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SEPARABLE COORDINATES FOR
THREE-DIMENSIONAL

COMPLEX RIEMANNIAN SPACES

E. G. KALNINS & WILLARD MILLER, JR.

1. Introduction

In this paper we study the problem of separation of variables for the
equations

(a) Δ 3 Ψ =

Here ds2 = gu dxι dxj is a complex Riemannian metric, g = det(g/7), gijgjk =
δ/£, gij = gβ, and E is a nonzero complex constant. Thus (l.l)(a) is the
eigenvalue equation for the Laplace-Beltrami operator on a three-dimensional
complex Riemannian space whereas (l.l)(b) is the associated Hamilton-
Jacobi equation.

We shall classify all metrics for which equations (1.1) admit solutions via
separation of variables. Furthermore we shall indicate explicitly the group
theoretic significance of each type of variable separation. The separation of
variables problem for (1.1) has been studied by other authors, most notably
by Stackel [12], Robertson [11] and Eisenhart [14]. These authors were
primarily concerned with systems for which the metric is orthogonal and in
Stackel form. Here, however, we classify all separable systems, orthogonal or
not, in Stackel form or not. Special emphasis is given to the nonorthogonal
systems.

It is quite easy to show that (l.l)(b) admits (additive) separation of
variables in every coordinate system for which (l.l)(a) admits a product
separation and that in general (l.l)(b) separates in more systems than does
(l.l)(a). However, we shall prove explicitly that in the cases where gu

corresponds to flat space there is a one-to-one correspondence between
separable systems for the equations. In these cases one can pass to Cartesian
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coordinates x, >>, z such that ds2 = (dx)2 + (dy)2 + (dz)2 and (1.1) becomes

(a) M

(1.2)

\ dx ) \ dy J \ dz )

the complex Helmholtz equation and the equation of geometrical optics,
respectively. This one-one correspondence also holds for spaces of constant
(nonzero) curvature.

Assuming these facts, it follows from earlier papers by the authors [2], [7],
[8], [9] that all separable systems in flat spaces or spaces of constant curvature
are characterized by pairs of commuting operators which belong to the
enveloping algebras of the Lie symmetry algebras of these Riemannian
spaces. The symmetry algebras are S(3), the Lie algebra of the complex
Euclidean group, for flat space and o(4) for a space of constant curvature.
These Lie algebras are six-dimensional, and all other Riemannian spaces
admit symmetry algebras, (the Lie algebras of Killing vectors) whose dimen-
sions are strictly less than six. For general Riemannian metrics such that one
of equations (1.1) admits separable solutions it is not necessarily true that the
associated pair of symmetry operators belongs to the enveloping algebra of
the Lie symmetry algebra. In §5 we shall classify those metrics and coordi-
nates for which the defining symmetry operators do lie in the enveloping
algebra. It is in these cases that the separated solutions (special functions)
obey addition theorems and recurrence formulas inherited from the symmetry
algebra.

As will be shown in §2, aside from some rather elementary cases there is
only one class of nonorthogonal separable coordinates for (1.1). All remain-
ing separable coordinates are orthogonal. In §4 we list explicitly the nonor-
thogonal separable coordinates for flat spaces and spaces of constant curva-
ture. The orthogonal separable coordinates for these spaces have been classi-
fied earlier [4], [7], [9], [13].

Havas [6] has also discussed the relationship between the separation of
variables problem for (l.l)(a) and (l.l)(b). In particular he gives a condition
on the metrics, found by previous authors, which separate the Hamilton-
Jacobi equation in order that they also separate the corresponding Helmholtz
equation. He also gives a classification of separable coordinate systems for
(l.l)(a) which is essentially complete. However, our classification is much
simpler, principally because of our definition of equivalence for separable
systems. Furthermore, Havas does not exploit the connection between vari-
able separation and symmetry operators.
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This connection is exploited by Woodhouse [14] and Dietz [3]. However,

these authors do not make a detailed analysis of the possible separable

systems for (1.1). Furthermore, Dietz adopts a special definition of separation

of variables which omits many well-known separable systems such as el-

lipsoidal coordinates in flat space.

The operator and group theoretic characterizations of separable systems

obtained here are of great importance for the derivation of special function

identities [1], [9], [10].

In another paper we shall analyze the separable solutions of (1.1) for the

case E = 0, where the results are dramatically different.

2. Separable systems for the Helmholtz equation

We begin with the Helmholtz equation (l.l)(a). Our classification is based

on the number of ignorable variables which occur when (l.l)(a) is expressed

in terms of the separable coordinates JC1, X2, X3 under consideration. If xi is

an ignorable coordinate, then in the expression for the Laplace-Beltrami

operator Δ3 the only x' dependence is through the partial derivative 3/3JC',

i.e., [d/dx*, Δ3] = 0, so that L = d/dxι is a Lie symmetry of (l.l)(a).

At this point we interrupt our development to recall that the symmetry

algebra of (l.l)(a) is the Lie algebra § of all operators

/=i ax

such that [L, Δ3] = 0; see, for instance [10]. It is well known [5] that these

operators L are exactly the Killing vector fields for the corresponding metric

(gy). Similarly, the second-order symmetries of (l.l)(a) are the second-order

differential operators

(2.2) i/ = Ση

such that [Z/, Δ3] = 0. If every such U agrees with a second-order polynomial

in the enveloping algebra of §, then (l.l)(a) is said to be of class I [10].

Otherwise (l.l)(a) is of class II. We shall demonstrate explicitly that every

separable solution ψ = A(xι)B(x2)C(x3) of (l.l)(a) is characterized by a

commuting pair of second order symmetries Lv L2 such that

(2.3) L,ψ = \ψ, i = 1, 2,

where the eigenvalues \ are the separation constants. In the following we

classify each of the separable systems and list the associated operators Lv Lv
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The first type of metric is that for which all three variables JC1 are ignorable.

In this case all metric coefficients are constants, gtJ = aiJ9 and a typical

separable solution of (l.l)(a) has the form ψ = expfCj*1 + C2x
2 + C3x

3].

Note, however, that we can always make the change of variables

(2.4) x ' = Σ 9 , W ϊ-1,2,3,

which would for essentially arbitrary functions ψy(yJ) produce the separable

solution

(2.5) ψ = exp
ij-l

in terms of the variables/1. In our subsequent classification we must bear this

degree of freedom in mind, but we do not regard such a change of coordi-

nates as producing a different separable system. In particular we can always

take linear combinations of our x* and get an equivalent set of coordinates.

We take as our standard representative the Cartesian coordinates in flat

space:

[ I ] ds2 = (dx1)2 + (dx2)2 + (dx3)2,

( 2 6 ) L
L

Now suppose there are exactly two ignorable coordinates xι, x2. Then the

metric coefficients are functions of x3 alone so that

[II] ds2 = 2 go.(x3) dx' dxK

(2.7) W

L - - 2 - L - - L

In the case of one ignorable variable xι the Helmholtz equation for the

function φ(x2, x3), where ψ = expίC,^ 1 ^^ 2 , JC3), has the form

α 3 3φ 3 3 + (2anCι + a2)φ2

(2α13C, + α3)φ3 + ( α π C 2 + axCx - E)φ - 0,

with α/y = g'Λ There are two possibilities to consider. The separation equa-
tions in the variables x2 and x3 are either (i) both of second-order or (ii) one
is of second-order and the other of first-order. We examine these possibilities
in turn.
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(i) For both separation equations to be of second-order we must have
a23 = g23 = 0, and for suitable choices of JC2, x3, the components of the
contravariant metric tensor take the form

g" = Q[R(x2) + S(x3)], g"-g*-Q
(2.9)

g12 = QH(x2), g13 = ρi(x 3 ), Q(x2, x3) = [ U(x2) + V(x3)]~\

There are further constraints on the metric coefficients in order that (l.l)(a)
separates, one of which is α2 = (gYx/2%/%x\(gγ/2g22) = Qf(x2). This condi-
tion implies

R
where R(x2) = R - H2, S(x3) = S - I2. It follows that

(2.11) ^ = V)Ψ3).
R + S

There are a number of subcases to consider.
(ia) If Uo Φ 0 and V3 ψ 0 then R = aU±ι, S = aV±ι for some α G C.

This is the only additional requirement for separation. The differential form
describing these coordinates is (for the exponent +1)

[III] ds2 = (U(x2) + V(x3))[(dx2)2 + (dx3)2] + (dX1)2

where Vα JX1 = dx1 — Hdx2 — Idx3. This form illustrates another degree
of freedom which we have in separating variables. If there is an ignorable
variable JC1 then we can always choose a new ignorable variable X1 given by

x1 = f(Xι) + g(χ2) + h(x>),

so that Xι

9 x2, x3 will also yield separation. Again we do not regard this as
giving a different coordinate system. (We have also ignored variable changes
of this sort in the case of type [II] forms).

For the exponent -1 we find similarly

[III]' ds2 = U(x2) V(x3)(dx')2 + (U + V)[ U(dx2)2 + V(dx3f\

UV ι U+ V
VI 9 \2 ί// 9 \21
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(ib) If U = 0 and R = 0, then R = H2 and a2 = 0. There are no further

restrictions on the metric gij. The differential form can be reduced to

(2.14) ds2 = P(x3)(dx2)2 + Q(x3)(dx1)2 + (dx3)2,

where dXι = dx1 - Hdx2 - Idx3. However, this form is just a particular

case of type [II].

(ic) If U = 0 and S = 0, then S = I2. There are no further restrictions, and

the resulting form can be reduced to

(2.15) ds2 = (dx3)2 + V(x3)[(dx2)2 + Q(x2)(dX1)2]

with X1 as in (2.14). By a suitable change of variable X2 = F(Λ:2), Λr3 =

G(x3) we can write (2.15) in the more convenient form

[IV] ds2 = V(x3)(dx3)2 + V(x3)Q(x2)[(dx2)2 +

(2.16) 9 2 _ ! / 9 2 a 2

where we have again denoted the variables with lower case letters. Here

^3 ^ 0, Q2 Φ 0, for otherwise [IV] becomes a special case of [II].

(ii) For the second possibility we must have g23 = g22 = 0. With a suitable

choice of x2, x3 the components of the contravariant metric tensor take the

form

833 = g12=Q, gX3=QH(x3),

(2ΛΊ) gu = Q[R(χ2) + s(x3)], Q =[ί/(χ 2 ) + Fί*3)]"1-

We have the additional conditions a2 = 0 and a3 = Qf(x3). This last condi-

tion implies

(2.18) -Vn[t/+ V] =F(x3).
dx3 J

This can only be true if U2 = 0 or V3 = 0. If U2 = 0, then by the change of

ignorable variable JC1 —> X1 where dx1 = dXι + ^R dx2 this metric reduces

to case [II]. If, however, V3 = 0, then we have the new form

ds2 = U(x2)\(R(x2) + S{x3)){dx2)2

(2.19)
+ (H(x3) dx2 + dx3)2 + 2 dx1 dx2],
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or, defining a new ignorable variable dXι = dx + Hdx3 + \ R dx2,

[V] ds2 = A(x2)[B(x3)(dx2)2 + 2^c ! dx2 + (</*3)2],

9*1 θ(x2)2 90c1)2

Note that these coordinates are nonorthogonal and that Lι is of first-order.
Finally there is the case of separable coordinates in which there are no

ignorable variables. Such coordinates must of necessity be orthogonal, and
the differential forms are well known to be [4]

[VI] ds2 = o2(dx'f + σ,(σ2 + σ3)[(dx2)2 + (dx3)2],

ai = σ,(x'). ' = 1» 2, 3,

T
 ι I ' 2

2 τ "3 \ a(χ*γ 8(X3)2

/
1

L2 = ——— |σ , - - σ

[VII] ds2 = ( 9 l - i 2 ) ( i , - q3)(dxλ)2 + ( ί 2 - q3)(q2 -

- 92X93 - 9i) a ( χ i ) 2 (9 2 - 93)(9i - 92) d(x2)2

(9i + ft)
( 2 2 2 ) (ft-ί,)(ft-ft)

L Mi 3 2

 | 939i
2 (9i - 92)(93 ~ 1ί) 3(x2)2 (92 ~ 93)(9i ~ 92)

9!92 9 2

(9 3 - 9i)(92 ~ 93) d(x3)2

This completes the list of types of differential forms for which the Helmholtz
equation (l.l)(a) admits a separation of variables.

3. Separable systems for the Hamilton-Jacobi equation

We now give an analogous classification of coordinate systems for which
(l.l)(b) admits variable separation. Recall that separation of variables for
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(l.l)(b) means that W = Σ/= 1 Wj^x*) and that the separation equations for

the functions Wt are nonlinear equations of second degree and first order.

Following [2] we adopt a phase space formalism to define the symmetry

algebra % of (l.l)(b). The coordinates in this six-dimensional space are

(xJ,Pj) where pj = dW/dxJ. The Poisson bracket of two functions F, G on

phase space is the function

(3.1)

A first-order symmetry of (l.l)(b) is a function

(3.2) e = 2 { ' W Λ .

such that {£, Συ giJPiPj} = 0. It is straightforward to check that the (£'(*))
are just the Killing vector fields for the metric (gfj) and that the map L —» £
is a Lie algebra isomorphism of the Lie symmetry algebra § of (l.l)(a)
(consisting of differential operators (2.1)) and the algebra % of all first-order
symmetries £ under the Poisson bracket. Moreover, whenever W is a solution
of (l.l)(b), then so is £, (recall/?,. = dW/dxJ).

Similarly, the (strictly) second-order symmetries of (l.l)(b) are the functions

(3.3) e - Σ ηiJ(x)PlPj, i f ^ - V ,
ιj=l

such that {£, Σ guPiPj} = 0. The vector space of second-order symmetries

does not form a Lie algebra but it is decomposed into orbits under the adjoint

action of ϋC.

We will show explicitly that every class of separable solutions W of (1.1 Kb)

is characterized by a pair of first or second-order symmetries £,, £2 which are

in involution: {tl9 £2} = 0. The exact characterization is

(3.4) tx =λv t, = λ2,

where λj, λ2 are the separation constants. In the following we classify the

separable systems and list the associated functions £ p £3.

Again the classification is based on the number of ignorable coordinates.

In the case of three and two ignorable coordinates the differential forms

coincide with [I] and [II] respectively, and the commuting symmetries are

£1 = Pv ^2 = Pi- K t n e r e i s o n e ignorable coordinate JC1 and the separation

equations in x2, x3 are both of the second degree, then the only restriction on

the contravariant metric is that it be of the form (2.9). Thus the differential
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form can be written as

(3) ds2=[U(x2) + V(x3)] (dx2)2 + (dx3)2 +

- us)P

2 + vp\ - up2],

where dXι = dx1 - H(x2) dx2 - l(x3) dx3. If the separation equation in the
variable x2 is of first degree, then the only restriction on the contravariant
tensor is that it be of the form (2.17). Thus

(4) ds2 = [ U(x2) + V(x3)][B(x3)(dx2)2 + 2dxx dx2 + (dx3)2],

( 3 > 6 ) £,=/,„ βj - [ 1/ + V]-λ[-UBp2 - 2VPip2 + Up2].

Finally, if there are no ignorable variables, then the metric tensor must be

diagonal and in Stackel form [4]. Thus

(5)
(dx1)2

 | (dx2)2

 t (dx3)2

(3.7)

where φt = ΦX-x'), ft = ft(jc'") and εijk is the completely skew-symmetric
tensor such that ε1 2 3 = + 1. Here

l Φ [ ( Φ 3 Φl)Pl + (Φl " <t>3)P22 + (Φ2 ~

£2 = φ-l[(φ2<l3 I

This completes the list of forms for which (l.l)(b) admits a separation of
variables. It is readily seen that the various types of separation possible for
(l.l)(b) are more general than those for the corresponding Helmholtz equa-
tion (l.l)(a). (This is to be expected since the separation conditions for
(l.l)(b) only impose a general form of contravariant metric tensor whereas
the corresponding conditions for (l.l)(a) must also take into account first
derivative terms.) We now show, however, that for flat space there is a 1-1
correspondence between separable systems for these equations.

We proceed by examining the consequences of flatness on the possible
separable forms for the Hamilton-Jacobi equation. For forms of types (1) and
(2) we need make no further comment. The metric of type (3) is in Stackel
form and for flat space is also subject to the condition Ro = 0 (1 ̂ j) where
Ro is the Ricci tensor. Eisenhart [4] has shown that this condition together
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with the requirements that the metric be orthogonal and in Stackel form
imply that the metric (3) also provides a separation of variables for the
Helmholtz equation. However, it is easily checked that these conditions force
the metric (3) to be in one of the forms [III] or [IV].

To show that the nonorthogonal metric (4) for (l.l)(b) reduces to [V] for
the Helmholtz equation, we note that the condition Rl22l = \[U + V]~ιVf =
0 on the Riemannian curvature tensor in flat space implies V3 = 0. Thus this
metric determines a separation for both (l.l)(a) and (l.l)(b).

Finally, for a differential form of type (5), which is already in Stackel form,
the flat space condition i ^ = 0 (/ φj) implies that the metric also separate
the Helmholtz equation, hence be of type [VI] or [VII], We have thus
obtained the following result.

Theorem. Let x = x(x'),y — y(xι\ z = z(x*) define a new set of variables
x'(i = 1, 2, 3) in such a way that the coordinates x,y, z are analytic functions of
the xι. This set of new variables admits separable solutions for the Hamilton-
Jacobi equation

ox I \ oy ) \ όz J dχι ftxJ

if and only if it also admits separable solutions for the Helmholtz equation
Δ3ψ = Eψ. Here ds2 = dx2 + ay2 + dz2 = Σ giJdxi dxj and the separable
solutions take the form W = Σ, = 1 £/,(*'), ψ = Π^βl V^x').

There is a similar theorem for spaces of (nonzero) constant curvature Ko.
(In this case Δ3 is the Laplace-Beltrami operator on the complex 3-dimen-
sional sphere with radius KQ^1/2.) Rather than prove this theorem directly here
we will obtain it as a biproduct of results for the Hamilton-Jacobi equation in
four space, to be published later.

4. Nonorthogonal separable coordinates in spaces of constant curvature

All orthogonal separable coordinate systems for the real Helmholtz and
Klein-Gordon equations

have been classified in [7] and [10], and given a group theoretic interpretation.
From this list one can easily obtain a classification of all orthogonal separable
systems for the complex Helmholtz equation in flat space, bearing in mind
that distinct real systems may be complex equivalent. Here we will compute
the possible nonorthogonal separable systems in flat space.
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Recall that the symmetry algebra of the flat space Helmholtz equation is
& (3) with basis (in Cartesian coordinates)

3 9 . 3 3 Ί 3 3
J J J

a a a
P -— P -— P - —

ox oy θz

(4.2)

dx λ dy 3 dz

This equation is of class I, so all separable systems are describable in terms of

commuting operators Lλ, L2 in the enveloping algebra of S(3). The possible

nonorthogonal systems can only be of types [II] or [V].

We begin by classifying the possible forms of type [V]. The requirement

(4.3) Λ3223 = ̂ ψ » _ 3 ( ^ = 0

for the Riemann curvature tensor, where A and B are given by (2.20), leads to

the separation equations

B" = a, A" + oA - I ^ - = 0.

If α φ 0, these equations have the solution

A = δ sec2( λ / ^ jc2) or^ = δ exp(V2ί Λ:2).

By suitable redefinition of variables, these solutions yield the two metrics

(a) ds2 = *2(</;c3)2 + 2

(b) * 2

If α = 0 we have the solutions

B = βx3 + y, A = (δx2 + &y2,

which determine the form

(c) ds2 = (x2)\dx3)2 + 2dx1dx2- — (<fx2)2.
(x2)2

These are the only possibilities for systems of type [V]. We now give the

coordinate systems corresponding to these possibilities, the operators which
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describe them, and the separation equations for the Helmholtz equation.

(Here {Lv L2) = LXL2 + L2LX.)

(b) x = x3φ + (x2)2 , y - iz = xλ - Ux3fx2, y + iz = 2x2,

ί-1-J

(c) ?
1 xz 6(x2)3

y + iz = 2x2,

L, = {(P 2 + iP3), L2 = I (y3 - i/2)
2

We see that these three coordinate systems (as well as system (4.5))

correspond to the imbedding of the heat equation into three-dimensional

space via the change of coordinates

x = x3,y — iz = xλ,y + iz = 2x2

9

ds2 = (dx3)2 + 2dxι dx\

Diagonalization of the operator Lx =\(P2 + ^ 3 ) = d/dxι reduces the

Helmholtz equation to the heat equation.

The only remaining possibilities for nonorthogonal separable metrics are
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those of type [II]. However, type [II] systems, which we have referred to as

split in reference [2], can be classified in terms of orbits of pairs of commuting

symmetry operators under the adjoint action of S (3). It is easy to verify that,

except for the orbits of linear momentum operator pairs which correspond to

type [I] (Cartesian) coordinates, there are only two kinds of orbits. The first

orbit contains the representative /3, P3 and corresponds to cylindrical coordi-

nates (which are orthogonal) while the second kind of orbit contains P2 +

iP3, J2 + A/3 + c(P2 - iP3) where c = 0, 1. Here

x = ic(x2)2 + JCV,

X1 - U
(4.5)

z = -icx2 + j(x2)3 + IJC1 + ±(x2)2x3 - x\

ds2 = (x3f(dx2)2 + (dx3)2 + lie dx2 dx3 + Ac dxx dx2 - 2/ dxλ dx3.

This completes our list of nonorthogonal separable coordinates for the flat

space Helmholtz equation.

We next consider the possible separable systems for spaces of constant

curvature Ko. The 21 possible orthogonal separable systems were classified in

[9]. The nonorthogonal separable systems are of types [V] or [II]. For systems

of type [V] we must require that the curvature tensor of the metric satisfy the

condition

(4.6) Rhijk = Ko(ghJgik - ghkgij), Ko Φ 0.

A tedious but straightforward computation shows that there are in fact no

metrics of type [V] satisfying (4.6). Thus the only possibilities for nonorthogo-

nal separable metrics are those of type [II]. Now the metrics of type [II] can

be classified in terms of orbits of pairs of commuting symmetry operators

under the adjoint action of O(4), the symmetry group of (l)(a) for spaces of

constant curvature. Recall that the space of constant curvature Ko can be

locally identified with the complex sphere S3c: z2 + z\ + z\ + z\ = KQ1. The

symmetry algebra of this space is o(4) with basis

(4-7) k ~ z / | - ~ Z * " 4 ' l < j ' k < 4 > J * k

Under the adjoint action of the group o(4) there are exactly three orbits with

representatives (I23,114), (I4 2 + ιΊ21, I3 4 + ιΊ13) and (I2 1 + I 4 3 ,1 1 2 + I43 + ιΊ14

+ ιΊ32), respectively. The first two orbits correspond to orthogonal coordi-

nates and are listed in [9]. The third system is nonorthogonal with metric
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ds2 = K^2[(dx2)2 - (dx3)2 - 2e2χ3 dxι dx2\

ZXKQ/2 = xιeχ3 sin x2 + cosh x3 cos x2,

(4.8) Z2KQ/2 = xιeχ3 cos x2 - cosh x3 sin x2,

Z3KQ/2 = ixιeχ3 sin x2 — / sinh x3 cos x2,

Z4KQ/2 = ZΛ;1^*3 cos x2 + i sinh x3 sin x2.

This is the only nonorthogonal separable system for spaces of constant
curvature.

5. Class I coordinates

As mentioned above, the Helmholtz equations for flat space and spaces of
constant curvature are of class I, so the defining operators Lv L2 for each
separable coordinate system associated with these equations belong to the
enveloping algebra of the Lie symmetry algebra. For such systems one can
then employ the representation theory of S (3) and o(4) to obtain significant
properties of the separable solutions [9], [10], [1]. However, this happy state of
affairs does not hold for general Riemannian spaces.

To explore the relationship between Lie symmetries and separable systems
more carefully we introduce a new definition. A separable coordinate system
{JC1, x2, x3} for equation (l.l)(a) is of class I if the defining operators Ll9 L2

for this system belong to the enveloping algebra of the Lie symmetry algebra
for (l.l)(a). Otherwise, the coordinate system is class II. (Note that a class II
equation may still have a separable coordinate system of class I.)

It is obvious that all separable systems corresponding to type [I] and [II]
metrics are of class I. For type [III] metrics we have the following result.

Theorem. Let {xι, x2, x3} be a class I separable system of type [III]. Then
the metric is one of two forms:

(a) ds2 = (dx)2 + (ay)2 + (dzf, symmetry algebra & (3),
(b) ds2 = (dx1)2 + dω2 where dω2 is the metric for a two-dimensional

Riemannian space of nonzero constant curvature, symmetry algebra C X o(3).
We sketch the proof of this theorem..It is easy to see that L2 cannot be

expressed as a polynomial in Θ/ΘJC1 and only one first-order symmetry
operator. Thus the system {xJ} can be of class I only if (2.12) admits a
symmetry algebra § which is at least three-dimensional. From the Killing
equations for the metric (2.12) (i.e., the requirements on the operator L, (2.1)
such that [L, Δ3] = 0) and the integrability conditions for these equations,
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one obtains

Al = 0,A2 = -(U + V)BV

B2= C3 = -(U+ VY\BU2 + CV3),

(π2 + V2)
A2R = A3R = 0,R= U22 + V33 -

Furthermore, writing ds2 = (dx1)2 + dω2, one can easily verify that the curva-

ture of the metric dω2 is given by JR1221 = \R. If R = 0, then ds2 is the metric

of a flat space and {xJ} is clearly of class I. If R φ 0, then A is a constant

and Bι = Cλ = 0. Thus the symmetry algebra decomposes as C X §' where

§' is the symmetry algebra of dω2 and dim §' > 2. Now it is well-known [5,

p. 243] that a two-dimensional Riemannian space with symmetry algebra of

dimension > 2 must either be flat space (which we have already counted

above) or a space of nonzero constant curvature. This completes the proof.

Theorem. Let {xι, x2, x3} be a class I separable system of type [4]. Then

the metric is one of four forms:

(a) flat space, symmetry algebra S(3), where ( l / F ) " = 0 , (Q~x/2)" +

λ{T1 / 2 = 0,

(b) space of nonzero constant curvature, symmetry algebra o(4), (l/V)" = a

ΦOΛQ~X/Ύ + λρ- 1 / 2 = o,
(c) ds2 = V2(dx3)2 + Vdω\x\x2) where dω2 is the flat space metric,

symmetry algebra S (2),

(d) ds2 = V2(dx3)2 + V dω\xι, x2) where dω2 is the metric for a space of

constant curvature, symmetry algebra o(3).

The proof of this result is similar to that of the preceding theorem.

Theorem. A class I separable system of type [V] corresponds to a flat-space

metric and a class I system of type [III]' corresponds to a flat space or constant

curvature metric. A class I separable system of type [VI] corresponds to one of

four metric forms:

(a) flat space, symmetry algebra S (3), where

-2

φ

= c(*') ,

2

σx(σ2 + σ3)

>\2(off + (σ£
K + σ3)

:2

(b) space of constant curvature Ko, symmetry algebra o(4), where

σx = {ex2 + bx + a)'1, Ko= b2 - Aac, Φ = -4K0,
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(c) ds2 = σ2(dx1)2 + σι dω2(x2, x3) where dω2 is the flat-space metric,

symmetry algebra S (2),

(d) ds2 = σ2(dx1)2 + σx dω\x2, x3) where dω2 is the metric for a space of

constant curvature, symmetry algebra o(3).

We have not yet been able to determine the class I separable systems for

metrics of type [VII], although it appears likely that flat and constant

curvature metrics are the only ones possible.
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