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THE SPECTRUM OF THE LAPLACIAN ON A
MANIFOLD OF NEGATIVE CURVATURE. I

MARK A. PINSKY

1. Introduction

Let M be a simply connected complete two-dimensional Riemannian mani-
fold. On M we have the Laplacian, a self-adjoint negative semidefinite oper-
ator on the Hubert space L\M). In case the curvature is everywhere < — k2 < 0,
it has been shown [1] that λ1 > k2/4, where λx is the lower bound of the spectrum
of the negative Laplacian.

The purpose of this note is to determine more accurate bounds for λλ. We
assume the following conditions on M:

(A) M possesses a global system of geodesic polar coordinates with respect
to some point 0 e M.

Thus we are considering R2 with a Riemannian metric of the form ds2 —
dr2 + G(r,θ)2dθ2 where G(O+,0) = 0, Gr(O+,0) = 1.

(B) Gr(r,θ) > 0; G(r,θ) > g(r) where g(r) is nondecreasing with lim g(r)
r-»oo

= OO.

Both of these conditions are satisfied in case the curvature is everywhere
nonpositive. Finally we need the technical condition

(C) | (G r r /G r ), | < const, when r > r0, 0 < θ < 2π.
Our main result states that

(1.1) inf (Gr/G) < Λ/4Λ < inf Km (G r r/G r) .
M O<0<2ττ r—oo

This result shows, for instance, that when the curvature is constant and equal
to — k2, then λλ = \k2\ no explicit calculations with special functions are needed
in our approach.

To prove the lower half of (1.1) we modify the methods used in [1]. To obtain
the upper bound we first obtain a comparison function and apply the vari-
ational characterization of λx. It is shown that if Grr/Gr satisfies an upper
bound on a sufficiently thick sector, then a corresponding upper bound can
be obtained.
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2. The lower bound

To prove the lower bound, we recall the variational characterization of λλ:

Γ Γ (fr + felG2)Gdrdθ
(2.1) λ, = inf - J o J o

fφO Γ Γ fGdrdθ
Jo Jo

where the infimum is taken over continuous, piecewise C1 functions / with
compact support. We assume that Gr/G > δ > 0 (if δ = 0 there is nothing to
prove). Following [1] we have

(2.2) [pGdr < 1 Γf2Grdr = - - Γ ffrGdr .
Jo δ Jo δ Jo

Therefore by Schwarz's inequality,

(2.3)

with the conclusion

(2.4) ΓflGdr > ξ- [
Jo 4 Jo

When we add in the angular term, do the angular integration, and divide by
the denominator of (2.1), we see that for a n y / ^ 0 this quotient is bounded
below by δ2/4, which was to be proved.

3. The upper bound

The main result of the section is
Lemma 3.1. Assume that Grr/Gr < m for Ro < r < R19 a < θ < β. Then

λ < — -I- ft* π*
1 - 4

+

4 (R, - RQY (β - aYg(R0Y '

Proof. Let

f(r, θ) = exp (-imr) sin «' ~ **> sin I ^ z A
R R

sin ^
R,- Ro β - a

in the indicated region, and let/* = 0 elsewhere. By direct computation/is a
solution of the differential equation

(3.1) frr + mfr + K / 4 + π'KR, - R0)
2]f= 0 ,

with the end condition f(RQ, θ) = 0, f(Rl9 θ) = 0. Thus
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(3.2) frr + (Gr/G)fr + [m2/4 + 7r2/(^ - R0)
2]f = (Gr/G - m)fr .

Multiply (3.2) by fG and integrate on (Ro, Rλ); thus

CRi Vm2 <τr2 1 CRχ CRi

(3.3) - f flGdr + Γ- + j-^— l fGdr =\ (Gr - mG)ffrdr .
JRO L4 (Rι — Ro) J ^ ° JR°

We now integrate the right-hand member of (3.3) by parts. The boundary term
is zero, and the new integrand has the same sign as mGr — Grr which is non-
negative by assumption. Therefore

(3.4) f\Gdr < r - + * \ PGdr .
JRO L 4 (Rι — Ro) 1 JRo

To treat the 0-terms in (2.1) we note that/also satisfies/„ + (π2/(β — af)f= 0

with f(r9 a) = 0 = /(r, β). Multiplying this equation by / and integrating on

(0, 2π) we have

r.dθ= ίΩ

π

 Λ2 / w .
o (β — af Jo

By hypothesis (B) we can make the following estimations:

(fl/G)dθdr < g^y1 Pedθdr
RQ J a J Ro J a

= π\β - ayW,)-1 Γ [ fdθdr
J Rθ J a

< π\β - a)-2g(R0y
2 Γ [ fGdθdr .

J RQ J a

Combining this with (3.4) gives

+ΓelG2)Gdrdθ

< I™. + ^ +
- L4 (R Rγ

i r r
\J«JR<>+

(R, - Roγ (β - a)2g(R0)
Inserting the above/into the variational characterization (2.1), we have proved
the lemma.

We can now turn to the proof of the upper half of (1.1). For this purpose,
let m = inf lim (Grr/Gr). Given ε > 0 we can find R'Q > 0 and (a, β) such that

Grr/Gr < m + ε when r > R'Q and a < θ < β. Let RQ be such that g(RQ) >
π/[ε(β — a)] and Ro > R'o. Therefore for any Rx > Ro we have, by Lemma 3.1,

(3.4) λx < \(m + ε)2 + π2l{Rλ - RQ)2 + ε2 .
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In this inequality we let Rλ —> oo. Since the resulting inequality is valid for
every ε > 0, we have proved that λ1 < \m2.

4. Discussion of the result-applications and examples

In previous works upper and lower bounds for λλ were obtained in terms of
the curvature. Recall that in a system of geodesic polar coordinates we have

(4.1) -K=GJG,

where K is the Gaussian curvature. Thus we obtain the two-dimensional case of

[1]:
Corollary 4.1. Suppose that K < -k2 < 0 on M. Then λ, > \k\
Proof. G satisfies the inequality Grr > k2G with G(0+, θ) = 0, G r(0+, θ) =

1. Thus h = Gr/G satisfies the inequality hr + h2 > k2, lim rh(r, θ) = 1. There-
fore h(r, θ) > k coth kr with the conclusion that (Gr/G) > k everywhere. Ap-
plying the lower bound of (1.1), we obtain the stated result.

In [2] it was proved that K > — k2 implies λλ < \k2. Although our method
does not yield this result, we do obtain a related localized result.

Corollary 4.2. Suppose that k\θ) = lim (— K(r, θ)) exists for θ € {a, β) and

satisfies k\θ) < k2. Then λ1 < \k2.
Proof. We have Grr/Gr = (— K)/h where h = Gr/G is a solution of the

equation hr + h2 = — K. Using a comparison estimate when r —> oo [3] we
have lim h(r, θ) = k(θ). (This also follows by an appropriate use of the Rauch

r—>oo

comparison theorem.) Therefore lim (Grr/Gr) = k(θ). Applying the upper half

of (1.1), we see that λx < \k2, which was to be proved.
Using the same idea, we can obtain another variation of Cheng's result.
Corollary 4.3. Suppose that K(r, θ)> -k2 and (Gr/G)(r, θ) > kjor θ <= {a, β)

and r>R,. Then λ, < \k2\kx.
Proof. In this case we have Grr/Gr < k2\kλ for θ <= {a, β) and r > Rl9 whence

the result follows.
From (1.1) we see that the upper bound depends only on the details of the

metric in a neighborhood of infinity. It is natural to ask whether a lower bound
can be obtained which only depends on the metric in a neighborhood of inf-
inity. The following example shows, in particular, that in the lower bound
part of (1.1), the infimum cannot be replaced by lim inf when r —> oo.

Example 4.4 Let K(r) be a C°° function such that

K(r) = - 1 , 0 < r < R1 ,
(4.2) ~ ~

K(r) = - 4 , R1 + l£r<oo,

where R, > πVWl let G(r) be the solution of Grr + KG = 0, G(0+) = 0,
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Gr(0+) = 1. Thus G(r) = sinh r and Grr/Gr = tanh r for 0 < r < Rλ. Following
the proof of Lemma 3.1 we let /(r) = exp (—\mr) sin (πr/R^ for 0 < r < Rx

a n d / = 0 for r > R19 where m = tanh i^. Substituting in the variational
characterization (1.1), we have

λ, < i(tanh R,Y + π2jR\ < 1 .

On the other hand, it is clear from (4.2) that lim (Gr/G) exists and is equal to

2. Hence lim mf (GJG) = 2> ^4λ[.

By modifying the constants in Example 4.4 and taking R1 sufficiently large,
we obtain the following proposition: Given 0 < a < b, there exists a rotation-
ally invariant metric G(r) with curvature function K(r) such that lim [ — K(r)] = b2

and λλ < \a2.
It is natural to ask if, under suitable regularity conditions, λγ depends only on

the details of the metric in a neighborhood of infinity. We have the following
result.

Corollary 4.5. Assume that GrjG is nonincreasing along each ray and that

lim K(r, Θ) = -k\θ) exists for each θ z [0, 2π\. Then V~4^ = o<inf χ k(θ).

Proof From the proof of Corollary 4.2, we have lim (GJGr) = k(θ). On

the other hand, the same argument shows that lim (Gr/G) = k(θ) = inf (Gr/G).

Hence the left- and right-hand members of (1.1) are equal in this case, and the
proof is complete.
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