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GAUGE ALGEBRAS, CURVATURE AND
SYMPLECTIC STRUCTURE

PEDRO L. GARCIA

Introduction

The notion of "gauge algebra" has its origin in the theory of the electro-
magnetic field. In the most simple case (vacuum space) a electromagnetic field
is defined by a 1-form ω on the Minkowski space V4 which satisfies the Maxwell
equations:

δdω = 0 ,

where d is the exterior differential, and δ is the codifferential with respect the
Minkowski metric g. ω is called the field potential 1-form.

As is known, these equations can be obtained as Lagrange equations of the
variational problem defined by the Lagrangian density J?dx, where dx is the
Minkowski volume element, and ££ is the real valued function defined on the
1-jets fibre bundle P{T*(Vd) by

In this way we have associated a dynamical theory to the electromagnetic field
(Hamilton equations, Poisson algebra, etc.). In particular, an important notion
to consider is the Lie algebra of the infinitesimal internal symmetries of the
field, that is, the vertical vector fields D on Γ*(K4) such that their 1-jet exten-
sion ]\D) satisfies the condition \\Ό)^ — 0, [1], In our case, this Lie algebra
is the abelian real Lie algebra defined by the infinitesimal generators Df of the
uniparametric groups τt of the automorphisms of Γ*(F4) given by

τt: ωx *-> ωx + t(df)x ,

where / runs along the algebra {/} of the real valued differentiable functions on
F 4 . In this way, at the base of the dynamical theory of electromagnetic field
we find a special real Lie algebra {/} and a natural representation / e {/} —> Df

of this algebra in the vector fields on the space T*(VA). This is the gauge algebra
in the electromagnetic field theory.

The above formulation gives a very interesting geometric insight which as is
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proved in [6] corresponds in physics to the fact that an electromagnetic field is
the radiation field generated by a moving electric particle. Precisely, an electric
particle is characterized by a variational problem defined on a fibre bundle
B = F 4 X F (which is the direct product of the Minkowski space VA with a
real vector space F) which admits the unitary group C/(l) as a subgroup of the
group of internal symmetries. The corresponding Noether invariant is called
the charge-current 3-form of the electric particle. Note that B is associated to
the principle bundle P = F 4 X £7(1), whose connections are identified precisely
with the 1-forms on F 4 on which the electromagnetic theory has been built. In
this way, one has the following natural equivalences: "electromagnetic fields"
«-> "connections" "Lagrangian of the field" <-> "function of the curvature"
"Gauge algebra" ** "sections of the adjoint fiber bundle of P", etc.

All this leads us to define the notion of gauge algebra of an arbitrary principal
bundle p: P -* V as the Lie algebra of sections of its adjoint fibre bundle L(P).
The object of this paper is now the following.

After defining a canonical action of the so defined gauge algebra on the con-
nections of the principal bundle, which locally agrees with the formulas sug-
gested by the physiciens [9], we study the relation between the notions of gauge
algebra and curvature. The following are two main results in this sense.

First, the principal bundle p: P —» E induced from p: P —> V on its fibre
bundle of connections π: E —> V by the projection π has a canonical connection
whose curvature 2-form Ω defines a special symplectic structure on E such that
the gauge algebra is identified with a certain subalgebra of the corresponding
Poisson algebra. According to this: every gauge algebra is a subalgebra of a
Poisson algebra in a cannonical way. One gets to this result adapting adequately
the idea of "pre-quantization" introduced by B. Kostant for ordinary symplectic
manifolds [4]. This result is not only interesting in itself, as it relates to ap-
parently different notions like gauge algebras and Poisson algebras, but opens-
the author thinks- the posibility of applying the ideas on "pre-quantization"
and "quantization" to the study of unitary representations of gauge algebras.

A second main result is an intrinsic characterization of a known result of
Utiyama about "admisible lagrangians" in the gauge-invariant classical field
theories [8].

Finally, we apply the obtained results to the problem of "combination" of
gauge algebras with the so-called "infinitesimal external symmetries" in classical
field theory. Remarks made in this sense can be a good starting point for a
differential-geometric approach to this interesting topic for infinite-dimensional
Lie algebras of the type of those dealt with in this paper.

Concepts and notation in this paper are the ones usually found in any text
on modern differential geometry. The reader can refer to the book by J. L.
Koszul [5]. All manifolds will be considered paracompact and connected. Dif-
ferentiability will always mean C'-differentiability, etc.

The author wishes to acknowledge his indebtedness to Professor J. Sancho
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for his valuable orientations and effective help and, above all, for his constant
and sharp criticism during the preparation of this paper.

1. The fibre bundle of connections of a principal bundle

Let p : P —> V be a principal bundle with structural group G with Lie algebra
^ . As it is known [5] that a connection on P can be defined by a splitting
σ: T —> Q of the exact sequence of vector bundles on V:

where Q is the vector bundle of G-invariant vector fields on P, L(P) is the
subbundle of Q defined by the G-invariant vector fields which are tangent to
the fibers of P, and T is the tangent bundle of V.

L(P) is a bundle of Lie algebras, where, if D, D' ε L(P)X, then [D, D'] is the
Lie bracket of D and D'. On the other hand, it is the fibre bundle associated
with P by the adjoint representation of G. It is called the adjoint bundle of P.

Thus connections of P can be identified with global sections of the affine
bundle π: E —> V defined as follows: x ε V being given, let Ex be the set of
homomorphisms σx: Tx —• Qx such that p* >σx = 1, let E = U*er Ex and let
π be the natural projection of E onto F.

Proposition 1.1. TΓ : E —> F /zαs α unique affine bundle structure such that
for every connection a on P the mapping a: Horn (Γ, L(P)) —• E defined by hx

•-• (T(X) + /zx w (2AZ ύtĵ Aze bundle isomorphism on V.
Proof. A connection σ on P being given, the above said mapping is bijec-

tive and makes the following diagram commutative:

Then the affine bundle structure of Horn (Γ, L(P)) defines, by σ, an affine
bundle structure on E which, we will see, does not depend on the connection
σ chosen. Indeed, let af be another connection. Then σf~ι σ\ Horn (Γ, L(P))
—* Horn (T, L(P)) is the affine bundle automorphism:

hx^(σ- σ'){x) + hx

which proves the desired result, q.e.d.

Let F(E) be the vertical bundle of E, i.e., the subbundle of the tangent
bundle of E defined by the vectors tangent to the fibres of E.

Corollary 1. There is a canonical vector bundle isomorphism on E between
the vertical bundle F(E) of E and the vector bundle TΓ* Horn (T, L(P)) induced
ofHom(T,L(P))byπ.



212 PEDRO L. GARCIA

Proof. hx e Horn (Γ, L(P))X being given, let Dhχ be the infinitesimal gene-
rator of the uniparametric group τt of automorphisms of the fibre Ex:

τt(σx) = σx + thx , σx € Ex .

The mapping which assigns to each (σx, hx) € TΓ* Horn (T, L(P)) the element
(PhXx <= F(E) is the desired isomorphism.

Corollary 2. E is an affine subbundle of the vector bundle Horn (Γ, Q).
Proof. A connection σ on P being given, it is enough to remark that the

isomorphism of Prop. 1.1 is the restriction to the subbundle Horn (Γ, L(P)) C
Horn (T, Q) of the affine bundle automorphism ax •-> σ(x) + ax of Horn (Γ, g ) .

Definition 1.1. The affine bundle E will be called the fibre bundle of con-
nections of the given principal bundle P.

2. Gauge algebra of a principal bundle and its natural representation
on the fibre bundle of connections

Let A be the real algebra of the real valued difϊerentiable functions on V.
Definition 2.1. The Lie >4-algebra Γ of global sections of the adjoint bundle

L(P) will be called the gauge algebra of the principal bundle P.
Examples. (1) If G is abelian, then ^ is also abelian and L(P) can be

identified with the trivial bundle V X ^ . Thus the gauge algebra is just the
abelian Lie algebra of ^-valued difϊerentiable functions on V. In particular,
if G = C/(l), then & = R and Γ = A, which is the gauge algebra in the
electromagnetic field theory.

(2) If P = V X G, then L(P) = Vχ&,soΓ can be identified with the
tensor product A (8) ̂  endowed with the Lie product:

where f,f eA and e, ^ e ^ . One has the so-called "current algebras" introduced
by M. Gell-Mann [3].

(3) The sheaf of sections of L(P) gives us a family of gauge algebras
(parametrized by the open sets of V): for every open set U c F, Γv is the
gauge algebra of the principal bundle Pπ.

Every element s of the gauge algebra Γ defines an uniparametric group τt

of the vertical automorphisms of the fibre bundle of connections E in the
natural way:

τt°χ = <*x + t[σx, s] , σxεE ,

where [a*, 5] e Horn (Γ, L(P)) is denned by

k*, s]Dx = [*,(£>*), J] .
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By the canonical isomorphism between F(E) and TΓ* Horn (Γ, L(P)) (Cor. 1,
Prop. 1.1), the infinitesimal generator Ds of τt is the vertical vector field on E:

Ds\ σx •-• [σx, s] .

Theorem 2.1. 77ιe mapping s ζ Γ >-+ Ds is a homomorphίsm of real Lie
algebras.

Proof. τt is the restriction to E d Horn (Γ, Q) of the uniparametric group
τt of the vertical automorphisms of Horn (Γ, β ) :

ϊt<*χ = ax + ί[ax, s] , axε Horn (T, Q) ,

where [α^, s] e Horn (Γ, L(P))X is defined by

>* = [ax(Dx)9s] .

Thus Z)s is the restriction to E of the infinitesimal generator Ds of tt.
Accordingly, the theorem would follow automatically if s e Γ »-> £)β were a

homomorphism of real Lie algebras. We shall see that it is the case.
Linearity is immediate. To prove the equality DίSySΊ = [Ds, Ds,] it will be

enough to prove it on functions / of Horn (Γ, Q) linear on the fibres, because
the Ds are vertical. Since for these functions (D8f)(ax) = f([ax, s]) (it follows
that, in particular, the DJ are also linear on the fibres), the following calcula-
tion proves what we want:

(DίStSΊf)(ax) = f(laX9 [s, sΊ\) = f([[ax, s], /]) - f([[ax, s'], s])

= φ,,Max,s]) - φj)([ax9 /])

= φsφs4)){ax) - φ,ΦM<*χ)

q.e d.

Theorem 2.1 gives us a representation of gauge algebras (by vector fields
on a manifold) which we shall call, in what follows, the natural representation
of the gauge algebra Γ of P on the fibre bundle of connections π: E —> V.

Local expression. If U is an open set of V with local coordinates (xt) such
that PJJ « U X G and (Dj) are the G-invariant vector fields on Pv defined by
a basis of the Lie algebra ^ in the corresponding isomorphism L(P)U « U X ^ ,
then the functions {XiAtj) on EU9 where

define a system of local coordinates on EΌ c E.
On the other hand, the gauge algebra Γu can be identified with the Av-

module of linear combinations
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s = Σ fj(Xi)Ds ,
j

endowed with the Lie product

frsΊ = Σ U fjίDitDj] = Σ trftfjDk ,

where (c^) are the structural constants of ^ . In this setting, the vector field
Ds: σx*-> [σx, s] associated to s can be calculated as follows:

[σX9s]-f- = LY-J-Y j] - M - + Σ Λih(σx)Dh, Σ h
dxt L \ dxt I J L dXi h k

- Σ ((-|k-) + Σ cikAih{σx)Ux))D3 ,

from which it follows that

(2.1) DS=Σ (-ψ- + Σ cLAίhfk)-J— .
id \ dXi fι,k / dΛij

3. A symplectic characterization of gauge algebras

by means of curvature

Let p: P —> E be the induced bundle of the principal bundle p: P -> V on
its fibre bundle of connections π: E —• V by the projection π. It is a principal
bundle with structural group G such that the canonical morphism π: P —» P
is a principal G-bundle morphism, i.e., one has the following commutative
diagram:

where π commutes with the action of G.
In this way, if one considers the exact sequence (1.1) corresponding to

p: P —> E, then π induces a morphism f:Q->Qot vector bundles, which in
turn induces a morphism of exact sequences:

0 > L(P) > Q > T > 0

Ύ Y Y

0 > L{P) • Q • T • 0
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We want to remark that L(P) can be identified with the vector bundle τr*L(P)
induced of L(P) by π, after /: L(P) —> L(P) coincides with the corresponding
canonical morphism. Thus f\L(P) is an isomorphism on each fibre.

Then the exact sequence

0 -> L(P) — g -> Γ -> 0

has a "canonical splitting" p:Q-+ L(P) defined by

Pσχφ) = px(JD) , σxe E ,

where px is the projector 1 — σx-p*, and px(fD) € L(P)a. is considered as an
element of the fibre L(P)σχ by the isomorphism /: L(P)σχ -> L(P)X which we
mentioned before.

Definition 3.1. We shall call canonical connection of the principal bundle
P the connection defined on P by the splitting p. The corresponding connection
1-form will be written θ.

This connection defines a derivation law V in the Lie module Γ(L(P)) of
sections of L(P). Thus we have an L(P)-valued differential calculus on the
manifold E. In what follows we shall use this calculus without explicitly men-
tioning the derivation law V.

Local expression. Let (XiAtj) be the system of local coordinates on EΌ C E
defined in § 2. By the identification of L(P)Eu with the induced vector bundle
π*L(P)tf, the basis (Dj) of Γ(£&)„) in §2 defines a basis of Γ(L(P)Eϋ). A
simple local calculation gives for (dF/dxi)Dj and (9Γ/3Aik)Dj the expressions:

(3.1) JLD, = Σ 4.AA , ~Dj - 0 .
αx^ h,k oAίk

Now, let 42 be the curvature 2-form of the canonical connection. It is an U n -
valued 2-form on the manifold E, whose local expression is, by (3.1),

(3.2) Ω = Σ (dAiά A dxt - 1 Σ c{k(AιhAik - AίhAlk)dxt A dxλoD, .
ij \ 2 lΛ,k )

Remark. By what was said in § 1, connections on P are identified with
global sections of the fibre bundle π: E —• V. Now one observes that the cur-
vature 2-form Ω has the following universal property: for every connection
σ:V-^E with curvature 2-form Ω° one has Ωσ = σ*Ω. In particular, one can
obtain from here a simple proof of Weil's theorem on characteristic classes [2].

Proposition 3.1. Ω is an L(P)-valued pre-symplectic metric on the manifold
E.

Proof. From the local expression (3.2) it follows immediately that Ω is
nonsingular in every point of E. q.e.d.

Ω is not closed in general. But, if one considers it as an End L(P)-valued
2-form by the rule
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it becomes closed, for then it coincides with the curvature 2-form of the de-
rivation law F, which is closed by Bianchi's identity.

In what follows, by abuse of language, we shall consider (E, Ω) as a sym-
plectic manifold. We will see that this is justified for the ordinary notions of
symplectic manifolds can be generalized to (E, Ω) in a natural way.

By means of the identification of L(P) with the induced vector bundle π*L(P),
the gauge algebra Γ of P is injected onto a v4-subalgebra of the Lie algebra
Γ(L(P)). Under these conditions we have the following.

Theorem 3.1. // s e Γ •-> Ds is the natural representation of the gauge
algebra Γ on the fibre bundle of connections π: E —•> V, then

iDsΩ = ds ,

i.e., Ds is the hamiltonian vector field of (E,Ω) corresponding to s. Γ is
characterized as the set of sections s € Γ(L(P)) with a hamiltonian vector field
Ds which is tangent to the fibres of the morphism π.

Proof. By using the local expressions derived in § 2 and § 3, one has

iDsΩ = Σ iD8(dAtJ A dxi)oD3 = Σ ΦsΛίj)dxίoDj
id id

= Σ (41- + Σ cίtA
i,j \ όXi h,k

where it is supposed that the local expression for s is s = Σifj°Dj- H s e Γ,
we have just seen that it has a hamiltonian vector field Ds tangent to the fibres
of 7r. Conversely, if s e Γ(L(P)) has a hamiltonian vector field Ds tangent to
the fibres of π, then

ds = iDsΩ = Σ iDs(dAίj A dx) oDj = Σ ΦsΛij)dxίoDj ,
id id

so s has the local expression s = Σ j fj(χi)oDj9 thus proving that s e Γ.
Corollary. The kernel of the representation s e Γ >-> Ds is the ideal Γo of

sections s € Γ such that ds = 0. ΓQ is locally isomorphic with the center of the
Lie algebra & of the structural group G. In particular, we have two extreme cases:
// G is abelian Γo is globally isomorphic with &, and if & has no center, the
representation s e Γ •-• Ds is faithful.

Proof. The first part is an immediate consequence of the theorem. Now,
if s = Σjfj°Dj o n U C V and (gj) is the basis of ^ defining the (Dj) (local
expression, § 2), then ds = 0 is equivalent, by (3.1), to the system of equations

-p- + Σ cLΛίhfk = o .
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Taking the derivative with respect to Aίh one has Σk-c{Jk = 0, from which it
follows that dfj/dXi = 0. Then s e (Γo)^ if and only if s = £ ^ ^ D ^ , where the
^ are real numbers such that Σj ck

kjλj = 0.

The mapping s = Σj λ3Dj e (Γ^u *-+ Σj ^jgj e & establishes the required
(local) isomorphism between Γo and the center of &. Now the last part of the
corollary is immediate.

4. Poisson algebra associated to a gauge algebra and prequantization

In § 3 we have seen how the gauge algebra Γ can be injected canonically
into the Lie algebra Γ(L(P)) in which the differential calculus on the symplectic
manifold (E, Ω) is valued. Moreover, Γ is injected into the /1-subalgebra Γ
of Γ(L(P)) defined by the sections s e Γ(L(P)) which have a hamiltonian vector
field. Thus we have the canonical inclusions of Lie ^4-algebras

Γ C Γ C Γ(L(P)) .

Γ c f i s always strict, and Γ C Γ(L(P)) is strict if dim G > 1.
Now on Γ we should define the notion of "Poisson bracket". We shall see

that this can be done in such a way that while preserving all the essential pro-
perties of the ordinary Poisson bracket, on Γ the new product coincides with
the old one. In particular, it follows that every gauge algebra can be considered
in a canonical way as a subalgebra of a Poisson algebra.

The method to follow will be a special adaptation of the idea of "prequantiza-
tion" introduced by B. Kostant for ordinary symplectic manifolds. In this sense,
we shall proceed as follows.

The canonical connection of p: P —> E establishes an isomorphism η: Γ(L(P))
0 Of -> Jδf (P) between the direct sum Γ(L(P)) φ 2 of the modules Γ(L(P))
of sections of L(P) and Of of vector fields on E, and the module J?(P) of G-
invariant vector fields on P, by the rule:

η(s,D) = -s+ D,

where D is the horizontal lift of D e 3), and s e Γ(L(P)) is a G-invariant vector
field on P tangent to the fibres of p.

Denoting by ]?* the canonical injection of the L(P)-valued forms on E into
the ^-valued forms on P [5] and remembering that we call θ and Ω, respec-
tively, the connection 1-form and the curvature 2-form (as a L(P)-valued 2-
form on E) of the canonical connection of P, we have the following:

Lemma 4.1. If s e Γ(L(P)) and De@, then

Lη{s>Ό)θ = p*(iDΩ - ds) .

Proof. By putting η = η(s, D) = —s + D, we shall compute the Lie de-
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rivative Lηθ = iηdθ + diηθ. Denoting, as it is usual [5], s for p*s, from iηθ
= θ(η) = 0(—s) = — s we obtain that

diηθ = - έ » = -£*£& + [0,3] .

On the other hand, by the structure equation dθ = p*Ω — [θ, θ] one has

iηdθ = iDp*Ω + is[θ, θ] = p*(iDΩ) - [θ, 5] ,

so that

Lηθ = iηdθ + diηθ = p*(iDΩ - ds) . q.e.d.

is a real Lie algebra with respect to the Lie bracket of vector fields.
This Lie product is expressed with respect to the above parametrization η as
follows.

Lemma 4.2. // st e Γ(L(P)) and Di <= 3, i = 1, 2, then

[η(s1D1),η(s2D2)] = η(DlS2 - D2sx + Ω(DX,D2) + [sl9s2], [Dl9D2]) .

Proof. Let ηt = η{SiD^ and [ηl9 η2] = ^ s , D) = 27. Of course, D = [D 1 ? D 2 ]

since D = pη = p[ηl9 η2] = [pVl, pη2] = [Z)15 Z)2].

On the other hand tfflg^, η2]) = — S. Then by the structure equation d0 =
£*β - [β, β] one has

dθ(Vl, η2) = (p*Ω)φl9 A) - Pi, ϊ2] ,

so that

Thus from S€ = —θ{ηt) and the definition of covariant derivate it follows that

^D2) + D^ 2 + [^SJ - % - [S2,ϊJ - [sl932] .

Now we have the required result by considering that the injection s •-> s pre-
serves the Lie product.

Corollary. // Lv(suDi)θ = 0, then

biis^D^φ^Dύl = ^([Ji, J2] - Ω(Pι,Dύ, [Dl9D2]) .

Proof. Obvious after Lemmas 4.1 and 4.2. q.e.d.
Now we can state the most important result in this paragraph:
Theorom 4.1. Let £f(P9 θ) and 3/? be respectively the real Lie algebras of

vector fields η € J2?(P), such that Lηθ = 0, and of hamiltonian vector fields of
iβ9θ).
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(a) One has the central extension of real Lie algebras:

0 -> Γ o -> Jδf (P, θ) -> J f -> 0

"Ό w ί/ze kernel of the natural representation s € Γ *-* Ds of the gauge
algebra Γ(Cor. of Th. 3.1), Γ o -> £?(P, 0) w Λβ injection s e Γ 0 ^ —s

, θ ) - ^ 2/f is defined by the projection p.P -^ E.
(b) 77*e mapping δ: Γ -* &(P, θ) defined by

is an isomorphism of real vector spaces.
This allows us to endow Γ with the Lie product {, } induced by the isomor-

phism δ. The real Lie algebra thus defined (Γ, {, }) will be called Poisson
algebra associated to the gauge algebra Γ. The Poisson product { , } is given by

(4.1) {s,s'} = [s,s']-Ωφt,DJ9

where Ds, Ds, are the hamiltonian vector fields corresponding to s, s' β Γ. In
particular, on Γ both products [, ] and {, } coincide.

(c) One has the commutative diagram of real Lie algebras:

o

where Γ0—*Γ is the inclusion ΓQ C Γ, and Γ —> £F is the mapping which
assigns to every s e Γ its corresponding hamiltonian vector field Ds.

Thus the Poisson algebra Γ is equivalent to the real Lie algebra J£(P, ff) as
a central extension of J f by Γo. In particular, the gauge algebra Γ is an ex-
tension, by Γo, of the hamiltonian vector fields tangent to the fibres of π: Έ -^V.

Proof, (a) If η = η(s, D) e &(P9 ff) then, by Lemma 4.1, iDΩ =• ds, from
which it follows that pη = DeJP. The mapping i f (P, θ) -+ J f is onto for, if
D € ^ , then there exists a section s € Γ(L(P)) such that iDΩ = ds, from which
we have η = η(s, D) e i f (P, 0) and pη = D. s is determined up to a section ^0

such that ds0 = 0, i.e., up to an element of Γo, thus proving the exactness of
the sequence. Mappings are obviously homomorphisms of real Lie algebras.
Last, Γ o -+ &(P, θ) is central by Cor. of Th. 3.1 and Cor. of Lemma 4.2.

(b) It is immediate that δ is a homomorphism of real vector spaces. That
δ(s) = 0 implies s = 0 is obvious also. On the other hand,;if η =t η(s,D) e
J?(P, θ) then iDΩ = ds, from which we have s € Γ and Ds = D, i.e., δ(s) = η.
Thus δ is an isomorphism.
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By the definition of {, } and Cor. of Lemma 4.2 one has

'] - Ω(DS,DS,\[DS,DS,])

= [s,s']-Ω(Ds,D8,) .

On Γ both products [, ] and {, } coincide for, if s, s' <= Γ, then Ω(DS, Ds,) = 0
because Ds, D8, are tangent to the fibres of π: E -> V.

Remark. From the preceding theorem one has immediately that if Ds, Ds,
are the hamiltonian vector fields of s, s' e Γ, then

that is, [DS,DS,] is the hamiltonian vector field corresponding to {s,s'}. In
particular, if s,s' e Γ then i[Ds,Ds,]Ω = d[s, s']. This gives us a new proof
that s e Γ —• Ds is a representation of real Lie algebras.

The Poisson algebra Γ can be now pre-quantized as in the ordinary case {4].
Let δ: Γ -> End* (L(j?)) defined by

δ(s)r = [s, r] + Dsr ,

where Ds is the hamiltonian vector field of s e Γ and r e Γ(L(P)).
Theorem 4.2. δ is α representation of the Poisson algebra Γ on the real

vector space Γ(L(P)), that is, 3{J, J7} = δ(s)-δ(s/) — dOOdO). Moreover, for
every r 6 Γ(L(P)) one has

(4.2)

Proof. The following calculus gives (4.2) :

ί(s)r = 7 ( J , D s)r = ( - 5 + ^ s ) r = [3, r] +

It follows immediately from here that δ is a representation, by observing that

Γ(L(P)) -> Γ(L(P)) is an isomorphism and that <5 is a homomorphism of real
Lie algebras by Theorem 4.1. q.e.d.

In particular, δ induces a representation of the gauge algebra Γ on the real
vector space Γ(L(P)), whose local expression is

δ(s)r = [s,r] + Σ ( Ί Γ ^ + Σ c{

where s = ΣjfjMoDP a n d r = Σj 8j(Xi^tk)°Dj on ί/ C £,



ALGEBRAS, CURVATURE AND STRUCTURE 221

5. 1-jet extension of the natural representation and

curvature, Utiyama's theorem

Let us suppose that the manifold V is orientable and endowed with an ori-
entation whose volume element is ω. A gauge-invariant field on the fibre bundle
of connection π: E —> V can be defined as a variational problem (on the 1-jet
fibre bundle J\E)) with a lagrangian density j£?ω admitting the natural repre-
sentation {Ds} of the gauge algebra Γ as a subalgebra of the algebra of in-
finitesimal internal symmetries [1], i.e., f φ^SP = 0 for every s € Γ.

A natural question is now trying to characterize the lagrangians J£? satisfying
the above said condition. Settled and solved (locally) the problem by Utiyama
[8], we want to see, in this section, its geometrical meaning from the point of
view of previously introduced notions. In this sense we shall proceed as follows.
The curvature 2-form can be interpreted as a mapping Ω: Jι(E) —• /\2 T*(V)
(x) L(P) by the rule:

ΩQlσ) = {OX .

This mapping will be called curvature mapping.
Proposition 5.1. The curvature mapping Ω : J\E) -* /\2 Γ*(F) <8> L(P) is

an epimorphism of fibre bundles on V, that is, Ω is a differentiate projection
making the following diagram commutative:

Λ2T*(V) ® L(P)

Proof. It is obvious that Ω makes the above diagram commutative. Now
taking natural local coordinates (xu Aij9 pimj) and (xu RlmJ), Km, on P(E)
and Λ2T*(V)®L(P), respectively, the mapping Ω can be written, by using
(3.2), as

*i = %ί 9 Rlmj == Pmlj — Plmj ~~ — Σ Chk(Λlh^mk ~~ ̂ mh^lk)
2 hyk

Thus Ω is difϊerentiable. Now let a point (JCJ, R°lmJ) be given in Λ2T*(V) ®
L(P), let us consider the local section σ: V -* E defined by the equations Atj

= Σm^Lι(Xm — x°m), where aJ

ml are arbitrary constants if m < I and aJ

ml = a{m

+ R°lmJ if m > I σ defines a 1-jet jι

xσ at x such that β ( y » = W, Rlmj)- T h i s

proves that Ω is an epimorphism. q.e.d.

On the other hand, s being a given element of the gauge algebra Γ, let Xs

be the vertical vector field of the vector bundle Λ2T*(V) (x)L(P) such that, for
every point (ω2)x and every function / (linear on the fibres) of Λ2T*(V) ® L(P),
one has
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where [s(x), (ω2)J is the point in Λ2T*(V)®L(P) defined by

Proposition 5.2. The mapping s ζ Γ -^> Ds is a homomorphism of Lie A-
algebras.

Proof. Let g € A and let / be a function of Λ2T*(V) ® L(P) linear on the
fibres. Then

(XgsfXω2)x = -/([(**)(*), (ω2)J) = -

This proves that s e Γ »-• Xs is ^4-linear. Now the equality Xίs,s>i = IXS, AV]
can be proved in a way analogous to the proof of Theorem 2.1. q.e.d.

In the local coordinate system (xuRlmj) in Λ2T*(V) ® L(P) considered
before, the vector field Z 5 is given by

(5.D X.= - Σ cUJRlMk-J—,

where s = ΣjfjDj-

Thus we have two new representations of the gauge algebra .Γ: the 1-jet
extension s e Γ —> fCD,) o/ ίΛβ natural representation and the representation
s ζ Γ *-+ Xs which we have just defined. The first is a representation of Γ as a
real Lie algebra, and on the other hand the second is a representation of Γ as
a Lie A -algebra. This is the essential difference between both representations.

Now Utiyama's theorem can be stated as follows.
Theorem 5.1 (Utiyama). A function ££: P(E) —> R is gauge-invariant (i.e.,

it is invariant by the real Lie algebra {jι(Ds) \ s e Γ}) if and only if

where 3?: Λ2T*(V) ® L(P) -• R is a function invariant by the Lie A-algebra
{Xs I s e Γ}, and Ω is the curvature mapping.

Proof. If s e Γ has the local expression s = Σjfj(χί)Dj> t h e n £ r o m ί 2- 1)
it follows that

i i,y d ti (i<m),j dxιoxm

where
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9V1 rk Λ J_ V rk n
j — ZJ hJ ih~W~A— * £-* chjyiv

i,hsk 0Λik l,m>h,k Vflmk

n — ^ _L v /-* A d r> —

Thus <£ is gauge-invariant if and only if J2f is a solution of the system of (local)

equations

A simple calculus proves that the most general solution of this system is a
function <g = J?(xi9 RtmJ) where & satisfies the conditions

(5.2) ιSk

c{kRlmk^~~=0'

The local coordinates (JC<5 ^4^, pijk) and fe, i? ίm^) are defined on P(E)n and
(yί2Γ*(F) (x) L(P))JJ respectively, where C/ is an arbitrary open set of V with
local coordinates (JCC) on which the fibre bundles under consideration trivialize.
This, together with the fact that Ω is a fibre bundle epimorphism, implies that
the above (local) conditions on i f are equivalent to the (global) condition

££ =• S' o Ω

where 2 : Λ2T*(V) <g) L(P) -• # is a function satisfying the (local) conditions
(5.2). But, by (5.1), this last fact is equivalent, in turn, to the fact that 2 be
invariant by the Lie ^4-algebra {Xs \ s e Γ}. Thus the theorem is proved, q.e.d.

According to this, gauge-invariant fields on the fibre bundle of connections
π: E -> V can be parametrized by functions 2 : Λ2T*(V) ® L(P) -> R invariant
by the Lie A -algebra {Xs \ s e Γ). In particular, it is easy to prove that the fol-
lowing functions are of this type: let p be an arbitrary polynomial of the Weil
algebra H(G) of G, and let F: ΛT*(V) -+ R be an arbitrary function. We define

where ~ is the canonical injection of L(P)-valued forms on V into the ^-valued
forms on P.

If V is endowed with a pseudo-riemannian metric g we can define a function
if of the above type as follows. We take as p the element of H(G) defined by
the Cartan-Killing metric on ^ . Then p(ώ2)x is a 4-form on TX(V), from which
we can obtain its scalar square with respect to the metric g, that is,

2 : (ω2) H-> g(p(ώ2)x, p(ώ2)x) .

This Lagrange function has been the almost exclusively used one, up to now,
in the physics of free gauge-invariant fields.
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6. Gauge algebras and external symmetries

To every classical field defined on a fibre bundle π: E —> V by a lagrangian
density J5?ω one can associate the extension of real Lie algebras:

(6.1) 0 > &> > a - % π{0) > 0

where Of are the τr-projectable vector fields on E such that Ljl{D)^ω = 0, 3)υ

is the ideal of vertical vector fields in 29 and π(βf) is the image of a by the
projection π. @v and π(β) are respectively called "infinitesimal internal sym-
metries" and "infinitesimal external symmetries" of the field under considera-
tion [1].

Now an important question in classical field theory arises: how to determine
all possible lagrangians such that their corresponding extension (6.1) {or part
thereof) is given in advance. The problem of Utiyama which we have dealt
with in the preceding paragraph, is a typical example of this situation. Never-
theless, in more general situations, it is not likely that such a simple solution
can be obtained. In spite of this, it seems that the following general question
is a good starting point: Suppose, as it often occurs, that Q)v is the natural
representation {Ds} of the gauge algebra Γ. What is the maximal Lie algebra
2 having @v as an ideal, and what is the corresponding Lie algebra of in-
finitesimal external symmetries! By definition, 3) is the idealizator of {Ds} in
the Lie algebra of vector fields on the fibre bundle of connections E. The fol-
lowing result gives a very simple answer to this question.

Theorem 6.1. The idealizator 2 of the natural representation {Ds} of the
gauge algebra Γ in the Lie algebra of vector fields on the fibre bundle of con-
nections π: E —» V coincides with the Lie algebra J4?π of hamiltonian π-pro-
jectable vector fields on the symplectic manifold (E, Ω). One has the extension
of real Lie algebras:

(6.2) o—>{DS}—>jeπ—>ar(y)—>o

where &(V) are all vector fields on V.
Proof. First of all, {D,} is an ideal of Jfff, for, if Ds e {D8}9 Ds, € J^π and

/ is a differentiate function on V, then one has

ϊrom which, by the remark to Theorem 4.1 and by Theorem 3.1, one gets
[Ds, Ds,] = D{S7SΊ <= {Ds}. So jeπ C a. On the other hand, it is obvious that
{D8} = ker/rl^. Now we go to prove that π(jfπ) = &(V), which implies
J^π = & and our result follows.

Let σ0: V —> E be a connection on the principal bundle P. A vector field D
on V being given, let us consider the section sD e Γ(L(P)) defined by
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sD(σx) = (σo)xDx - σxDx , σx € E .

We want to prove that sD has a hamiltonian 7r-projectable vector field D such
that πφ) = D.

Indeed, let (jtί5 Atj) be the local coordinate system on Eυ C E defined in
§ 2, and let us suppose that σQ: V —> E and D have the local expression Atj =
tufa xn) and Z> = Σ< &C*i * * * xJ3/dxt with respect to (jc<, 4^) . Then ^
has the corresponding local expression sD = Σj φό(xu Ai^)oDί, where

φj(xi9 Atj) = Σ (hj - Λtj)gt .
3

Now a simple calculation proves that the equation iDΩ = dsD has as a (unique)
solution the vector field D on E whose local expression is

D = D + Σ Γ-^- + Σ c{kAihφk
i L dX

ικAlk - AihAlk)gλ _A_ . q.e.d.
J oAij

2 Z,

In order to illustrate the way in which the above result can be employed,
let us consider the following.

Example. Let p: P —• V be the trivial principal bundle P — R2 x £/(l), and
let ω = dxλ A dx2 be the euclidean area element of R2. By Utiyama's theorem,
a classical field J£? ω on the fibre bundle of connections π: E -+ R2 oi P admits
{Ds} as internal symmetries if and only if se — S °Ω, where Ω: P(E) -»
Λ2T*(R2) is the curvature mapping and S is an arbitrary function on Λ2T*(R2).
Now the question is: what is the relation between S and the external sym-
metries π{0)*t

By Theorem 6.1, supposing that the extension corresponding to Sέω is of type

(6.3) 0 > {Ds} > $ - % π{0) > 0

we could start our discussion by considering the case of maximum symmetry:
Of = ^ f f , π{0) = S£(V). So we must find all functions if = f o f i such that,
for every D € Jf^, LjHl5)£?ω = 0, that is,

(6.4) /'(^JSf + ^ divττ(5) = 0 .

By identifying Λ2T*(R2) with Λ2 x i? by means of the area element ω, (xl9 x2, fu)
becomes a (global) coordinate system on Λ2T*(R2), f12 being the natural co-
ordinate on R, and so we can write S — 2(xx, x2, fl2). Now by imposing the in-
variance condition under π~\ZΓ), where F is the (abelian) Lie algebra of
translations of R2, one has <£ = F(f12) and (6.4) becomes
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df12

Taking D g JPK such that divτr(Z>) φ 0, one gets j? = const. fl2. This gives us
a trivial lagrangian which does define no variational problem. Thus the maximum
Lie algebra of infinitesimal symmetries must be, in this example, the set of
vector fields D on R2 such that divZ) = 0, and the corresponding lagrangian
is JSP = 2oQ with 2 = 2(f12) an arbitrary function. Now we observe that
an essential point in the above argument is that the Lie algebra of translations
F is a subalgebra of π{&). With this in mind, the rest of discussion can be
carried over without difficulties.

Let us now go back to the general case. Another important question in
classical field theory is to determine the splittings of the exact sequence (6.1).
In particular, this allows us to fix the "external Noether invariants" of the
field (energy, linear, and angular moments, etc.). In the proof of Theorem 6.1
we see how a connection σ0: V -> E on the principal bundle P determines a
splitting (of real vector spaces) D € π{0) -» D of (6.1), D being the hamiltonian
vector field corresponding to the section sD defined by the formula

(6.5) sD(σx) = (σo)xDx - σxDx , σx e E .

In general, this splitting does not preserve Lie brackets. Now an interesting
question is to characterize those connections whose corresponding splittings
preserve Lie brackets. This would give us in particular, a differential-geometric
procedure of "mixing" gauge algebras and external symmetries very close to
the physical problem. The following result gives an answer to this question.

Theorem 6.2. Let σ0: V —> E a connection on the principal bundle P with
2-form of curvature Ω, let D, D' be two vector fields on V, and let sD, sD, e Γ
be the sections defined by D, D' according to the above formula (6.5). Then

(6.6) sίDiDΊ = {sD, sD,} - Ω(D, D') .

Thus σ0 defines a splitting (of real Lie algebras) of the exact sequence (6.1) if
and only if Ω(D, D') e Γo for every pair D, Dr of infinitesimal external sym-
metries. In particular, this is true if σ0 is a flat connection.

Proof. It will be enough to compute the Poisson bracket {sD, sD,} having
in mind the local expression for the 2-form of curvature of a connection. For
the last part, it is enough to remember Theorem 4.1(c). q.e.d.

According to this, existence of splittings of (6.1) induced by connections
should, in general, influence the principal bundle P and, eventually, the split-
ting itself. Thus, for example, if the splitting is induced by a flat connection,
σ0, and the base manifold V is simply connected, then P must be isomorphic
with the trivial bundle V X G and σ0 is isomorphic with the canonical flat con-
nection on V X G [5]. Then the exact sequence (6.1) has, up to equivalences,
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a unique splitting, which coincides, in the particular cases dealt with in physics,

with the "trivial combination" of gauge algebras and external symmetries.

Simmilarity of this result and O'Raifertaigh's theorems [7] forbidding nontrivial

combinations of "internal (finite-dimensional)" and "space-time" symmetries is

well apparent. This remark could be a starting point for a differential-geometric

approach to this interesting topic for infinite dimensional Lie algebras of the

type which this paper deals with.
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