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ALMOST HERMITIAN SUBMERSIONS

BILL WATSON

0. Introduction

In this article, we examine the differential geometric properties of almost
complex Riemannian submersions between almost Hermitian manifolds (almost
Hermitian submersions). In § 2 we define the principal objects of our study
after recalling in § 1 the definitions of various almost Hermitian structures. In
§ 3 we prove one of our main theorems:

3.1. Theorem, Let f:M-^B be an almost Hermitian submersion with
M, an almost semi-Kdhler manifold. Then B is an almost semi-Kdhler manifold
if and only if the fibres Fy of f are minimal submanifolds of M.

In § 4 we prove that the horizontal distribution of an almost Hermitian sub-
mersion whose total space is Kahler is completely integrable. We thereby extend
a result of Ako [1, Th. 5.1, p. 502], who studied projectable tensor fields on
fibre spaces with almost complex structures. We collect Ako's result as Corollary
4.1.3.

The relations between the holomorphic sectional and bisectional curvatures
of the two manifolds of an almost Hermitian submersion are studied in §5 .
Surprisingly, an almost Hermitian submersion whose total space is quasi-Kahler
preserves holomorphic sectional curvature on horizonal vectors and decreases
the holomorphic bisectional curvature on pairs of horizontal vectors in con-
trast to the well-known increasing effect of Riemannian submersions on the
Riemannian sectional curvature. § 6 extends the results on Betti numbers in
[19] to inequalities on the numbers buo and b0Λ of linearly independent harmonic
1-forms of bidegrees (1, 0) and (0, 1) respectively. In particular, we find

6.5. Theorem. Let M and B be compact almost semi-Kdhler manifolds.
If there exists an almost Hermitian submersion ƒ: M —> B, then

*i,oCB) < *i,o(Aί) , bQtl(B) < bOΛ(M) .

Finally in § 7 we show that almost quaternionic submersions between q-
quasi-Kahler manifolds are locally product mappings.
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announced class of para-Kahler manifolds actually coincides with the known
class of quasi-Kahler manifolds.
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1. Almost Hermitian structures and submanifolds

An almost complex structure on a smooth manifold M is a smooth tensor
field J of type (1,1) such that P = —identity. An almost complex manifold
is such a manifold with a chosen almost complex structure. An almost complex
manifold is necessarily orientable and must have an even dimension. An al-
most Hermitian manifold is an almost complex manifold (M, J) with a chosen
Riemannian structure g which satisfies

g(X,Y) = g(JX,JY)

for all X, Y e S(M), the Lie algebra of smooth vector fields on M. All mani-
folds considered in this article are smooth, connected, complete Riemannian
manifolds. Additional structures will be fully described when they are invoked.

The Kdhler form of an almost Hermitian manifold (M, g, /) is the smooth
differential 2-form of bidegree (1,1) given by

Φ(X,Y) = g(X,JY),

for all X, Y e Q){M). The Levi-Civita connection F of the almost Hermitian
manifold M can be extended to the full tensor algebra on M, and in this manner
we have tensor fields such as FXJ, etc. In fact,

FXJ(Y) = FX(JY) - WXY ,

dΦ(X, Y,Z) = FXΦ(Y,Z) + FYΦ(Z,X) + FZΦ(X, Y) ,
m

δΦ(X) = -Σ {FEtΦ(E{,X) + PJXtΦ{JEt,X)} ,
ί = l

where {Eλ, • • •, Em, JEλ, • • •, JEm} is a local basis for S(C/) on an open subset
U of (M2m,g,J).

The Nijenhuis tensor of the almost complex structure J is the tensor field
N of type (1,2) given by

N(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY] .

A well-known theorem of Newlander-Nirenberg states that / is the almost
complex structure associated to a complex manifold structure on M if and only
if the Nijenhuis tensor of / vanishes, in which case we say that J is integrable.
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We recall the definitions of some of the well-known classes of almost 
Hermitian manifolds [7], [14]. Let d& denote the class of almost Hermitian 
manifolds. Then (M, g, J) E d& is said to be : 

(a) Kahler ( X )  if VxJ  = 0, 
(b) almost Kahler ( d X )  if d@ = 0, 
(c) almost Tachibana ( d Y )  if V,J(X) = 0, 
(d) quasi-Kahler ( 2 X )  if dO(2J )  = dO(1$2' = 0, 
(e) almost semi-Kahler (dolYX) if 6@ = 0, 
(f) Hermitian (2) if N = 0, 
(g) semi-Kahler ( Y Z )  if 6O = 0 and N = 0. 
Remark. The geometry of almost Tachibana spaces have been extensively 

examined in [lo] where they are called nearly Kahler spaces. Wolf and Gray 
[22] studied the almost Hermitian structures on certain homogeneous spaces. 
Examples of each class may be found in [8]. Finally, we note that it is easy 
to show that X = d X  fl d Y  = 2X fl &. 

These classes of almost Hermitian manifolds are related by the following 
lattice in which each inclusion is strict : 

Almost complex Complex 

Fig. 1. Lattice of almost Hermitian structures 

A manifold mapping f : (M, J) + (N, J') is said to be almost complex if 
it commutes with the almost complex structures ; that is, if f,J = J'f,. An 
almost complex mapping between complex manifolds is said to be holomorphic. 
Almost complex mappings preserve the bidegree of differential forms. 

Let S be an immersed submanifold of a Riemannian manifold M, and give S 
the inherited Riemannian structure from M. Let 9(S) denote the Lie algebra 
of smooth vector fields on M, restricted to the submanifold S. Let 9(S) be the 
subspace of vector fields tangent to S, and 9(S)' the vector fields orthogonal 
to S. Then we have a direct sum decomposition : g(S) = Q(S) @ 9(S)I .  We 
denote the tensors associated to the submanifold S by a caret *. For instance, 
V denotes the Riemannian connection of M acting on g(S), while P is the 
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Riemannian connection for @(S) arising from the induced Riemannian structure
on S.

The configuration tensor [7] of the immersion of the submanifold S is the
tensor T: 2[S) X 9(S) -> @(S) given by

(1) †XY = VXY - VXY, when X,Y e $(S),

(2) †XZ = π(FxZ), when X <= @{S), Z e 2(S)L, and π: 9(S) -> ®(S) is
the orthogonal projection mapping.

We collect a few important properties of the configuration tensor T in
1.1. Proposition. Let S be an immersed submanifold of the Riemannian

manifold M. For X,Y e @(S), we have
( i ) †x reverses the subspaces @(S) and ^(S)L,

(ii) †ZY = TYX9

(iii) Tx is a skew-symmetric linear operator`,
(iv) π(R(X, Y)) = R(X, Y) - [Tz, Tγ], (Gauss equation).
Proof. [7].
The mean curvature vector field of the submanifold Sn of the Riemannian

manifold Mm is defined by

H = Σ
i = l

where {E19 • • •,ETO} is a local orthonormal basis for <3(S). S is said to be a
minimal submanifold of M if # = 0, and a totally geodesic submanifold of M
if Γ = 0. Obviously, totally geodesic submanifolds are minimal.

An almost Hermitian manifold S immersed in an almost Hermitian manifold
M is called an almost Hermitian submanifold of M if the almost complex
structure / on S is identical to the restriction of the almost complex structure
ƒ of M. When there is no danger of confusion, we shall denote both almost
complex structures by /.

We collect from Gray [7] the results on almost Hermitian submanifolds
which we shall need in the sequel.

1.2. Proposition. Let S be an almost Hermitian submanifold of an almost
Hermitian manifold M. If

M is

(a) quasi-Kdhler,
(b) almost Kahler,
(c) almost Tachibana, then S is
(d) Kahler,
(e) Hermitian,

(a) quasi-Kdhler,
(b) almost Kdhler,
(c) almost Tachibana,
(ά) Kdhler,
(e) Hermitian.

1.3. Proposition. Let S be an almost Hermitian submanifold of the quasi-
Kdhler manifold M. Then, for all X,Y e 2(S),

TZY + TJXJY = 0 .

In addition to the classical coderivative δΦ of the Kahler form Φ on the
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ambient almost Hermitian manifold M, it is possible to define another tensor,
called the partial coderivaίive of Φ with respect to the almost Hermitian sub-
manifold S, and denoted δΦ. Letting {E19 • • -,En,JE^ • • -,JEn} be a local
/-basis for ^(5), Gray defined δΦ(X) for any X e 9(S) via

δΦ(X) = -ΣWEM^X) + VJEίΦ(JEuX)} ,
ί lί =

and then was able to show
1.4. Theorem. Let S be an almost Hermitian submanifold of an almost

Hermitian manifold M. Then S is a minimal submanifold of M if and only if
δΦ(Z) = 0 for all Z <= ®(S)±.

A consequence of this theorem and Proposition 1.3 is
1.5. Theorem. Every almost Hermitian submanifold of a quasi-Kάhler

manifold is minimally immersed.

2. Almost Hermitian submersions

Almost Hermitian submersions are a natural generalization of almost complex
product projection mappings and almost complex covering mappings. We
propose to present in this section a globally invariant formulation of some of
the properties of these interesting mappings.

Let (M2m,g,J) and (B2n,h,J') be almost Hermitian manifolds. A smooth
surjective mapping f:M-+Bis called a Riemannίan submersion [15] if:

(1) ƒ has maximal rank, and

(2) ƒ*l(Ker/*)1 is a linear isometry.
We say that ƒ is an almost Hermitian submersion if ƒ is a Riemannian sub-

mersion which, additionally, is:
(3) an almost complex mapping.

Vectors on M which are in the kernel of ƒ* are tangent to the fibres (Fy =
f~\y),y £ B) and are called vertical vectors. Vectors which are orthogonal to
the vertical distribution are said to be horizontal. We denote the vertical and
horizontal distributions in the tangent bundle of the total space M by V(M)
and H(M), respectively. Then T(M) enjoys an orthogonal decomposition:
T{M) = V(M) (B H(M). The orthogonal projection mappings are denoted
Ψ`: T(M) -> V(M) and Jf : T(M) -> H(M) respectively. Since the fibres of a
Riemannian submersion are closed, regularly embedded submanifolds [21] of
the complete manifold M, the vertical distribution is completely integrable. In
general, the horizontal distribution H(M) is not completely integrable. Finally,
we remark that the assumption of completeness for M assures that f:M->B
is a locally trivial Riemannian fibre space [11].

2.1. Proposition. Let f:M-+B be an almost Hermitian submersion.
Then the horizontal and vertical distributions determined by f are J-invariant,
i.e., J{V(M)} = V(M) and J{H(M)} = H(M).
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Proof. Let W e V(M). Since ƒ is almost complex, JW is vertical. Now let
X β H(M), and let W be an arbitrary vertical vector. Then g(JX, W) =
-g(X, ZWO = 0 and therefore / Z e H(M).

2.2. Proposition. Lei f:M-+B be an almost Hermitίan submersion.
Then the fibres † are almost complexly embedded closed submanifolds of M
of dimension 2(m — n).

Proof. With the inherited almost complex structure from M, a fibre Fy is
almost complexly embedded because the vertical distribution is /-invariant and
completely integrable.

When discussing almost Hermitian submanifolds, we denote tensors and
operators on the fibre submanifolds (resp. the base manifold) by a caret Λ

(resp. an apostrophe ') . For instance, V, V, V denote the Levi-Civita connec-
tions on M, Fy, and B respectively.

A smooth vector field X on M is basic for the almost Hermitian submersion
ƒ: M -> B if

(1) X is horizontal, and
(2) X is ƒ-related to a vector field on B, which depends on X and is denoted

Notice that "basic" does not refer to any basis. There is a one-to-one rela-
tionship between basic vector fields on M and vectors fields on B.

2.3. Proposition. Let f: M —• B be an almost Hermitian submersion, and
let X and Y be basic vector fields on M. Then

(a) g(X,Y) = h(X*,Y*)of,
(b) JX is the basic vector field associated to ]'X%,
(c) ž?VXY is the basic vector field associated to V'XY*,
(d) J f [X, Y] is the basic vector field associated to [X*, Y*\.
Proof. We show (b). Assertions (a), (c), and (d) are properties of a

Riemannian submersion [15]. We know that JX is horizontal from Proposition
2.1. Since the map ƒ is almost complex, VX* is ƒ-related to JX.

We now want to examine the influence of a given structure defined on the
total space M (e.g., almost Kahler) on the determination of the corresponding
structure on the fibre submanifolds and the base manifold. We shall see for
most cases that a given property on M is induced onto Fy and onto B by ƒ.

2.4. Theorem. Let f: M —> B be an almost Hermitian submersion. If

M is

(a) quasi-Kdhler,
(b) almost Kahler,
(c) almost Tachibana, then Fy is
(d) Kahler,
(e) Hermitian,

(a) quasi-Kdhler,
(b) almost Kahler,
(c) almost Tachibana,
(d) Kahler,
(e) Hermitian.

Proof. See Proposition 1.2.
2.5. Theorem. Let f: M -» B be an almost Hermitίan submersion. If



ALMOST HERMITIAN SUBMERSIONS 153

M IS

(a) quasi-Kdhler,
(b) almost Kdhler,
(c) almost Tachibana, then B is
(d) Kdhler,
(e) Hermitian,

(a) quasi-Kahler,
(b) almost Kdhler,
(c) almost Tachibana,
(d) JK3ftter,
(e) Hermitian.

Proof. We first claim that Φ = ƒ*Φ' on basic vector fields. If X and Y are
basic vector fields on M, and X* and Y* are their associated vector fields on
B, then

Φ(x, Y) = g(x, JY) = M * * , ƒ'r*) o ƒ - ƒ*Φ'(z, Y) .

Since ƒ* commutes with d on differential forms, we also see that dΦ = f*{d'Φ').
We begin the proof of Theorem 2.5 with assertion (b). If M is almost

Kahler, then clearly ]*dfΦf = 0. But ƒ* is a linear isometry because ƒ is a
Riemannian submersion. So d'Φ' = 0 and therefore B is almost Kahler. To
establish assertion (a), it is now sufficient to remark that ƒ* preserves the
bidegree of differential forms.

Suppose that M is almost Tachibana. It is easy to see that the basic vector
field associated to VXJ(X*) for any vector field X* on B is jfFxJ(X) which
vanishes on M. Thus (c) is shown. Similarly, the basic vector field on M associ-
ated to the Nijenhuis tensor N'(X*, Y*) on B is JfN(X, Y). Therefore, when
M is Hermitian, B is Hermitian. Finally, assertion (d) follows from (b) and (e).

In view of Theorems 2.4 and 2.5, an almost Hermitian submersion f:M-^B
for which both M and B are members of the class @> in the lattice of almost
Hermitian structures in Fig. 1 is called a ^-submersion. For instance, if M is
Kahler, then ƒ is a Kahler submersion.

Remark. A natural candidate for an almost Hermitian submersion is found
in the construction of the only known class of almost Kahler (but not Kahler)
manifolds. Tachibana and Okumura [17] and Yano and Ishihara [23] showed
that the tangent bundle T(M) of a Riemannian manifolds M admits almost
Kahler structures which are Kahler if and only if the manifold M is locally
flat. Bhatia and Prakash [2] constructed essentially the same structure on
the cotangent bundle T*(M) of the Riemannian manifold M and the same
integrability theorem obtained. Now it is also known from the work of Gray
[9], Dombrowski [3], and Sasaki [16] that the canonical bundle projection
π: T(M) —> M is a Riemannian submersion for certain choices of a Riemannian
structure on T(M). Therefore in the case when M is almost Hermitian one may
conjecture that π: T(M) —> M (or π: Γ*(M) —> M) is an almost Hermitian
submersion and thus an almost Kahler submersion. Unfortunately, no matter
how we combine the almost complex structures and Riemannian structures
cited above, π: T(M) —> M fails to be an almost Hermitian submersion (when
M is nonflat, of course) either because (a) π is not an almost complex map-
ping with respect to the two almost complex structures, or (b) π is not a
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Riemannian submersion with respect to the Riemannian structure which makes
T{M) into an almost Kahler space.

We turn now to an examination of the influence of the almost complex nature
of the mapping ƒ on its configuration tensors. Let E and F be arbitrary vector
fields on M. The O'Neill configuration tensors [15] of the Riemannian sub-
mersion ƒ: M —» B are given by:

TEF = œvrErF + rvrE^F , ΛEF = rv^E^F + œv^rF .
The properties of T and A are well-known, contained in O'Neill's original

paper, and included here only for completeness.
2.6. Proposition. Let f: M -+ B be a Riemannian submersion. Then
(a) at any point p € M, the linear operators TE andAE are skew-symmetric,
(b) TE{H{M)} C 7(Λf) ami Γ^{F(M)} C H{M),
(c) ,4*{#(M)} c F(M) and AE{V{M)} c fl(Λί),
(d) T w vertical and A is horizontal, i.e., TE = TirE and AE — A#E,
(e) TVW = TWV for all vertical vectors V and W,
(f) AXΎ = —AYX for all horizontal vectors X and Y.
2.7. Proposition. Let f: M —> B be a Riemannian submersion. Then
(a) for all V, W € V{M), TVW is the configuration tensor †VW of the im-

mersed fibre submanίfolds,
(b) A vanishes if and only if the horizontal distribution is completely

integrable,
(c) TVW = 0 for all V,W € V{M) if and only if TVV = 0 for all V e V{M),
(d) Ty{H{M)} = 0 for all vertical V if and only if Ty{V{M)} = 0 for all

vertical V if and only if T vanishes identically,
(e) AX{H{M)} = 0 for all horizontal X if and only if AX{V{M)} = 0 for

all horizontal X if and only if A vanishes identically.
Proof. Assertions (c), (d) and (e) were not in O'Neill's paper, but are

simple exercises due to the skew-symmetry of T and A.
2.8. Proposition. Let f: M —> B be a Riemannian submersion, let V and

W be vertical vector fields, and let X and Y be horizontal vector fields. Then
(a) VyW = TyW + VyW, (b) VyX = TyX + 2FVyX,
(c) AXV = J f VVX, whenever X is basic,
(d) VXV = AXV + rVxV, (e) FXY = AXY + 3fFxY.
Now we can begin to examine how the almost Hermitian structure on M

places restrictions on T and A.
2.9. Theorem. Let f:M^B be a quasί-Kdhler submersion, V and W

vertical vectors, and X and Y horizontal vectors. Then
(a) TyJW = TjyW, (b) TjyX = ~JTyX,
(c) AXJX = 0, (d) AXJY = -AYJX.
Proof. Assertion (a) follows from the similar result on the configuration

tensor of the immersed fibre submanifolds. To see (b), note that

g{TjyX, W) = ~g{TjyW,X) = ~g{TyJW,X) = ~g{JTyX, W) .
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Then the nondegeneracy of g implies TJVX = —JTVX. For a manifold which
is quasi-Kahler, we have

FXJX - VJXX = JFXX + JVJXJX .

Using the vertical part of this equation we find

ΛXJX - AJXX = JAXX + JAJXJX = 0 .

Therefore AXJX = 0.

Assertion (d) follows from (c) by the standard polarization trick.
2.10. Theorem. Let f:M-^B be an almost Tachibana submersion.

Then, for all vertical vectors V and W,
(a) TVJW = JTVW,
(b) TjyW = JTyW,
(c) TyJX = JTVX, for all horizontal X.
Proof. Using the same polarization trick as before, for (a) and (b) it will

be sufficient to show that TVJV = JTVV. By direct calculation we have

TyJV = VyJV - FyJV

= Vy{J){V) + JVyV - Fy(J)(V) ~ JPyV

= J{FyV ~ VyV) = JTyV .

Assertion (c) is an easy calculation.
2.11. Theorem. Let f: M —> B be a Kdhler submersion. If V is a vertical

vector field and E is any vector field, then

TyJE = JTyE.

Proof. Obvious.

3. Almost semi-Kahler submersions

As is seen in Proposition 2.4 and Theorem 2.5, the almost Hermitian struc-
ture on M (e.g., quasi-Kahler) completely determines that structure on the
fibres and the base manifold of the almost Hermitian submersion ƒ: M —> B,
provided that the structure on M is at least quasi-Kahler. This transference is
related to the fact that all almost complex submanifolds of quasi-Kahler mani-
folds are minimally immersed. It is not known, in general, whether the same
property of minimal submanifolds holds for almost semi-Kahler spaces, although
it most probably does not. (If an almost complex submanifold of an almost
semi-Kahler manifold has codimension 2, then it is minimal). The transition
from quasi-Kahler to almost semi-Kahler is a critical juncture in the lattice of
almost Hermitian structures (see Fig. 1) as we see when we require the in-
tegrability of the almost complex structure. Quasi-Kahler goes to Kahler while
almost semi-Kahler goes to semi-Kahler, a class different from the class of
Kahler manifolds. The interrelation between the minimality of all almost complex
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submanifolds, the complexification to a Kahler space, and the transference of
the almost Hermitian structure on the total space of the almost Hermitian sub-
mersion to the base manifold is evident in the main theorem of this section,
an analogue of Theorem 2.5 for the case when M is almost semi-Kahler.

3.1. Theorem. Let f: M 2 m —> B2n be an almost Hermitian submersion with
M, an almost semi-Kahler manifold. Then B is almost semi-Kahler if and only
if the fibres Fy of f are minimal submanifolds of M.

Proof. We show that the partial coderivative of the Kahler form of M
with respect to Fy acting on a basic vector field X is equal to the negative of
the codifϊerential of the Kahler form of the base manifold B acting on the
associated ƒ-related vector field X*. That is, we show δΦ(X) = — δ'Φ'{X*).

Let {E19 • • •, Em_n, JE19 • • •, JEm_n, F19 • • •, Fn, JF19 • • •, JFn) be a local J-

basis for the smooth vector fields on M whose horizontal vector fields are basic
(the word "basic" is used in two senses). Then

0 = δΦ{X) = δΦ(X) - Σ FFiΦ(Ft9X) + VJFiΦ{JFuX) .
ί = l

Consider the first term in the summation:

FFiΦ(FuX) = g(F^(JFt),X) - g(JVFiFuX)

= g{M>VFi(JFd,X) - g(^(JF^F,),X)

= h(FFiXJ‰)9X*)of- KJ'(rFtJFi.)9XJoƒ

= F;,Φ‰I*)•

Similarly,

FJFiΦ(JFi9X) = F'j,FimΦV‰,X*) •

Therefore

0 = δΦ{X) + δ'Φ'(X*) .

The theorem then follows immediately from Theorem 1.4.
3.1.1. Corollary. Let M be semi-Kahler, and f:M—>Ban almost Her-

mitian submersion. Then B is semi-Kahler if and only if the fibres of f are
minimally immersed.

Proof. Combine Theorems 2.5(e) and 3.1.
Eells & Sampson [4] studied harmonic maps f:M—>N between complete

Riemannian manifolds. A map ƒ is said to be harmonic if it minimizes a certain
energy integral, or, equivalently, if it is in the kernel of a generalized Laplacian
operator defined by them. For instance, an immersion is harmonic if and only
if it is minimal. A Riemannian submersion is harmonic if and only if its fibres
are minimally immersed. Eells & Sampson, using the curvature content of the
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Laplacian operator, were able to prove several results which restrict the ex-
istence of harmonic mappings based of the Riemannian curvatures or Ricci
curvatures of M and N. These results obviously apply to almost Hermitian
submersions as we formulate in

3.1.2. Corollary. Let M be an almost semi-Kdhler manifold, and ƒ: M
—> B an almost Hermitian submersion. Then B is almost semi-Kdhler if and
only if f is harmonic.

Remark. Eells and Sampson also proved a smoothness theorem for harmonic
mappings. In particular, C3 harmonic maps are C°°. All of §§ 2 and 3 can be
stated in terms of C3 mappings, so that we see that C3 almost semi-Kahler
submersions are smooth.

Theorem 3.1 allows us to say a great deal about the submanifolds of the two
manifolds of an almost Hermitian submersion for which both of the manifolds
M and B are almost semi-Kahler. In fact, we gain information about the
Riemannian submanifolds of M and B without requiring that they have even
dimension or be almost complexly immersed. In his thesis, Escobales proved

3.2. Theorem. Let f:M-+B be a Riemannian submersion with minimal
fibres. Then a submanifold N of the base space B is minimal in B if and only
if f~\N) is minimal in M.

Proof. [5].
Thus we have
3.3. Theorem. Let f:M-^B be an almost semi-Kdhler submersion.

Then a Riemannian {although not necessarily almost Hermitian) submanifold
N of B is minimally immersed in B if and only if its lift f~\N) is minimally
immersed in M.

4. Kahler submersions

Since all holomorphically immersed submanifolds of Kahler (in fact, quasi-
Kahler) manifolds are minimal, it is obvious that the fibres of a Kahler sub-
mersion are minimal. Moreover, we shall see that the horizontal distribution
of a Kahler submersion is completely integrable. This obviously places severe
restrictions on the existence of Kahler submersions.

4.1. Theorem. The horizontal distribution of a Kahler submersion is
completely integrable.

Proof. Let ƒ: M —> B be a Kahler submersion, X a basic horizontal vector
field on M, Y horizontal and V vertical. Then

g(AjZY, V) = g(AxJY, V) = ~g(JY,

= g(Y,jPFyJX) = g(Y,AJXV) = -g(AJXY, V) .

Therefore AJXY = 0. By Proposition 2.8(c), the horizontal integrability tensor
A vanishes.
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A smooth mapping f:M-+N between smooth Riemannian manifolds is said
to be totally geodesic if ƒ* preserves parallel translation. Vilms [18] classified
totally geodesic Riemannian submersions and showed that a Riemannian sub-
mersion ƒ: M —> B is totally geodesic if and only if both configuration tensors
T and A vanish. He also proved that a Riemannian submersion from a complete
manifold M is totally geodesic if and only if it is a fibre bundle with flat con-
nection and with the group of isometries of a fibre as structural group.

4•l•l• Corollary, A Kahler submersion with totally geodesic fibres is a
totally geodesic mapping.

4.1.2. Corollary. Let f:M-+B be a Kahler submersion with totally
geodesic fibres. Then f is a smooth fibre bundle with fiat connection, and M
is a locally product manifold.

Proof. [18, Cor. 3.6, p. 79].
4.1.3. Corollary. Let M be a simply connected Kahler manifold, and

f:M-+Ba Kahler submersion with totally geodesic fibres. Then M is a Kahler
product space, and f is a holomorphic product projection mapping.

5. Curvature relations

A Riemannian submersion ƒ: M —• B is Riemannian sectional curvature in-
creasing on horizontal 2-planes [15]. Similarly, we have found that an
almost Hermitian submersion is holomorphic sectional curvature increasing on
horizontal holomorphic 2-planes (a holomorphic 2-plane is determined by the
orthogonal nonzero vectors X and JX).

It seems surprising, however, that a quasi-Kahler submersion ƒ: M—>B pre-
serves the holomorphic sectional curvature on horizontal vectors, and, more-
over, is holomorphic bisectional curvature decreasing on pairs of nonzero
horizontal vectors. Restricting further to Kahler submersions, we find that such
a submersion is holomorphic bisectional curvature preserving on pairs of
horizontal vectors. This is a reflection of the complete integrability of the
horizontal distribution, which was demonstrated in § 4.

After stating the well-known properties of the Riemannian sectional curva-
ture K for Riemannian submersions, we study the holomorphic sectional and
bisectional curvatures for the almost Hermitian submersion f: M —» B. Even
when a horizontal vector field X is not basic, we shall denote the vector field
f*X on B by X*.

5.1. Proposition. Let f: M —> B be a Riemannian submersion. If X and
Y are horizontal vectors, and V and W are vertical vectors, then

( i ) K(V AW) = K(VΛW) - {g(TvV,TwW) - \\TVW\\*}/\\V ΛW\\2 ,

(ii) K(X AV) = \\X\r\\V\r{g((FxT)vV,X) + \\AZV\\* - ||ΓFX||2} ,

(iii) K(X AY) = K'(X* Λ Γ J - 3 \\AXY\\2/\\X A Y\\2 .
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Proof. See [15].
Let (M, g, J) be an almost Hermitian manifold. The holomorphic bίsectional

curvature [6] is defined for any pair of nonzero vectors E and F on M via

B(E,F) = \\E\\-2\\F\\-2g(R(E,JE)F,JF) .

The holomorphic sectional curvature [7] assigns to the nonzero vector E the
value

H(E) = £(£, E) .

Thus H(E) is the sectional curvature of the 2-plane spanned by the othogonal

vectors E and JE.
5.2. Theorem. Let f: M —> B be an almost Hermitian submersion. Let

X and Y be horizontal, and V and W vertical. Then the holomorphic bisec-
tional curvatures satisfy

( i ) B{V, W) = B{V, W) + \\V\r II W\\-*{g(TyJW, TJrW)

- g{TyW, TjyJW)} ,

(ii) B{X, V) = \\X\\-2\\V\\-2{g((FvA)xJX, JV) - g(AxJV,AJXV)

+ g{AxV,AJXJV) - g((FJVA)xJX, V)

+ g(TjyX, TyJX) - g(TyX, TjyJX)} ,

(iii) B{X, Y) = B ' ‰ Y*) - ||X||-2 II Y\\-2{2g(AxJX, AYJY)

- g(AJXY,AχJY) - g{AγX,AJXJY)} .

Proof, (i) is just the Gauss equation for the fibre submanifolds. Relations
(ii) and (iii) follow from certain equations of O'Neill concerning the covariant
derivatives of the T and A tensors for a Riemannian submersion. Specifically,
(ii) follows from equation (2') and (iii) from equation (4) of [15].

5.3. Theorem. If f: M —* B is a quasi-Kahler submersion, then

( i ) B(V,W) = B(V,W) + IIFIHI**ΊHll2Yƒ^H2 + \\TyW\f) ,

(ii) B{X, V) = \\X\\-* || VV{g{{VrA)xJX, JV) - g{AxJV, AJXV)

+ g{AxV,AJXJV) - g{{VJrA)xJX, V)

- 2g{TyX, TjyJX)} ,

(iii) B{X, Y) = B ‰ r*) + ιι*iHiru-2{[|^/rιι2 + \\AXY\\*} .

Proof. A simple substitution of the various properties of the T and A
tensors with respect to / for the quasi-Kahler case as found in Theorem 2.9.

5.3.1. Corollary. If f: M —• B is a quasi-Kahler submersion, then, for
all vertical vectors V and W,
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B(V, W) > B(V, W) ,

and equality holds if and only if the fibres of f are totally geodesic submanίfolds
of M.

5.3.2. Corollary. If f:M->B is a quasi-Kdhler submersion, then, for all
horizontal vectors X and Y,

B(X, Y) > B\X„ y # ) ,

and equality holds if and only if the horizontal distribution is completely
integrable.

5.4. Theorem. If f: M —> B is an almost Tachibana submersion, then

(i) B(V, W) = B(V, W) + 2\\ V\\~2 \\W\\-21| TVW\\2 ,

(ii) B(X, V) = ll^ll"2 II V\r{g((FvA)xJX, JV) - g(AxJV, AJXV)

+ g(AxV,AJXJV) - g((VJVA)xJX, V)

+ 2\\TVX\\2}.

Proof. Assertion (i) is obvious from Theorems 2.lO(a) and 5.3(i), and as-
sertion (ii) follows from Theorems 2.lO(c) and 5.3(iii).

5.5. Theorem. If f: M —> B is a Kdhler submersion, then

(i) B(X,V) = 2\\X\\-*\\V\\-*\\TyX\f ,

(ii) B(X, Y) = B'(X*> Y*) .

Proof. An immediate consequence of the previous theorem and Theorem
4.1.

5.5.1. Corollary. If M is a Kdhler manifold of constant holomorphic
bisectional curvature b, and f:M—*B is a Kdhler submersion, then B is a
Kdhler manifold of constant holomorphic bisectional curvature b.

5.5.2. Corollary. For Kdhler submersions,

B(X, V)>O.

5.5.3. Corollary. If M is a Kdhler manifold with strictly negative holo-
morphic bisectional curvature, then there do not exist any Kdhler submersions
f:M->B.

5.5.4. Corollary. If M is a Kdhler manifold with nonpositive holomorphic
bisectional curvature, and f:M—>Bisa Kdhler submersion, then f is a totally
geodesic mapping, and M is a locally product mapping.

Proof. B(E, F) < 0 implies B(X, V) = 0 for all horizontal X and all vertical
V. Therefore TVX = 0. Thus T vanishes by Proposition 2.7(d), and Corollary
4.1.1 applies.

5.5.5. Corollary. The only Kdhler submersions from a simply connected
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Kdhler manifold M of nonposίtίve holomorphίc bisectional curvature are holo-
morphic product projection mappings.

We now adapt Theorems 5.2 through 5.5 to the holomorphic sectional
curvature tensor.

5.6. Theorem. Let f: M —> B be an almost Hermitian submersion, X a
horizontal vector, and V a vertical vector. Then

(i) H(V) = H(V) + | |F||-4{||7Y7F||2 - g(TvV, TJVJV)} ,

(ii) H(X) = H'(XJ - 3\\X\r\\AxJX\\2 .

Proof. The equations follow immediately from Theorem 5.2.
5.6.1. Corollary. For an almost Hermitian submersion f:M^B,

H(X) < H'(XJ .

5.7. Theorem. If f: M —> B is a quasi-Kάhler submersion, then

(i) H{V) = H(V) + | |F | |- 4 { | |T F F| | 2 + | |TF/F| | 2} ,

(ii) H(X) = H'(XJ .

Proof, (i) is an easy calculation due to the known properties of the T
tensor for quasi-Kahler spaces. Assertion (ii) follows from Theorem 2.9(c).

5.7.1. Corollary. In the case of a quasi-Kάhler submersion,

H(V) > H(V) ,

and equality holds if and only if the fibres of f are totally geodesic.
Proof. The second assertion follows from Theorem 2.7(c).
5.7.2. Corollary. A quasi-Kahler submersion preserves the holomorphic

sectional curvature on horizontal holomorphic 2-planes.
5.7.3. Corollary. Let f:M->B be a quasi-Kahler submersion, and

suppose that M is of constant holomorphic sectional curvature c. Then B is a
quasi-Kahler manifold of constant holomorphic sectional curvature c.

5.8. Theorem. Let f:M^>Bbean almost Tachibana submersion. Then

H(V) = H(V) + 2\\V\r\\TyV\\2 .

Proof. Use Theorem 2.lO(a.)

6. Cohomology

In [19], the author announced the following theorem which motivated this
study of almost Hermitian submersions.

6.1. Theorem. Let f:M—>B be a Rίemannian submersion between
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compact complete Rίemannian manifolds. If the fibres of f are minimal sub-
manifolds of M, then

b,{B) < b,(M) .

Upon applying Theorem 3.1 we immediately obtain
6.2. Theorem. Let f:M—>B be an almost Hermitian submersion be-

tween compact almost semi-Kdhler manifolds. Then

K{B) < b,{M) .

Although Theorem 6.2 does give us necessary conditions for the existence
of an almost Hermitian submersion with only slight restrictions on the metric
structures of the manifolds, it does not provide results of the type known for
certain compact Kahler manifolds concerning bpq, the number of linearly in-
dependent harmonic forms of bidegree (p, q). For instance, it is a classic result
of Hodge theory that if M is a compact Kahler manifold of constant positive
holomorphic sectional curvature, then Z?M = Z?M = • • • = bm%m = 1, and all
the other bVΛ are 0.

The bidegree grading of the differential forms on an almost complex mani-
fold has not been extensively documented, so we include a brief introduction
here for completeness. Following Koszul [13], we decompose the complexified
smooth vector fields on an almost complex manifold (M 2 m, ƒ) as

S(M) <g> C = 2J(MY Θ Q)(MY ,

where $(M)+ = {X\JX = iX) and ®(M)- = {X\JX = -iX). Let Ar(M)
denote the complex differential r-forms on M. A differential form a e Ap+q(M)
is said to be of bidegree (p, q) whenever more than p of the Xt being in Q}(M)~
or more than q of the Xt being in ^ ( M ) + force a(Xλ, - —9Xp+q) = 0. We
denote the space of differential (p, #)-forms on (M, /) by Λp`q(M).

It is well-known that the classical exterior differentiation operator d takes a
(p, g)-form to a sum of forms of various bidegrees [12], i.e.,

d{Λ*`*} c A*'1**2 + Λp>q+1 + Λp+1>q + Ap+2'q~l .

Suppose now that we have an almost Hermitian manifold (M,g,J). The
codifferential operator δ: Λp+q —> Ap+q~ι defined on M with respect to the
Riemannian structure g sends a (p, q)-ίoτm to a sum of complex differential
forms of bidegrees (p — 2, q + 1), (p — 1, q), (p, q — 1), and (p + 1, q — 2).
With these two facts, we can calculate the effect of the Laplacian operator
A — — dδ — δd on forms of bidegree (p, q). In fact,

J{Λp>q} cz ΛP^3 'Q + 3 + Ap~2>q+2 + Ap~hq+1

_J_ J\VΛ _j_ ylP + l,q-1 _|_ jlP + 2,q-2 _
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We say that a differential form of bidegree (p, q) is harmonic if it is harmonic
as a (p + g)-form (Δa = 0). We denote the complex vector space of harmonic
(p, <?)-forms on M by jί?™(M). The complex dimension of 3P*`*{M) is denoted

One of the reasons why Hodge-Yano-Bochner theory works so well on
Kahler manifolds is that the Laplacian operator is bidegree preserving on such
manifolds. However, on a general almost Hermitian manifold (M, g, ƒ) the
seven-part decomposition of Δa is probably too cumbersome to allow close
analysis. In certain cases, we have been able to determine inequalities between
the bp q for the ηianifolds M and B of an almost Hermitian submersion
f:M-^>B.

We recall now the general idea of the proof of Theorem 6.1. The classic
Hodge theorem says that the vector space of real harmonic r-forms on an
orientable compact Riemannian manifold (M, g) is isomorphic to the classical
de Rham cohomology space Hr

d(M,R) and therefore to the classical real
cohomology space Hr(M,R) by de Rham's Theorem. Thus the number of
linearly independent harmonic r-forms is exactly the r-th Betti number br. It
is a trivial exercise to verify that on a compact orientable manifold an r-form
a is harmonic if and only if da — 0 and δa = 0 simultaneously. In a previous
study [20], we classified those smooth manifold mappings f:M—>N which
satisfy f*δN = δMf* on the differential r-forms of the Riemannian manifold N.
It was found that a necessary condition is that ƒ: M —• N be a Riemannian
submersion. Since ƒ* always commutes with the d operator, it follows that such
a ^-commuting manifold map takes harmonic r-forms on the compact orientable
N to harmonic r-forms on the compact orientable M. The fact that ƒ is a Rie-
mannian submersion implies that ƒ* is a linear isometry, and the inequality for
Betti numbers in Theorem 6.1 is obtained. In the case, r = l , we found that a suf-
ficient condition on the Riemannian submersion f:M—*N which will ensure
commutation with the codifferential is the minimality of the fibre submanifolds.
Hence Theorem 6.1.

With this outline in mind, we wish to attack the same problem for the case
of forms of bidegrees (1,0) and (0,1). The crucial fact which makes the anal-
ysis approachable is that δ{A1*0} is a subspace of the single vector space Λ°>° =
C°°(M). Likewise for δ{Λ0'1}. Since the almost complex mapping ƒ preserves
the bidegree of differential forms, the above argument gives

6.3. Theorem. Let f:M-^B be an almost complex smooth manifold
mapping between complete almost Hermitian manifolds. Then ƒ* commutes
with the codifferential operator δ on complex differential (l,O)-forms and
(0,1)-forms if and only if ƒ: M —> B is an almost Hermitian submersion with
minimally immersed fibres.

As we argued before, this leads immediately to
6.4. Theorem. Let f:M-^B be an almost Hermitian submersion be-

tween compact almost Hermitian manifolds. If the fibres of f are minimal, then
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b^(BX<>b^{M) , bθ9l(B) < bOil(M) .

By combining Theorem 3.1 with the last theorem we obtain
6.5. Theorem. Let M and B be compact almost semί-Kahler manifolds.

If there exists an almost Hermitίan submersion f:M-+B, then

b,,o(B) < bli0(M) , bOtl(B) < bOΛ(M) .

7. Almost quaΐernionic submersions

An almost quaternionic manifold [7] is a quadruple (M,I,J,K), where /,
/ and K are almost complex structures on the smooth manifold M satisfying
K = IJ = — JI. A Riemannian almost quaternionic manifold (M, g, I, J, K) is
said to be q-almost Hermitian if it is almost Hermitian with respect to any two
of the three almost complex structures /, J and K. In exactly the same manner,
we define q-almost semi-Kdhler, q-quasi-Kdhler, q-almost Kdhler, q-almost
Tachibana, q-Kdhler, q-Hermitian and q-semi-Kdhler manifolds. That is, when
the Kahler forms of two of the three almost complex structures themselves
satisfy the relevant definition given before Fig. 1.

Let (M, g, /, /, K) be a g-^-manifold where @> is one of the classes in Fig.
1. Let (S, h, ƒ, J, K) be a ^-almost Hermitian manifold which at the same time
is a submanifold of M and an almost Hermitian submanifold of M with respect
to each of the three almost complex structures /, / and K. If S is in the class
& with respect to any two of the three almost complex structures /, / and K,
then S is called a q-&-submanifold of M.

Gray [7] proved the following.
7.1. Lemma. A q-quasi-Kdhler submanifold of a q-quasi-Kdhler manifold

is totally geodesically immersed.
A q-almost Hermitian submersion is a smooth mapping ƒ: (M, g, I, J, K)

—> (B, h, I',J', K') between ^-almost Hermitian manifolds which is an almost
Hermitian submersion with respect to each of the pairs of almost complex
structures (I,Γ), (ƒ,/0 and (K,Kf). There are not many interesting <?-quasi-
Kahler submersions as the following theorem shows.

7.2. Theorem. A q-quasi-Kdhler submersion is a totally geodesic mapping.
Proof. Let (M, g, /, /, K) and (B, h, Γ, ƒ', Kf) be <?-quasi-Kahler manifolds,

and ƒ : M - > 5 a <?-quasi-Kahler submersion. If V and W are vertical vectors,
then Lemma 7.1 implies that TVW = 0. Thus T vanishes by Proposition 2.7(d).
Let X and Y be horizontal vectors. Then Theorem 2.9(d) gives

AXY = -AJXJY , AXY = -AIXIY .

Similarly,

AIXIY = — A J
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Therefore AXY = 0, and A vanishes by Proposition 2.7(e).

7.2.1. Corollary. A q-quasi-Kahler submersion f:M—>B with M simply

connected is a product projection mapping.

Remark. The ^-almost semi-Kahler analogue of Theorem 3.1 obviously

obtains, word for word.
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