# THE SPECTRUM OF THE LAPLACIAN ON A MANIFOLD OF NEGATIVE CURVATURE. I

## MARK A. PINSKY

### 1. Introduction

Let *M* be a simply connected complete two-dimensional Riemannian manifold. On *M* we have the Laplacian, a self-adjoint negative semidefinite operator on the Hilbert space  $L^2(M)$ . In case the curvature is everywhere  $\leq -k^2 \leq 0$ , it has been shown [1] that  $\lambda_1 \geq k^2/4$ , where  $\lambda_1$  is the lower bound of the spectrum of the negative Laplacian.

The purpose of this note is to determine more accurate bounds for  $\lambda_1$ . We assume the following conditions on M:

(A) M possesses a global system of geodesic polar coordinates with respect to some point  $0 \in M$ .

Thus we are considering  $R^2$  with a Riemannian metric of the form  $ds^2 = dr^2 + G(r, \theta)^2 d\theta^2$  where  $G(0^+, \theta) = 0$ ,  $G_r(0^+, \theta) = 1$ .

(B)  $G_r(r,\theta) \ge 0$ ;  $G(r,\theta) \ge g(r)$  where g(r) is nondecreasing with  $\lim_{r \to \infty} g(r) = \infty$ .

Both of these conditions are satisfied in case the curvature is everywhere nonpositive. Finally we need the technical condition

(C)  $|(G_{rr}/G_r)_{\theta}| \leq \text{const}$ , when  $r \geq r_0$ ,  $0 \leq \theta \leq 2\pi$ .

Our main result states that

(1.1) 
$$\inf_{M} (G_{r}/G) \leq \sqrt{4\lambda_{1}} \leq \inf_{0 \leq \ell \leq 2\pi} \lim_{r \to \infty} (G_{rr}/G_{r}) .$$

This result shows, for instance, that when the curvature is constant and equal to  $-k^2$ , then  $\lambda_1 = \frac{1}{4}k^2$ ; no explicit calculations with special functions are needed in our approach.

To prove the lower half of (1.1) we modify the methods used in [1]. To obtain the upper bound we first obtain a comparison function and apply the variational characterization of  $\lambda_1$ . It is shown that if  $G_{rr}/G_r$  satisfies an upper bound on a sufficiently thick sector, then a corresponding upper bound can be obtained.

Received February 4, 1976, and, in revised form, June 3, 1976. Research supported by the National Science Foundation Grant No. MPS71-02838-A04. The author is indebted to R. Osserman for a critical reading of an earlier version of this paper.

### MARK A. PINSKY

# 2. The lower bound

To prove the lower bound, we recall the variational characterization of  $\lambda_1$ :

(2.1) 
$$\lambda_1 = \inf_{f \neq 0} \frac{\int_0^{2\pi} \int_0^\infty (f_r^2 + f_{\theta}^2/G^2) G dr d\theta}{\int_0^{2\pi} \int_0^\infty f^2 G dr d\theta} ,$$

where the infimum is taken over continuous, piecewise  $C^1$  functions f with compact support. We assume that  $G_r/G \ge \delta > 0$  (if  $\delta = 0$  there is nothing to prove). Following [1] we have

(2.2) 
$$\int_0^\infty f^2 G dr \leq \frac{1}{\delta} \int_0^\infty f^2 G_r dr = -\frac{2}{\delta} \int_0^\infty f f_r G dr.$$

Therefore by Schwarz's inequality,

(2.3) 
$$\left(\int_{0}^{\infty} f^{2}Gdr\right)^{2} \leq \frac{4}{\delta^{2}} \left(\int_{0}^{\infty} f^{2}Gdr\right) \left(\int_{0}^{\infty} f^{2}_{r}Gdr\right),$$

with the conclusion

(2.4) 
$$\int_0^\infty f_r^2 G dr \ge \frac{\delta^2}{4} \int_0^\infty f^2 G dr \; .$$

When we add in the angular term, do the angular integration, and divide by the denominator of (2.1), we see that for any  $f \neq 0$  this quotient is bounded below by  $\delta^2/4$ , which was to be proved.

### 3. The upper bound

The main result of the section is

**Lemma 3.1.** Assume that  $G_{rr}/G_r \leq m$  for  $R_0 \leq r \leq R_1$ ,  $\alpha \leq \theta \leq \beta$ . Then

$$\lambda_1 \leq rac{m^2}{4} + rac{\pi^2}{(R_1 - R_0)^2} + rac{\pi^2}{(eta - lpha)^2 g(R_0)^2}$$

Proof. Let

$$f(r,\theta) = \exp\left(-\frac{1}{2}mr\right)\sin\frac{\pi(r-R_0)}{R_1-R_0}\sin\frac{\pi(\theta-\alpha)}{\beta-\alpha}$$

in the indicated region, and let f = 0 elsewhere. By direct computation f is a solution of the differential equation

(3.1) 
$$f_{rr} + mf_r + [m^2/4 + \pi^2/(R_1 - R_0)^2]f = 0,$$

with the end condition  $f(R_0, \theta) = 0$ ,  $f(R_1, \theta) = 0$ . Thus

88

(3.2) 
$$f_{rr} + (G_r/G)f_r + [m^2/4 + \pi^2/(R_1 - R_0)^2]f = (G_r/G - m)f_r$$

Multiply (3.2) by fG and integrate on  $(R_0, R_1)$ ; thus

(3.3) 
$$-\int_{R_0}^{R_1} f_r^2 G dr + \left[\frac{m^2}{4} + \frac{\pi^2}{(R_1 - R_0)^2}\right] \int_{R_0}^{R_1} f^2 G dr = \int_{R_0}^{R_1} (G_r - mG) f f_r dr.$$

We now integrate the right-hand member of (3.3) by parts. The boundary term is zero, and the new integrand has the same sign as  $mG_r - G_{rr}$  which is non-negative by assumption. Therefore

(3.4) 
$$\int_{R_0}^{R_1} f_r^2 G dr \le \left[\frac{m^2}{4} + \frac{\pi^2}{(R_1 - R_0)^2}\right] \int_{R_0}^{R_1} f^2 G dr$$

To treat the  $\theta$ -terms in (2.1) we note that f also satisfies  $f_{\theta\theta} + (\pi^2/(\beta - \alpha)^2)f = 0$ with  $f(r, \alpha) = 0 = f(r, \beta)$ . Multiplying this equation by f and integrating on  $(0, 2\pi)$  we have

$$\int_{0}^{2\pi} f_{\, heta}^2 d heta = rac{\pi^2}{\left(eta - lpha
ight)^2} \int_{0}^{2\pi} f^2 d heta \; .$$

By hypothesis (B) we can make the following estimations:

$$\int_{R_0}^{R_1} \int_{\alpha}^{\beta} (f_{\theta}^2/G) d\theta dr \leq g(R_0)^{-1} \int_{R_0}^{R_1} \int_{\alpha}^{\beta} f_{\theta}^2 d\theta dr$$
$$= \pi^2 (\beta - \alpha)^{-2} g(R_0)^{-1} \int_{R_0}^{R_1} \int_{\alpha}^{\beta} f^2 d\theta dr$$
$$\leq \pi^2 (\beta - \alpha)^{-2} g(R_0)^{-2} \int_{R_0}^{R_1} \int_{\alpha}^{\beta} f^2 G d\theta dr$$

Combining this with (3.4) gives

$$\int_{\alpha}^{\beta} \int_{R_0}^{R_1} (f_r^2 + f_{\theta}^2/G^2) G dr d\theta$$
  
$$\leq \left[ \frac{m^2}{4} + \frac{\pi^2}{(R_1 - R_0)^2} + \frac{\pi^2}{(\beta - \alpha)^2 g(R_0)^2} \right] \int_{\alpha}^{\beta} \int_{R_0}^{R_1} f^2 G dr d\theta .$$

Inserting the above f into the variational characterization (2.1), we have proved the lemma.

We can now turn to the proof of the upper half of (1.1). For this purpose, let  $\overline{m} = \inf_{\theta} \overline{\lim_{r \to \infty}} (G_{rr}/G_r)$ . Given  $\varepsilon > 0$  we can find  $R'_0 > 0$  and  $(\alpha, \beta)$  such that  $G_{rr}/G_r \leq \overline{m} + \varepsilon$  when  $r \geq R'_0$  and  $\alpha \leq \theta \leq \beta$ . Let  $R_0$  be such that  $g(R_0) > \pi/[\varepsilon(\beta - \alpha)]$  and  $R_0 \geq R'_0$ . Therefore for any  $R_1 > R_0$  we have, by Lemma 3.1,

(3.4) 
$$\lambda_1 \leq \frac{1}{4}(\overline{m} + \varepsilon)^2 + \pi^2/(R_1 - R_0)^2 + \varepsilon^2$$
.

#### MARK A. PINSKY

In this inequality we let  $R_1 \to \infty$ . Since the resulting inequality is valid for every  $\varepsilon > 0$ , we have proved that  $\lambda_1 \leq \frac{1}{4}\overline{m}^2$ .

### 4. Discussion of the result-applications and examples

In previous works upper and lower bounds for  $\lambda_1$  were obtained in terms of the curvature. Recall that in a system of geodesic polar coordinates we have

$$(4.1) -K = G_{rr}/G ,$$

where K is the Gaussian curvature. Thus we obtain the two-dimensional case of [1]:

**Corollary 4.1.** Suppose that  $K \leq -k^2 \leq 0$  on M. Then  $\lambda_1 \geq \frac{1}{4}k^2$ .

*Proof.* G satisfies the inequality  $G_{rr} \ge k^2 G$  with  $G(0^+, \theta) = 0$ ,  $G_r(0^+, \theta) = 1$ . Thus  $h = G_r/G$  satisfies the inequality  $h_r + h^2 \ge k^2$ ,  $\lim_{r \to 0} rh(r, \theta) = 1$ . Therefore  $h(r, \theta) \ge k$  coth kr with the conclusion that  $(G_r/G) \ge k$  everywhere. Applying the lower bound of (1.1), we obtain the stated result.

In [2] it was proved that  $K \ge -k^2$  implies  $\lambda_1 \le \frac{1}{4}k^2$ . Although our method does not yield this result, we do obtain a related localized result.

**Corollary 4.2.** Suppose that  $k^2(\theta) = \lim_{r \to \infty} (-K(r, \theta))$  exists for  $\theta \in (\alpha, \beta)$  and satisfies  $k^2(\theta) \le k^2$ . Then  $\lambda_1 \le \frac{1}{4}k^2$ .

*Proof.* We have  $G_{rr}/G_r = (-K)/h$  where  $h = G_r/G$  is a solution of the equation  $h_r + h^2 = -K$ . Using a comparison estimate when  $r \to \infty$  [3] we have  $\lim_{r\to\infty} h(r,\theta) = k(\theta)$ . (This also follows by an appropriate use of the Rauch comparison theorem.) Therefore  $\lim_{r\to\infty} (G_{rr}/G_r) = k(\theta)$ . Applying the upper half of (1.1), we see that  $\lambda_1 \leq \frac{1}{4}k^2$ , which was to be proved.

Using the same idea, we can obtain another variation of Cheng's result.

**Corollary 4.3.** Suppose that  $K(r, \theta) \ge -k^2$  and  $(G_r/G)(r, \theta) \ge k_1$  for  $\theta \in (\alpha, \beta)$  and  $r \ge R_1$ . Then  $\lambda_1 \le \frac{1}{4}k^2/k_1$ .

*Proof.* In this case we have  $G_{rr}/G_r \leq k^2/k_1$  for  $\theta \in (\alpha, \beta)$  and  $r \geq R_1$ , whence the result follows.

From (1.1) we see that the upper bound depends only on the details of the metric in a neighborhood of infinity. It is natural to ask whether a lower bound can be obtained which only depends on the metric in a neighborhood of infinity. The following example shows, in particular, that in the lower bound part of (1.1), the infimum cannot be replaced by lim inf when  $r \to \infty$ .

**Example 4.4** Let K(r) be a  $C^{\infty}$  function such that

(4.2) 
$$K(r) = -1, \quad 0 \le r \le R_1, \\ K(r) = -4, \quad R_1 + 1 \le r \le \infty$$

where  $R_1 > \pi \sqrt{4/3}$ ; let G(r) be the solution of  $G_{rr} + KG = 0$ ,  $G(0^+) = 0$ ,

 $G_r(O^+) = 1$ . Thus  $G(r) = \sinh r$  and  $G_{rr}/G_r = \tanh r$  for  $0 \le r \le R_1$ . Following the proof of Lemma 3.1 we let  $f(r) = \exp(-\frac{1}{2}mr)\sin(\pi r/R_1)$  for  $0 \le r \le R_1$  and f = 0 for  $r > R_1$ , where  $m = \tanh R_1$ . Substituting in the variational characterization (1.1), we have

$$\lambda_1 \leq \frac{1}{4} (\tanh R_1)^2 + \pi^2 / R_1^2 < 1$$

On the other hand, it is clear from (4.2) that  $\lim_{r\to\infty} (G_r/G)$  exists and is equal to 2. Hence  $\liminf_{r\to\infty} (G_r/G) = 2 > \sqrt{4\lambda_1}$ .

By modifying the constants in Example 4.4 and taking  $R_1$  sufficiently large, we obtain the following proposition: Given 0 < a < b, there exists a rotationally invariant metric G(r) with curvature function K(r) such that  $\lim_{r\to\infty} [-K(r)] = b^2$  and  $\lambda_1 < \frac{1}{4}a^2$ .

It is natural to ask if, under suitable regularity conditions,  $\lambda_1$  depends only on the details of the metric in a neighborhood of infinity. We have the following result.

**Corollary 4.5.** Assume that  $G_r/G$  is nonincreasing along each ray and that  $\lim_{n \to \infty} K(r, \theta) = -k^2(\theta)$  exists for each  $\theta \in [0, 2\pi]$ . Then  $\sqrt{4\lambda_1} = \inf_{0 \le \theta \le 0} k(\theta)$ .

*Proof.* From the proof of Corollary 4.2, we have  $\lim_{r\to\infty} (G_{rr}/G_r) = k(\theta)$ . On the other hand, the same argument shows that  $\lim_{r\to\infty} (G_r/G) = k(\theta) = \inf_{r>0} (G_r/G)$ . Hence the left- and right-hand members of (1.1) are equal in this case, and the proof is complete.

### References

- [1] H. P. McKean, An upper bound for the spectrum of  $\Delta$  on a manifold of negative curvature, J. Differential Geometry 4 (1970) 359-366.
- S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975) 289-297.
- [3] M. Pinsky, An individual ergodic theorem for the diffusion on a manifold of negative curvature, Proc. Confer. Stochastic Differential Equations, Academic Press, New York, 1977, 231-240.

NORTHWESTERN UNIVERSITY