness is discussed in step (11).

(11) Loose ends: First, the uniqueness of the triangle in (B) of Theorem
4.2.2 is clear since the triangle is contained in M + and has one vertex at/?.

For the assumption in step (3), note that any flattening surface of revolu-
tion is a deformation of R2 through flattening surfaces. Suppose that {S*} is
such a deformation with S° = R2 and Sι = λf, and let γ/ arid σ/ denote the
geodesies on Sί resulting from the construction in step (2). Let B* denote the
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region of S+ which is bounded by μ^ and μ^. Steps (4)-(10) show that if of is
in S+, it is actually restricted to B*. Since the of are continuous with respect
to t, since no of passes through/?, and since the σ? are clearly in S%, it follows
that the of are in S i = M + . Here we are also using the fact that α0 < TΓ.

For the assumption in step (1) concerning δ-correspondence, construct M
corresponding to M. Since the theorem holds if the metric of M is multiplied
by any constant greater than 1, it must, by continuity, hold on M itself.

If for any x, (yx\ y2}(x) = -1 (see step (1)), then α0 = TΓ, and the theorem
holds by continuity.

Again referring to the assumptions in step (1), suppose that / E [0, b2] is the
smallest number such that <γ/, γ2 ')O0 = + 1* where y = γ2(0 Then, by
continuity, the theorem holds for the hinge (γ,, γ2|[0, /], α0). since y2\[t9 b2] is
contained in the minimal geodesic from y to ev the theorem clearly holds for

5. MANIFOLDS DIFFEOMORPHIC TO EUCLIDEAN SPACE
Conjecture (Cheeger and Gromoll). If Mn is a complete open nonnegatiυely

curved manifold, and all sectional curvatures at some point x G M are positive,

then M is diffeomorphic to Rn.

This conjecture is known to be true if n = 2, 3 or 4; see [5], [3] and [4]
respectively. If the words "some point" are replaced by "every point", the
conjecture follows from [9] or [3].

In this section we apply Theorem 4.2 to the soul construction of Cheeger
and Gromoll [3] to prove a weak version of this conjecture. In dimensions
greater than 4, this is the first such result which does not require M to have
positive curvature everywhere off a compact set.

5.1. The soul of a manifold

We begin by recalling several facts concerning the above mentioned soul
construction. Mn will continue to denote a complete open nonnegatively
curved manifold.

5.1.1. Definition. A set C c M is said to be totally convex if for any
x,y G C, Geo(x,y) c Geo(C).

5.1.2. Theorem (Cheeger and Gromoll), M contains a compact totally

geodesic submanifold S without boundary which is totally convex, 0 < dim S <

dim M.
Proof. We merely outline part of the construction of the set S. For further

details see Cheeger and Gromoll [3], or Cheeger and Ebin [2].
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Let x E M and let γ : [0, oo) —> M be any geodesic ray beginning at c; i.e.,
γ is a globally minimal geodesic. Let Bx(y) = {>> E M\d(y(t)9y) < t, t E
[0, oo)}, and set Hx(y) = M \ Bx(y). We call Hx(y) a complementary half
space.

Define Cx = Π (Hx(y)) as γ ranges over all rays beginning at x. It is not
difficult to show that Cx is compact. S is now constructed as a certain subset
ofCx.

5.13. Definition. The set S <z M constructed in Theorem 5.1.2 is called a
soul of M.

5.1.4. Theorem {Cheeger and Gromoll). Let S be a soul of M. Then M is
diffeomorphic to the normal bundle v(S) of S in M. Furthermore, if K(x) > 0
for each x E S, then S is a point, and hence M is diffeomorphic to Rπ.

Proof. See Cheeger and Gromoll [3] and either Poor [16] or Sarafutdinov
[17].

5.2. Compact half spaces and shriveled souls

Theorem. Let Mn be a complete open nonnegatively curved manifold. Sup-
pose p E M and y is a ray starting at p.

5.2.1. // there is anrx^R such that for each x E Trχ(p\ K(x) > (τr/3ri)2>
then Hx(y) is compact.

5.2.2. If there is anr2GR such that for each x E Tri(p), K(x) > (π/λrj2,
where λ a 2.46057, then M is diffeomorphic to Rn.

Proof. This is an easy application of Theorem 4.2.2 to the construction
outlined in Theorem 5.1.2. We first need to construct appropriate comparison
surfaces.

Let Cf* denote a cone with spherical cap of curvature H and radius r. That
is, Cj1 is the surface of revolution generated by the curve / : R + -• R2, /
defined by

0 < / < 0,

/sin(0) , x . / Λ X l - c o s ( 0 ) , X ,ΛA—^-^ + (/ - r) sm(0), ^- + (/ - r) cos(0) , t > Θ,
\ VH VH I

where θ = rVΈ . See Fig. 9 (a).
If x E Cr

H zndy E μx, let g denote a minimal geodesic from x toy. Let P
denote the parallel through the point {H"1/2 sin(0)), H~1/2 (1 - cos(0)) E
/ c S, and let/? = d(x, P), q = J(^, P). Let ^ and φ be as indicated in Fig. 9
(b).
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Φ = τΓ cos(θ)

tan(θ) =

conic portion of cH

 9

unrolled

FIG. 9
We will now find conditions on θ which allow us to choose x E Cj* so that

L[g] < p + r in the cases
(1) g minimal between x and jΰ̂ , and

Case (1). L[g] = (p + s) sin(φ).

We need conditions so that

(p + s)sin(φ) < (p + r),
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or equivalently,

p{\ — sin(φ)) + (r — s sin(φ)) > 0.

Hence if sin(φ) φ 1, we may choose p large enough to insure that the

inequality holds. Thus we need φ < ττ/2, or 7r/3 < θ < π/2 which is to say

IVH

Case (2). L[g]2 = s2 = (/? + J) 2 - 2J(/? + .y) cos(φ).

We need conditions so that

s2 + {p + sf - 2s(p + s) cos(φ) < (p + r)2,

i.e.,

2p[j cos(φ) + r - s] + [r2 + 2^2 cos(φ) - 2^ 2] > 0.

Hence if ^ cos(φ) + r — s > 0, we may choose /? large enough so that the

inequality holds.

Thus the condition is

tan(0) • θ tan(g) ^ AΛ cos(φ) + — — - ^ > 0,

i.e.,

[t&n(0)] [cos(τr cos(ί))] + Θ - tan(0) > 0.

This is true for ττ/λ < θ < π/2, where λ β 2.46057. Thus we need

λVΉ 2VΉ

Despite the fact that Cr

H is not smooth, we may use it as a comparison

surface by virtue of the previously mentioned approximation theorems in [1].

For Theorem 5.2.1, choose Hx E R such that

(τr/3/ ,)2 < Hλ < K(x) \fx e Tri(p),

and for Theorem 5.2.2 choose H2 E R such that

(ττ/λr2)
2 < H2 < K(x) VxE:Tr2(p).

Let η be any minimal geodesic in M which starts at/?.

In Theorem 5.2.1, by comparison with C"\ there is some t0 > 0 such that

τj(O E 2?,(γ) for / > ίo; and thus Hp(y) c Γ f ^ ) .

In Theorem 5.2.2, by comparison with Cr^
2, η(t) E ^ ( γ ) for / > r2. Thus

5 c Hp(y) c 7;2(^). But ^(x) > 0 for all x in Tri(p). Hence by Theorem

5.1.4, M is diffeomorphic to Rn.
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