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NUMERICAL EXPERIMENTS CONCERNING
THE EIGENVALUES OF THE LAPLACIAN

ON A ZOLL SURFACE

GERALD R. CHACHERE

0. Introduction

A Zoll surface is a surface of revolution in <3l3 diffeomorphic to S, the unit
2-sρhere, with the property that all geodesies are closed with period 2τr. S is,
for example, a Zoll surface. O. Zoll [7] first proved the existence of a Zoll
surface not isometric to S.

Eigenvalues of Δ, the Laplacian defined on functions whose domain is S,
are /(/ + 1) with multiplicities 2/ + 1 (/ = 0, 1, 2, ). For Zoll surfaces
other than S, each multiple eigenvalue /(/ + 1) splits into a "cluster" of
eigenvalues near /(/ + 1). Specifically, a result of Alan Weinstein [5] states
that there is a number M > 0 independent of / such that the eigenvalues of
the /-th cluster are contained in the interval [/(/ + 1) - Λf, /(/ + 1) + Λf ].

In this work the following question is addressed: for a Zoll surface what is
the structure of the /-th cluster for large /? Numerical experiments were made
where by the eigenvalues of the first 15 or 20 clusters of selected Zoll surfaces
were approximated. These computations led to two conjectures. Conjecture 1:
the arithmetic mean of the eigenvalues in the /-th cluster approaches /(/ + 1)
as / goes to oo. Conjecture 2: the distribution of eigenvalues in the /-th
cluster approaches (in a sense to be made clear) a limiting function as / goes
to oo.

In an attempt to explain these experimental results Weinstein [6] proved a
theorem. The theorem which concerns the cluster structure of Δ plus a
potential function tends to corroborate the conjecture.

In §1 a method for constructing one parameter families of Riemannian
manifolds isometric to Zoll surfaces is given. In §2 the Laplace-Beltrami
operators corresponding to the Riemannian manifolds of §1 are written in
geographic coordinates, and by separation of variables an ordinary differen-
tial operator Z)e

m is defined. In §3 cluster is defined, and information about
eigenvalues of D™ and Δ is given. In §4 the method by which the eigenvalues
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are approximated is given. Conjectures 1 and 2 are stated exactly in §5. In §6

the numerical experiments are described. §7 contains information about the

accuracy of the approximations. In §§8 and 9 evidence for conjectures 1 and

2 are given, respectively. In §10 results for non-Zoll experiments is presented.

In the appendix EIGEN 2, the subroutine that computed the elements of the

matrices which approximate the De

m9s is described and listed.

The eigenvalues computed in the experiments do not appear in this work,

but the author will send a list of these eigenvalues upon request.

We thank Alan Weinstein for suggesting these experiments.

1. Construction of one-parameter families of Zoll metrics

A Riemannian metric g is a Zoll metric if the Riemannian manifold (5, g)

is isometric to a Zoll surface. We will now give a method for constructing

one-parameter families of Zoll metrics gε such that g0 is the canonical metric

on 5.

Consider the map X : [0, 2π] X [0, π] -> <3l3 given by

(t>, w) -^ (sin u cos v, sin u sin ϋ, cos w).

S is the image of X. Let U c S be the image of (0, 2π) X (0, π) under X. U is

open and dense in S. Define functions φ and θ on U as follows:

X(φ(m), θ(m)) = m for m e U. (φ, θ) is the geographic coordinate system on

U; φ(m) is the longitude of m, and θ(m) is the latitude of m measured from

the "north pole".

A smooth function σ : [-1, 1] -> SI which is zero at the end points will be

called a perturbing function. For each ε in some neighborhood of zero let he

be a positive valued function on [0, π] given by

he(θ) = 1 + εσ(cos θ).

Given a perturbing function σ and allowing ε to range over an appropriate

neighborhood of zero we define a one-parameter family ge of metrics on U:

(•) ge = h?(θ)dθ2 + sin2 θdφ2.

A. L. Besse [1] states that gε can be extended to a metric on S if the

function he has the following properties: hε is smooth on [0, π], and λe(0) =

Ki71) = l K h a s those properties. Also Besse shows that if the perturbing

function σ is odd, that is, σ(-.x) = -σ( c), then gc is a Zoll metric.

Thus gε as defined by (*) is a family of metrics on S for arbitrary σ, and is a

family of Zoll metrics if σ is an odd function.
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2. Zoll perturbations of the Laplace-Beltrami operator

For each Riemannian manifold there is a unique Laplace-Beltrami opera-
tor. We will call this operator the Laplacian, and its domain is the set of
smooth function on the manifold. The Laplacian on <3l2 with the canonical
metric is

We are interested in certain perturbations of Δ, the Laplacian on (S, g0).
Given σ, a perturbing function, define Δe, a perturbation of Δ, to be the
Laplacian on (S, gε). ge is defined by (•) of §1 with perturbation function σ. If
σ is odd, then we call Δe a Zoll perturbation of Δ. Thus a Zoll perturbation of
Δ is generated by a Zoll metric.

If F is a smooth function on S, then Δε in geographic coordinates is given
by

-l a2F | ίh'Xθ) cotθUF -l a2

4 J hf(θ) dθ2 \ 3 ( 0 ) 2 ( 0 ) / 9 0 2
f() dθ2

This result can be seen by using the definition of Δe given by Warner [4].
For each integer m we will define D™, a second order ordinary differential

operator. The domain of Z)β

m is the set of smooth functions/on [0, π]:

Theorem, λ is an eigenvalue of Δε if and only if there is an m such that λ is
an eigenvalue of D™.

A proof can be constructed by using two facts. One fact is that if F is
smooth on S, then F is the (possibly infinite) sum of terms of the form
um(φ)f(θ).f(θ) is smooth on [0, π], and

f sin( mφ) if m < 0,

1 i f m = 0 ,

cos( mφ) if m > 0.
The other fact is that

\[F] = um(φ)D?[f][θ],

iϊ F = um(φ)f(θ).
By means of the above theorem we will investigate the eigenvalues of Δe by

examining the eigenvalues of the Z)ε

m.
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There are two notable facts about the boundary conditions of the eigen-
functions of De

m: (1) if m φ 0, the eigenfunctions are zero at the end points,
and (2) the derivatives of the eigenfunctions of Z>e° are zero at the end points.
To prove the first fact we assume that / is an eigenfunction of D™(m φ 0),
and obtain the following:

λ/(0) sin2 θ = De

m[f](θ) sin2 θ.

Expanding the right side of the above equation we obtain

/-si^\ ίK(θ)s^θ _ cosflsinfl\

I Φ) Y κ } \ hi{θ) & Y
Therefore f(θ) = 0 when θ equals 0 or π.

To prove the second fact we assume that / is an eigenfunction of Z)e°, and
obtain an expression similar to the above:

λ/(0) sin θ = Dε°[f](θ) sin θ.

We expand the right side of the above equation

-sin θ ^

Therefore f(θ) = 0 when θ equals 0 or π.
It should also be noted that D!" = D~m.

3. Cluster of eigenvalues

Henceforth m is an integer, and k and / are nonnegative integers. We make
the following definitions:

μ(l) = 1(1 + 1),

K(k) = ^ e ^"ti1 eigenvalue of Δe,

\(k, m) = the k-th eigenvalue of Z>e

m.

Vilenkin [3] treats the eigenvalues and eigenfunctions of D™. Letting
x = cos θ, we can write D™ as

v ' dx2 dx i _ X2 '

The associated Legendre function /y%xχ|m| < /) is the eigenfunction of Z)™
with value μ(l), and μ(/) is a simple eigenvalue. Thus λ^k, m) = μ(fc + \m\).

The eigenvalues of ΔQ are μ(/), and have multiplicity 2/ + 1. The eigenfunc-
tions of ΔQ belonging to μ(l) are um(φ)Pι

m(cos 0), where \m\ < /.
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Below are listed the first few members of the spectrum of the specified

operators.

V 0, 2, 2, 2, 6, 6, 6, 6, 6, 12, 12, - - -

Z)o°: 0, 2, 6, 12, 20, 30, 42, 56, 72,

Z>0

3: 12, 20, 30, 42, 56, 72, 90, 110,

DQ2: 6, 12, 20, 30, 42, 56, 72, 90,

From the above we see that if I2 < k < (/ + I)2, then λ^k) = μ(/). Define

the l-th order cluster of Δε to be (λe(Af) : I2 < k < (/ + I)2}. μ(/) is the only

member of the /-th order cluster of Δo.

Define the l-th cluster of Δε to be {\{k, m) : / = k + |#w|}. μ(/) is the only

member of the /-th cluster of Δ. As Δe is perturbed from ε = 0, μ(l) splits into

the eigenvalues of the /-th cluster.

Both the /-th cluster and the /-th order cluster are subsets of spectrum of Δe,

and are equal when ε = 0. If ε φ 0, the two subsets may not be equal; the

clusters may "over lap", where as order clusters never "over lap".

A result of A. Weinstein [5] states the following: if Δe is a Zoll perturbation,

then there is an M > 0 such that for all / the /-th order cluster is contained in

the interval [ μ(/) — Λf, μ(l) + M], where M depends only on ge. Using this

result one can show that eventually the order clusters are equal to the clusters

when Δe is a Zoll perturbation.

The purpose of this paper is to study the structure of the eigenvalues in the

/-th cluster of Δe, a Zoll perturbation, as / approaches oo.

4. The method of approximating eigenvalues

In this section we give the method by which we numerically approximate

the eigenvalues of Δe. To achieve our goal we actually compute approxima-

tions to the eigenvalues of Z>ε

m.

The first step in our method is to define En for De

m, where n is a positive

integer. En is an (n - 1) X (n - 1) matrix if m φ 0, and En is an (n + 1) X

(n + 1) matrix if m = 0. Define Λε(fc, m) to be the fc-th eigenvalue of

En(k < n). En will have the following important property:

lim An

ε(k, m) = \(k, m).
n—*oo

We will approximate \(k, m) by Λε(A:, m) using large values of n. We will,

in general, calculate the first 15 or 20 eigenvalues of En, for n = 1000 or

n = 2000.
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The method of finite centered difference is used to define En. We divide

[0, π] into n subintervals of equal length; 0/s are the end points of the

subintervals. The (n + 1) vector (/0,/i,/2, • ••,/,) approximates/, an eigen-

function of Dε

m, by having/ ~/(#,). /'(#,) and/"(0,.) are approximated by

ff(Q\ Λ+l ~ Ji-\ rrf(n\ Ji+l ~~ 4// "*" Λ—1

fW 25 ' fW ^2 '

where 8 is the mesh size, the length of the subintervals. We now proceed

formally to define En. Define the following expressions:

Λ(θ) = m2/sin2θ,

B(θ) = K(θ)/h!(θ) - cot θ/hf(θ),

C(β) = -l/hf(θ),

θt = i w/n (i - 0, 1, , n),

δ = m / n = the mesh size,

A(θ)9 B(θ% and C(θ) are the coefficients oΐf(θ)J'(θ), and/"(0), respectively,

in the definition of De

m[f](θ).

Set up difference equations for i = 1, , n - 1:

λfi'

The left side of the equation approximates D™[f\(θ?). The right approximates

λf(θj). By combining like terms the equation reduces to

(**) aίf-\ + βif "+" Ύif = λ/

where

Call (**) the i-th difference equation.

At this point we must consider two cases for De

m: m φ 0 and m = 0. We

proceed with case m φ 0. As mentioned, /(0) = /(π) = 0, when / is a eigen-

function of De

m and w φ 0. So define/0 = fH = 0.

Because/0 = 0 the first difference equation is

βJi + YiΛ = λfι>

and because/, = 0 the (n - l)-st difference equation is
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Using matrix notation we write the (n — 1) difference equations as follows:

fit
« 2

0

Ύι

β2

«3

0

0

Y2

A

βπ-3

«n-2

0

o

Yn-3

βn-2
a i

Γ /.
Ϊ2

Λ

Λ-3

fn-2

= λ

/ l

Λ
Λ
•

Λ-3

Λ-2

Λ-i

0

yn_2

The tridiagonal matrix is the above mentioned En. Thus En is an (n — 1) X

(ΛI — 1) tridiagonal matrix with βl9 , βn_x on the main diagonal,
α2> # * * > an-\ o n ώe subdiagonal, γ p , γπ_ 2 on the super diagonal, and

zero everywhere else. By standard approximation theory lim,,^^ A"(k9 m) =

λe(λ;, m). (See Isaacson and Keller [2].)

Next consider the case m = 0./'(0) = f'(π) = 0 when / i s an eigenf unction

of Z>c°. Notice that m = 0 implies A(θ) = 0. We must still approximate/0 and

Λ
Let us calculate /)c

0[/](τr) where / is an eigenfunction. Keep in mind that

B(θ) has singularities at θ = 0 and θ = 7r.

The second line is true by the definitions of B(θ) and C(0), and because

hjjr) = 1 and Ae'O) = 0. LΉosptal's rule gives

COS

Similar calculations yield A°[/](°) = - 2 /"(0) w ^ approximate //r(τr) as fol-
lows:

Because/'(w) = 0 and

8/2
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we make the following approximation

o _ ^
8/2

Combining the above we have

4 , 4 ,

Define the n-th difference equation to be

4 „ 4

Similarly the O-th difference equation is defined to be

±f -±f =Xf
δ2Jo δ2Jι Jo-

If we let q = 4/δ2, β0 = q, γ0 = -q, an = -q, and #, = q, then £„ is the
(n + 1) X (« + 1) tridiagonal matrix

βo 7o 0

«i i8, Ύι 0
0 α2 ^ 2

βn-2 Ύn-2 0

o «„-• A-i γ,-i

0 απ ft

Again lim,,^^ Λ"(A:, O λ̂gίfc, 0).
The second step of our method is to calculate the eigenvalues of En. This

step is achieved by the use of EQRTIS. EQRTIS is a FORTRAN subroutine
that computes the j smallest eigenvalues of a tridiagonal matrix. An im-
portant feature of EQRTIS is that it computes the eigenvalues to the preci-
sion of the computer, which is about 15 decimal places.

EQRTIS is a product of Internatiolnal Mathematical and Statistical
Libraries, Inc. (IMSL) of Houston, Texas, and is a part of the University of
California, Berkeley computer library.

5. The statements of Conjecture 1 and Conjecture 2

Recall that the /-th cluster of Δe is defined to be {\(k9 m) : k + \m\
and that, as an eigenvalue of Z>e

m, \(k, m) is simple.
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The /-th cluster of Δ contains only μ(/). The /-th cluster of Δe has 2/ + 1
members, counting multiplicities.

Define \(l) to be the mean of the /-th cluster of Δe:

27TΊ
Conjecture 1. //" Δe is a Zoll perturbation of Δ, then \ μ(J) — \{l)\ ap-

proaches zero as I goes to infinity.

For the /-th cluster of Δe we define a real valued function Gt whose domain
is the interval [-1, 1]. We make the following definitions:

xm - m/l ( H < /),

- H, m) -

Uxm <x <xm+ι, then

-χj

Thus the value of. G^x) when xm < x < xm + 1 is found by linear interpolati-
ion. This definition is not valid for G0(x); for completeness let G0(x) = 0 for
all x in [-1, 1]. (For every perturbation of Δ the O-th cluster is {μ(0)}.)
Because \(k, m) = λe(k, -m)9 Gt is always an even function.

Consider G3 for a certain perturbation of Δ. We use Table 5. (Keep in mind
that μ(3) = 13.)

m

0

±1

±2
±3

\(3 - \m\, m)

12.55
11.77

11.65
12.22

0

±1/3
±2/3

+ 1

ym

0.55
-0.23
-0.35

0.22

TABLE 5

The graph of G3 follows.
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Conjecture 2. If Δε is a Zoll perturbation of Δ, then there is a function, call

it (r^, on [-1, 1] such that \\Gι — G^W approaches zero as I goes to infinity,

where \\ \\ is the sup-norm.

The result of Weinstein mentioned in §3 implies that G^ is bounded.
Clearly, both conjectures are true for Δe when ε = 0.

6. Nature of the experiments

An experiment is a set of computer calculations which approximate eigen-
values of some perturbation of Δ.

In the FORTRAN program used to do the calculations the input parame-
ters are FACTOR, IFIRST, M, N, and SIG^T). FACTOR is a number in the
interval [0, 1). IFIRST is a positive integer. M is a nonnegative integer
corresponding to \m\, where m is the parameter for the operator Z>e

m. N is a
positive integer corresponding to n, where π/n is the mesh size. SIG(Ar)
corresponds to σ(x)9 the perturbing function.

gc, as defined by (*), is a Riemannian metric for S when ε is a member of a
certain maximal open interval about zero. Let ε0 be an endpoint of the
interval nearest zero. This would imply that geo is not a Riemann metric, and
that ge is when |ε| < |εo|. For a Zoll metric the endpoints are equi-distant
from zero.'

There are two types of experiments, short and full. A short experiment uses
all input parameters. The outputs are A*(k, M) where 0 < k < IFIRST,
where ε = εo(FACTOR), and where S I G ^ ) is the perturbing function for Δe.
A short experiment therefore approximates the first IFIRST eigenvalues of
De

m.
In a full experiment FACTOR, IFIRST, N, and S I G ^ ) are inputs, but M

is not. The outputs are An

e(k, m% where M > 0 and M + k < IFIRST.
FACTOR and S I G ^ ) have the same role as in a short experiment. A full
experiment approximates the first IFIRST clusters of Δ e

Table 6 lists experiments, their types, and their inputs. Each experiment is
named by a number. In an experiment with FACTOR = 0 the eigenvalues
are for Δ are approximated, and therefore SIG(X) is not given.

N is not listed for experiment 11. The reason being that different values of
N were used. The Λf (k, M) were calculated for k + M < IFIRST = 40. The
values of N are as follows: N = 2000 for M = 0, , 30; N = 1000 for
M = 31, , 34; N = 500 for M = 35, , 39.

Zoll experiments are experiments in which SIG(X) is an odd function.
Experiments in which FACTOR = 0 are automatically Zoll experiments.
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Experiment

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

Type of

Experiment

full

full

full

full

full

full

full

full

full

full

full

short

full

N

2000

2000

2000

2000

2000

1000

1000

1000

2000

2000

2000

1000

M

0

FACTOR

0.0

0.1

0.2

0.4

0.8

0.0

0.9999

0.9

0.4

0.4

0.4

0.0

0.8

IFIRST

20

20

20

20

20

15

15

9

20

20

40

40

9

SIGm

X3 - X

X3 - X

X3 - X

X3 - X

X3 - X

X2-\

(1 - X2)

•{X3 - AX)

\-x2

X3 - X

X3 - X

TABLE 6. LIST OF EXPERIMENT AND INPUTS

7. Considerations on the accuracy of approximations

Two considerations contribute to our knowledge of the accuracy of our

approximations to λe(Λ;, m).

Basically, we are interested in the truncation error, \\(k, m) — A"(k, \m\)\.

When can the truncation errors be known exactly? Only when the \(k, m)

are known, and that is only when ε = 0. Recall XQ(A:, m) = μ(k + \m\).

Consideration 1. In all experiments with FACTOR = 0 the following is

true:

I μ(/) - ΛS(/, 0)| = max{| μ(l) - A&k, \m\)\: k + \m\ = /}.

The consideration says that among the computed approximations to the

members of the /-th cluster of Δ, Λ£(/, 0) has the greatest deviation from μ(/).

Consideration 2. // will be assumed that \\(k, m) - A"(k, \m\)\ is near

\λo(k, m) - An

0(k, \m\)\.

Table 7 lists the errors μ(l) - Λζ(l, 0) generated by experiments. In experi-

ment 1, n = 2000 and / = 0, , 19, and in experiment 6, n = 1000 and

/ = o, , 14. The table should give us an upper estimate of the truncation

errors.
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/

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

MO
0

2

6

12

20

30

42

56

72

90

110

132

156

186

210

240

272

306

342

380

Experiment 6

μ(/) — Λ^°°°(/, 0)
.00000

.00000

.00003

.00011

.00032

.00072

.00142

.00254

.00421

.00660

.00987

.01423

.01990

.02710

.03611

Experiment 1

μ(/) — Λjj°°°(/,

.00000

.00000

.00001

.00003

.00008

.00018

.00036

.00063

.00105

.00165

.00247

.00356

.00497

.00678

00903

.00118

.01516

.01919

.02398

.02963

TABLE 7. μ(l) - AJ(/, 0) for Experiments 1 and 6.

8. Evidence for Conjecture 1

Evidence for the conjectures was generated by the Zoll experiments with
FACTOR Φ 0. Define the computed mean,

" β W 2 / + 1

To support Conjecture 1 we will examine the computed mean deviation
(CMD), μ(l) - Λ"(/). (Note the absence of absolute value signs.)

Table 8 lists the CMD's of the relevant experiments. In columns one and
two are the cluster numbers, /, and the μ(J) respectively. Above the remaining
columns are experiment numbers, and below the experiment numbers are the
CMD's for that experiment. So, for example, to find the CMD for the 7-th
cluster of experiment 5, look in the column under 5 and on line / = 7.
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For experiment 11 only the CMD's for / = 20, , 39 are listed. The
reason is that experiments 11 and 4 are identical for / = 0, , 19. There-
fore it would be repetitious to have CMD's listed again in the table.

Below are some observations about Table 8. The remarks after the observa-
tions are interpreted to be evidence for Conjecture 1.

Observation 1. In each experiment, μ(l) — Λ(/) is eventually very small
compared to μ(l).

Remark. If Conjecture 1 is true, then μ(l) — Λ"(/) approaches \(l) —
An

e(l). But \(l) - An

ε(l) is small.
Observation 2. A CMD of experiment 5 is closer to zero than the

corresponding CMD of experiment 13. For / = 0, , 8 these two experi-
ments approximate the same eigenvalues, but for experiment 5, n = 2000 and
for experiment 13, n = 1000.

0

2

6

12

20

30

42

56

72

90

110

132

156

182

210

240

272

306

342

380

2

.00000

.00085

.00002

.00001

.00003

.00007

.00013

.00029

.00040

.00063

.00095

.00136

.00190

.00258

.00360

.00450

.00570

.00732

.00914

.01129

3

.00000

.00333

.00020

.00005

.00003

.00008

.00014

.00026

.00042

.00066

.00099

.00142

.00199

.00270

.00361

.00471

.00606

.00766

.00957

.01181

4

.00000

.01223

.00315

.00084

.00039

.00020

.00022

.00032

.00052

.00078

.00118

.00169

.00235

.00320

.00426

.00556

.00714

.00818

.01127

.01392

9

.00000

.007 66

.01791

.00460

.00190

.00140

.00071

.00073

.00060

.00088

.00119

.00171

.00237

.003 20

.00425

.00554

.00709

.00896

.01118

.01379

5

.00000

.03558

.03928

.02097

.02143

.02136

.01221

.01611

.01155

.00985

.01132

.00878

.00964

.01073

.01039

.01295

.01455

.01683

.02064

.02408

13

.00000

.03558

.03931

.02106

.02165

.02184

.01310

.01765

.01407

7

.00000

.04450

.07039

.06109

.05008

.07565

.07733

.05934

.087 90

.09069

.07774

.09977

.11201

.10622

.11919

I

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

420

462

506

552

600

650

702

756

812

870

930

992

1056

1122

1190

1260

1332

1406

1482

1560

11

.01699

.02056

.02466

.02935

.03466

.04068

.04743

.05501

.06364

.07 284

.00323

.09471

.10740

.12148

.13699

.15430

.17375

.19586

.22141

.25034

TABLE 8. Computed Mean Deviations for Zoll Experiments.
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Remark. The observation is consistent with Conjecture 1 for the following
reason: Λf°°(/) is a better approximation to \(/) that Λ,1000^)^ So, if
I μ(0 ~ K(0\ is near zero, then Af°°(/) should be nearer to μ(l) than Λe

1000(/).

Observation 3. In each experiment, μ(l) - Λ"(/) is eventually less than
μ{l) - AS(/, 0). (See Table 7.)

Remark. μ{l) - Λ£(/) approaches \(l) - An

ε(l) by Conjecture 1. So μ(l)
- An

e(l) approaches λk0(/) - ΛJ(/) by Consideration 2. XQ(/) = μ(l). There-
fore by Consideration 1, eventually | μ(l) - Λ^(/)| < | μ(l) - ΛJ(/, 0)|.

9. Evidence for Conjecture 2

The evidence for Conjecture 2 is contained in the graphs which approxi-
mate some of the G/s.

The graphs of this section were generated by output from Experiments 2, 3,
4, 5, 7, 9. Only the graphs from one experiment will be on any one page. At
the top of each page will be the number of the experiment; to the left of each
graph will be the cluster number. The j-axis is scaled so that the "top" and
the "bottom" of the >>-axis represents a certain distance from the origin. That
distance is given by Table 9.

Experiment

Distance

2

.029

3

.048

4

.401

5

1.052

7

2.499

9

.353

TABLE 9

Comments about experiments 2 and 3 should be made. The graphs of
experiments 2 and 3 seem to "dip" in the center as / becomes larger. The
phenomenon is caused by two factors: (1) as / increases the approximation to
G7 has greater error toward the center of the graph; (2) the error is exag-
gerated by the fact that the distance from the "bottom" of the /-axis to the
origin is of the same order as the center errors. In experiment 2 the distance is
.929 and μ(19) - Λ ^ 0 0 ^ , 0) = .02963 (see consideration 1 and 2 of Section
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Experiment 2

149

L=4

L = 9

L= iH

L = 19
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Experiment 3

L= 3

L= 7

L- 11

= 15
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Experiment 4

151

L= 7

L = 11
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Experiment 5
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Experiment 7

153

L=3

L=7

L=

L= 14
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Experiment 9

L̂  3

\

L = l l

"XT
V

:7

L= 15

L= 19



EIGENVALUES OF THE LAPLACIAN 155

10. Results for non-Zoll experiments

Two non-Zoll experiments were made, 8 and 10. In both experiments the
perturbing functions are even, that is, σ(x) = σ(-x) for -1 < x < 1. Recall
that σ(x) must be odd for the perturbation of Δ to the Zoll. x2 — 1 is the
perturbing function for 10, and 1 — x2 for 10.

If σ(x) is odd, then for equal values of ε the metrics induced by σ( c) and
-σ(x) are isometric. Thus the spectrum of the corresponding Laplacians are
the same. If σ(x) is not odd, then the metric for σ(x) and -σ( c) are not
necessarily isometric. This fact is mentioned to indicate that the Laplacians
for the two non-Zoll experiments are essentially different.

The initial cluster for both 8 and 10 has only one member, .0000. This is the
same situation for Zoll experiments.

In experiment 8 for each / > 0 the /-th cluster displays the following
pattern:

l, 0) < Λe"(/ - 1, 1)<

This experiment also shows that Λ"(/, 0) — μ(/, 0) — μ(l) gets larger as / gets
larger. Λ"(/, 0) — μ(l) gets large so fast that the clusters eventually overlap
each other, that is, there is an /0 such that for / > /0, Λ"(/ + 1, 0) < Λ"(0, /).
In fact, the minimum member of the 8-th cluster, Λ"(8, 0) = 34.11927, is less
than the maximum member of the 6-cluster, Λ"(0, 6) = 39.21949.

In experiment 10 for each / > 0 the /-th cluster displays the following
pattern:

Λ?(/, 0) > An

ε(l - 1, 1) > > AJ(0, /) >

This pattern is the reverse of the 8 pattern. Again the clusters eventually
overlap. The maximum member of the 16-th cluster, Λ£y(16, 0) = 425.12273,
is greater than the minimum of the 19-th cluster, Λ?(0, 19) = 391.90565.

If the patterns of these two non-Zoll experiments are persistent, then the
following statements would be true:

(1) the diameter of the /-th cluster union the set containing μ(l) is not
bounded:

(2) Conjecture 1 does not hold.

APPENDIX; LISTING OF SUBROUTINE EIGEN2

What follows is a listing of SUBROUTINE EIGEN2. This subroutine is
the part of the computer program which actually does computation described
in §4. The language of the subroutine is FORTRAN.
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Basically this subroutine first computes the nonzero elements of the tridiag-

onal matrix which is to be diagonalize. ΌIAG(K) = βκ are the diagonal

elements (K = 1, , N - 1 for m φ 0, and K = 1, , N + 1 for M =

0). O¥Έ(K) is the product of the corresponding elements of the super- and

sub-diagonals (K = 2, , N - 1 for M φ 0, and K = 2, , n + 1 for

Next, SUBROUTINE EQRET1S is called. This subroutine calculates the

first IFIRST eigenvalues of the tridiagonal matrix, and stores the values in

DIAG(AΓ), K = 1, , IFIRST.

In this particular version SIG(X) = 1 — X2. To make experiments with

different perturbing functions S I G ^ ) and its derivative, DSIGίΛ") must be

defined by the appropriate functions.

SUBROUTINE EIGEN2

C

C INPUT N = NUMBER OF EQUAL SUBDIVISIONS

C M = DIFF. EQ. PARAMETER = 0, 1, 2, 3,

C EPSILON = DIFF. EQ. PARAMETER NEAR ZERO

C IFIRST = NUMBER OF EIGENVALUES TO BE COM-

PUTED

C OUTPUT DIAG(K) = K-TH EIGENVALUE (K = 1, IFIRST)

COMMON N, M, EPSILON, DIAG(5000), IFIRST

DIMENSION OFF (5000)

SIG(X) = 1 - X X

DSIGN(X) = -2*X

C

C DEFINE DIAG, OFF

C

C

PI = 3,14159 26535 89793

GAMMA = 0

Nl = N - 1

DELTA = PI/N

DO 10 K = 1, Nl

THETA = K*DELTA

STHETA = SIN(THETA)

CTHETA = COS(THETA)

H = 1 - EPSILON*SIG(CTHETA)

DH = EPSILON*DSIG(CTHETA)*STHETA
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A = M* 2/STHETA**2
B = - CTHETA?(STHETA*H**2) + DH/H**3
C - -1/H *2
ALPHA - -B/(2 DELTA) + C/DELTA* 2
IF(K.EQ.1)ALPHA1 - ALPHA
BETA - A - 2*C/DELTA**2
DIAG(K) = BETA
OFF(K) - ALPHA*GAMMA
IF(OFF(K).LT.O) GO TO 20
GAMMA = B/(2*DELTA) + C/DELTA**2
IF(K, EQ.N1) GAMMAN1 = GAMMA

C
C NOTICE GAMMA IS DEFINED AFTER GAMMA IS USED TO DEFINE
C OFF(K)
C THE REASON, GAMMA AT THE (K - 1)-STEP IS USED TO DEFINED
C OFF(K)
C

10 CONTINUE
IF (M.GT.O) TO TO 30

C
C SETUP FOR M = 0
C

X = 4/DELTA**2
BFTAO = X
GAMMAO = -X
ALPHAN - -X
BETAN = X

C
C REDEFINE DIAG
C

DIAG(N + 1) - BETAN
DO40K= 1, Nl
L = N - K

C L - N - 1, N - 2, , 2.1
DIAG(L + 1) - DIAG(L)

40 CONTINUE
DIAG(1) = BETAO

C
C REDEFINE OFF
C
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50

OFF(N + 1) = ALPHAN*GAMMAN1

DO 50 K = 2, Nl

L = N - K + 1

L = N - 1, N - 2, , 3.2

OFF(L + 1) = OFF(L)

CONTINUE

OFF(2)-ALPHA1 *GAMMA0

SUBROUTINE EQRT1S

EIGEN2 PARAMETERS

DIAG

OFF

Nl

IFIRST(.LT.N1)

1

IER

Nl = N + 1

30 CONTINUE

C

C SETUP TO USE LIBRARY

C EQRT1S PARAMETERS

C D

C E2

C N

C M

C ISW

C IER

CALLEQRT1S(DIAG.OFF,N1,IFIRST,1,IER)

RETURN

20 CONTINUE

PRINT 910, N, M, EPSILON

PRINT 920, K, OFF(K), A, B, C, ALPHA, BETA, GAMMA

STOP

910 FORMAT(1H-,T11,*PARAMETERS*,10X,2HN = ,I4,10X,2HM - ,I2,10X,

• *EPSILON = , F9.5//)

920 FORMAT(T11,*PROGRAM STOPPED BECAUSE OF ERROR

• OFF(K).LT.ZERO*//
• Tl 1,*OFF(*,I3,2H) = ,E16.10,5X,2HA = ,E16.10,5X,2HB
• = E16.10,5X,2HC = ,E16.10//Til,* ALPHA = *,E16.10,

• 5X,*BETA*,E16.1O,5X,*GAMMA = *,E16.10)

END
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