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EQUIVALENCE OF STABLE MAPPINGS BETWEEN
TWO-DIMENSIONAL MANIFOLDS

LESLIE CHARLES WILSON

1. Introduction

In this paper, we study stable C°° mappings between two-dimensional mani-
folds. For any stable map f:M-+N we define stratifications of M and N
(partitions of M and N into submanifolds, called strata) such that ƒ maps each
stratum in M difϊeomorphically onto a stratum in N. Suppose ƒ and g are
stable maps from M to N, and there exists a homeomorphism h: M —> M in-
ducing a one-to-one correspondence between the stratifications denned on M
by ƒ and g such that (g o h)(S) = f(S) for each stratum S denned by ƒ. Then
there exists a C°° diίϊeomorphism h!: M —• M such that g o A7 = ƒ. The above
is essentially Theorem 4.1, which is the principle result of this paper and is
stated and proved in § 4. The aforementioned stratifications are denned in § 2.
In § 3, we give examples illustrating some ways in which Theorem 4.1 cannot
be strengthened. In the rest of this section, we make definitions and state
known results which will be used later. The material of this paper, except for
the proof of Theorem 4.1, is contained in the author's thesis [20].

In [18], Cr mappings (r > 3) from an open set U cz R2 into R2 were studied
by Whitney. Let ƒ be such a mapping, and / its Jacobian matrix. If det J(p)
Φ 0, then p e U is said to be a regular point of ƒ; otherwise, p is a singular
point. Whitney calls p a good point for ƒ if p is regular or if grad (det J(p)) Φ 0.
If ƒ is good, that is, each point of U is good for ƒ, then the singular set det
/ = 0 is a 1-manifold (by the implicit function theorem). Suppose p is a sin-
gular point of a good map ƒ with φ(t) a regular C2 parameterization of the sin-
gular curve through p. Whitney calls p a fold point of f it d(foφ)/dt Φ 0 at
p, and a cusp point of ƒ if d(foφ)/dt = 0 and d\f oφ)/dt2 Φ 0 at p. The de-
finitions of fold and cusp points are independent of the parameterization ψ.
Cusp points are necessarily isolated. Thus the set F of fold points of ƒ is a 1-
manifold; the connected components of F are called fold curves. A point p is
an excellent point of a good map ƒ if it is either regular or else a fold or a
cusp point, and ƒ is excellent if each point of U is excellent for ƒ.

If p is a regular point of ƒ, then, by the inverse mapping theorem, Cr coor-
dinate systems (x, y) and (u, v) exist around p and f(p) respectively such that
ƒ takes the form u = x, v = y.
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Whitney showed, in part C of [18], that:

(1.1.a) if p is a fold point, then Cr~3 coordinate systems (x,y) and (u,v)
exist around p and f(p) respectively such that ƒ takes the form u =

(1.1.b) if p is a cusp point, and r > 12, then C* coordinate systems exist
around p and f(p), where /: = J(r — 5) if r is odd and k — \(r — 6)
if r is even, such that ƒ takes the form u — xy — xz, v — y.

For ƒ a C°° mapping, Malgrange [6, p. 79] gives a relatively easy proof of
(1.1) using his preparation theorem.

Whitney, in part B of [18], proved that:

(1.2) the excellent C r maps are dense among all Cr maps from U to R2 in
the fine (Whitney) Cr topology.

Let C°°(M, N) denote the set of C°° mappings from the manifold M to the
manifold N, and C°°(M) the set of C°° real-valued functions on M.

Two mappings ƒ, g e C°°(M,N) are said to be equivalent if there exist dif-
feomorphisms /z e C°°(M,M) and A: € C°°(iV,N) such that kof = goh.

A mapping ƒ € C°°(M, JV) is said to be stable if there is a neighborhood W
of ƒ in the fine C°° topology such that all g e W are equivalent to ƒ.

Whitney [19, p. 301] defined and briefly discussed stability for mappings
between Euclidean spaces. The first extensive study of stability was Levine's
[4]. Haefliger [3], and later Levine [5], studied the relationship between the
types of stable mappings possible from one manifold to another and the topo-
logies of the manifolds (but only in very restricted dimensions). Many funda-
mental results about stable mappings have been proven by Mather [7], • • •, [14].
His work has been surveyed by Arnold [1], Cartan [2], and Wall [17]. These
surveys contain extensive bibliographies.

If ƒ € C°°(M, N), ƒ is said to be excellent if for each x € Σ there are coordi-
nate systems about x and f(x) giving ƒ the form (1.1.a) or ( l . l .b) .

Proposition 1.3. Suppose M and N are two-dimensional manifolds, and
f e C°°(M, N) is proper. Then f is stable if and only if the following two con-
ditions are satisfied:

(WI) ƒ is excellent,
(WII) the images of fold curves intersect only pairwise and transversally

(that is, if x and y are fold points such that f(x) = f(y), and F denotes the 1-
manifold of all fold points, then Tf(TxF) and Tf(TyF) have regular intersection
in Tfix)N), whereas images of cusps do not intersect with images of folds or
other cusps.

For a proof of this well-known result, see Wilson [20].
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2. Stratifications

In this section, M and N denote two-dimensional, Hausdorff, second count-
able, C°° manifolds, and ƒ and g denote proper, stable C°° mappings from M to
N. Recall that ƒ and g are equivalent if there are diίϊeomorphisms h <= C°°(M, M)
and k € C~(N,N) such that kof = goh. Theorems 2.1 and 4.1 will charac-
terize the equivalence of stable mappings. This charactrization is obtained in
terms of certain natural "stratifications" Sf„ &*2 and ^ 3 (collections of subsets,
called strata, of M and N) defined by the mappings ƒ and g, and it involves
the notion of a "simple substratification".

First we define the stratifications SP19 ^2 and ^ 3 for the map ƒ (cf. Figures 1
through 6 for examples of these stratifications).

Let Rl be the set of all regular points of ƒ. Then JRI is an open subset of
M. Let F l be the set of all fold points. Then F l is an embedded one-dimen-
sional submanifold of M (which is not necessarily connected). Let Cl be the set
of all cusp points. Then Cl is a discrete set. The set Σ = F l U Cl of all sin-
gular points is an embedded one-dimensional submanifold of M, and is a closed
subset. Each connected component of Σ is called a generalized fold curve of ƒ,
and is either a (smooth) Jordan curve or an infinite arc in M. Let Shx denote
the connected component of Rl, Fl or Cl containing x. Then S?λ: = &Ί(f)
: = {Shx :xeM}.

The set of regular values R2 = N — f(Σ) is an open subset of N. The set
of fold values F2 = {y e TV: #(/~*()7) Π Fl) = 1} is an embedded one-dimen-
sional submanifold of N. The set of double fold values FF2 = {y eN: #(f~\y)
Π F l ) = 2}, and the set of cusp values C2 = ƒ(Cl) are discrete sets. Clearly,

N = R2Ό F2{J FF2 U C2. Let S2ty be the connected component of Rl, F l ,
FF1 or Cl which contains y. Then $f1: = {S2tV :y<εN}.

Let RR3 = Rl Π ƒ^(Λ2), i?F3 = # 1 Π ƒ J l(F2), # F F 3 = Rl Π t\FF2),
and JRC3 = Rl Π ƒ^'(C2). Then these are regular points of ƒ at which ƒ takes
regular, fold, double fold and cusp values, respectively. Let F3 = F l Π †~\F2)
and FF3 = F l Π j~\FF2). Then these are fold points at which the values of
ƒ are folds and double folds, respectively. Let C3 = C l . RR3 is open in M,
RF3 and F3 are embedded one-dimensional submanifolds of M, and RFF3,
RC3, FF3 and C3 are discrete sets. Let S3fX be the connected component of
RR3, RF3, RFF3, RC3, F3, FF3 or C3 which contains x. Then ^ 3 : =
‰ . : jceΛf}.

By a stratification of M (or N), we mean a partition £P of M into connected
embedded submanifolds, called strata, satisfying the following two conditions:

(a) Sf is locally finite, i.e., each point of M has a neighborhood intersect-
ing only finitely many strata,

(b) (Axiom of the Frontier) if U and V are strata and U Π V Φ 0, then
V cϋ.

Note that 5^, ^ 2 and ^ 3 are stratifications.
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Next we study the behavior of ƒ on Sfl9 Sf2, and Sfz. First note that if S 6 £fx

then ƒ IS is an immersion. If Γ e ^ , then T is a submanifold of some S e ^ ,
and hence ƒ | Γ is an immersion.

Choose any T e <9^(f) and let S e &*2(f) be the stratum containing f(T). Since
Γ is a connected component of f~\S), f\T: T —• 5̀  is proper and hence a co-
vering map (in fact, if X is Hausdorff and Y is connected and compactly gen-
erated and if h: X—> Y is a proper local homeomorphism, then /ι is a covering
map onto Y; see Theorem 4.2 of Palais [15] or Lemma 2.1 of Wilson [20]).

We define a stratification map f from a stratification ^ to a stratification ŽΓ
to be a function from the set Sf to the set ŽΓ satisfying the following condi-
tions : ƒ preserves the dimension of strata; if S e £f, then ƒ(star (£)) cz star (ƒ(51)),
where star S = {T e 6?: T Π S Φ 0}. We call ƒ an equivalence if there is a
stratification map g from T to ^ such that ƒ o f and g o f are the identity set
maps.

The stable map ƒ induces a stratification map ƒ: ̂ 3 —> £f2 in the obvious way.
If ^ and ^ are stratifications of M or N and each 5 e $f is contained in

some T £ ^, then ^ is a substratification of ^ . We say Sf is a ,s/m/?Ẑ  ŵfc-
stratification of 5" if, in addition, each S e ^ is simply connected. We say
y is local if, for each x € M (or N), each neighborhood C/ of x contains a
neighborhood F of x such that F Π S is connected (possibly empty) for every

If ^ 4 is a substratification of SP2(f), then ƒ induces a substratification £P6(f)
of c^3(ƒ) as follows:

^ 5 (ƒ) = {connected components of f~\S) : 5 e ^ } .

Note that, for T e 5?5(f) and S the stratum in ^ 4 containing ƒ(Γ), f\T:T ->S
is a covering space. If -S is simply connected, then T is simply connected, and
in fact ƒ maps T diffeomorphically onto S. So if ^ 4 is a simple substratification
of ^ 2 (ƒ), then 5 5̂(ƒ) is a simple substratification of ^ 3 (ƒ) , and ƒ maps each
stratum S 6 Sfjj) diffeomorphically onto f(S) 6 ^ 4 . Suppose ^ 4 is also local;
then Sf6(f) is local and, in addition, if S, T and U are in ^ 5 (ƒ) with 5 and Γ
inC7, t h e n ƒ ( 5 ) ^ ƒ(Γ).

Theorem 2.1. Suppose M and N are two-dimensional manifolds and ƒ, g
e C°°(M,N) are proper, stable and equivalent, that is, kof = goh for certain

diffeomorphisms h e C™(M, M) and k e C°°(N, N).
(1) Then h induces equivalences h : <^(ƒ) -> ^ ( g ) and A : ^ 3 (ƒ) -> «^3(g),

/: i n d u c e s a n e q u i v a l e n c e k : 5f2(f) — > « ^ 2 ( g ) 5 k o f = k o f = g o h = g o h .
( 2 ) ƒƒ ̂ 4 w α (simple) substratification of ^2(g), then kof and g induce

(simple) sub stratifications Sfδ(kof) of ^ 3 ( ƒ ) α/?d ̂ δ ( g ) of Sf^(g), and h induces
an equivalence hf: 5?δ(h o f) -+ ̂ 5 ( g ) such that g(h'(S)) = k o f(S) for all
Sζ<75(kof).

The proof of this theorem is straightforward.
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3. Examples

It is natural to ask to what extent the stable map ƒ is determined by the in-
duced map ƒ: ^ 3 (ƒ) —> ^ 2 (/)• Theorem 4.1 answers this question ; but first we
look at three examples which illustrate the precautions one has to take in try-
ing to formulate a converse to Theorem 2.1. In Example 3.1 we see two stable
maps ƒ and g which induce equivalent stratification maps (i.e., there are equiv-
alences h : ^ 3 (ƒ) -» S?3(g) and k : S?2(f) -> <9>2(g) such that k o f = g o h) but
are not themselves equivalent. The difficulty arises because there is a stratum
S e £f3(f) on which ƒ is not a difϊeomorphism but rather a double covering. In
Examples 3.2 and 3.3 we see that, even when all the strata are simply con-
nected, S?3(f) can equal £?z(g) (in Example 3.2) or Sf2(f) can equal £f2(g) (in
Example 3.3) without ƒ and g being equivalent.

Example 3.1. Let ƒ and g be stable maps from S2 to 2?2 having <^(ƒ) =
<^i(g) = ^ for / = 1,2 and 3, where <?19 £f2 and ^ 3 are shown in Figures 1,
2 and 3 respectively. The capital letters in these figures indicate 0-strata.

We require that the induced maps ƒ, g: ^ 3 —> ^ 2 be equal, and map each
0-stratum in y 3 to the 0-stratum in 5^2 bearing the same letter. The action of
ƒ and g on 1-strata and 2-strata can be deduced by its action on 0-strata.

Sfλ\ A,B,C,DeCl, the line seg-

ments are in Fί, open strata are in

Rl.

<9*2: open strata are in R2, line seg-

ments are in F2, A,B,C,D e C2,

E,F,Ge FF2, (the dotted line d

is not a stratum).

Fig. 2
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B=Bl

Fig. 3

The northern polar cap of S2 is a single ^ 3 stratum. We show here only
the complement of the northern polar cap.

y 3 : open strata are in RR3 ; heavy-lined 1-strata are in F3, fine-lined 1-
strata are in RF3; El,E2,Fl,F2,Gl,G2 <ε FF3, Al,Bl,Cl e C3, A2,A3,
A4,B2,B3,B4,C2,C3,C4eRC3, RFF3 = 0, (the dotted lines dl,d2,d3,
and dA are not £f% strata).

Notice that there are nonsimply connected 2-strata (annuli) in ^ 3 and &*2;
the restrictions of ƒ and g to the source annulus must be double covering maps
(one can see this by counting the 1-strata in the boundaries of the source and
target annuli). So it is possible to choose ƒ and g such that f~\d) = d\ U d2
and g~\d) = d3 U d\.

If we form a simple substratification ^ 4 by adjoining d to ^ 2 , then Sfjj) is
gotten by adjoining d\ and d2 to Sfz, whereas ^ 5 (g) is gotten by adjoining d3
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and dA to Sfz,. Note that « β̂(ƒ) and S?b(g) are not equivalent (for example, an
equivalence would have to map dl, which is bounded by two cusp points, to
either d3 or d4, each of which is bounded by a cusp point and a regular point,
and this is impossible) and so, by Theorem 2.1, ƒ and g are not equivalent.

Example 3.2. Let ƒ and g be stable maps from 52 = {(#, y, z): x2 + y2 +
z2 = 1} into JR2 formed by first projecting 52 orthogonally onto the unit disk
D2 in the xy-plane, and then immersing the disk into R2 as shown in Fig. 4.
Both ƒ and g have 3D = {(x, y, 0) : x2 + y2 = 1} C S2 as their only fold curve.
The left side of Fig. 4 shows ^ 3 (ƒ) and Sfz{g) for the disk (these are lifted by
the projection S2 -> D2 to get ^ 3 (ƒ) and Sf3(g) on 52).

B

\

C

.

D E D F B

D E B

Fig. 4

Note that S?2(f) and S?2(g) are not equivalent (for example, £?2(f) has a 2-
stratum, the unbounded component of R2 — f(S2), with five 1-strata in its
boundary, whereas 9?

1{g) has no such 2-stratum). Hence, by Theorem 2.1, ƒ
and g are not equivalent.

Example 3.3. We now construct stable maps ƒ, g and h from S2 =
{(*, y, z): x2 + y2 + z2 = 1} into R2, each having dD2 = {x2 + y2 = 1, z = 0}
as its only fold curve. First consider Milnor's well-known example (Fig. 5) of
two immersions / and j from D2 into R2. The stratifications Sfl9 6f2 and y 3 can
be defined for immersions of D2 into R2 which satisfy condition WΠ (see Pro-
position 1.3), where dD2 is considered as the fold curve of the immersion. The
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right side of Fig. 5 shows Sf2(ΐ) = « 2̂(ƒ) with the FF2-points marked; the left
hand side shows S?3(i) and
jRFF3-points (in the interior) marked.

with the FF3-points (on the boundary) and

D

(The dotted lines / and m are not strata.)

Fig. 5

Letting πN be the projection of the northern hemisphere HN onto D, and πs

the projection of the southern hemisphere Hs onto D, we define ƒ by ƒ \HN

— ioπN and f\Hs = ίoπs, g by g\HN = ίoπN and g\Hs = joπ8, and h by
hIHN = joπN and h\Hs = j°πs, where we identify HN and Hs so that cor-
responding letters along the equator match.

Note that ƒ is equivalent to h by means of reflecting R2 about the line m and
S2 about the verticle plane in R3 containing the line / (see Fig. 5).

However, y s(ƒ) is not equivalent to «^3(g). Note that in both y s(ƒ) and £?3(g)
there are four 2-strata having the property that each has only a single 1-stratum
in its boundary. An equivalence of ^ 3 (ƒ) and £?3(g) would have to preserve
such 2-strata. But in ^ 3 (ƒ) there is a path consisting of two 1-strata and three
0-strata which connects two of these 2-strata; there is no such path in 6^jig),
as there would have to be if Sfjij) were equivalent to S?3(g). Hence, by Theo-
rem 2.1, ƒ and g are not equivalent.
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4. Equivalence of stratification-equivalent stable maps

Theorem 4.1. Suppose M and N are two-dimensional manifolds, and f, g
<εC™(M, N) are proper and stable. Suppose there is a diffeomorphism ke

C°°(N,N) which induces an equivalence k\ £f2(j) —> &*2(g). Suppose ^ 4 is a
local simple sub stratification of ^2(g), and <?Ί>(g) and ^b(kof) are the induced
substratifications of ^3(g) and ^ 3 ( ƒ ) . Assume further that there is an equiv-
alence h : όfδ(k o ƒ) -» S?6(g) such that if S e Sfb(k o ƒ) consists of fold (cusp)
points, then h(S) consists of fold (cusp) points and such that k o f(S) = g(h(S))
for all S e ^5(kof). Then there is a unique C°° diffeomorphism h:M—*M
such that kof = goh.

Remark. Since a compact subset of N intersects only finitely many strata
of ^2(g), it is easy to see that <9*2(g) necessarily has a local simple substratifica-
tion ^ 4 .

Proof. D e f i n e h b y l e t t i n g h \ S b e (g \ h(S))~1 o k o ( f \ S ) f o r e a c h S € <f,(k o ƒ) .
Clearly h is well-defined and bijective. We need only to check that h is C°° and
nonsingular in a neighborhood of each fold and cusp point of ƒ. The hypothesis
that ^ 4 is local guarantees that h is continuous.

Let p be a fold point of ƒ; then q = h(p) is a fold point of g. By (1.1 .a), C°°
coordinate systems (V, ψ) and (W, ψ) can be chosen around q and g(q) res-
pectively such that for G: R2 —> R2 given by G(x, y) = (x2, y) we have
(|ogoφ~')(x, y) = G(x, y) in a neighborhood of (0, 0). Let S1 = {(x,y)eR2:
x < 0}, S2 = {(x,y)eR2:x>0} and S3 = {(x,y) e R2. x = 0}. Note that

Se^G) = y_lG) = <9>s(G) = {S,, S2,S3}; also note that G : 5?,(G) -> 5?2(G) is

given by G(S,) = G(S2) = ,S2 and G(S3) = S3. In what follows, we will fre-
quently restrict G (and other maps) to a neighborhood, say U, of (0, 0), in
which case we will denote G\ U by G; also we will denote S1 ΓΊ U by S1? etc.

By (1.1.a), a coordinate system (t/, a) can be chosen about p such that

- &Ίψ) = = {S19 S2, S,}JOT F = ψokofo a~\J: S?,(F) -> S?2(F)ψ J J
is given by F(S,) = F(S2) = 52 and F(S3) = 53, and ψ o A o ̂ ~1: «^3(F) -> ^ 3 ( G )
takes Si to 5^ for i = 1, 2, 3. The following commutative diagram summarizes
the mappings we have defined:

a(U)

= (x\y)
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Then, for ί = 1,2 and 3, (φohoa~`)\St = (G\Sί)~1 o(F\Si). Thus

x,yy*,v(x,y)) , x>O,
φohoa ι = ,

{(-u{x,yy`,v(x,y)) , x<O.

In Proposition 4.2 we show that <p°hoa~1 is C° andnonsingular at (0,0), and
hence that h is C°° and nonsingular at p, as required for the proof of Theorem
4.1.

Proposition 4.2. With notation as above,

(u(x,yY'\v(x,y)) , x>O,

(-u(x,y)^,v(x,y)) , x < O

w C°° and nonsingular at (0, 0).
Proof. We use the notation Λx, Λy for the partial derivatives of a differenti-

able function λ: R2 —> R. Let / denote the Jacobian matrix of F = (u(x,y),
v(x, y)). Recall that a point p is a good singular point of F if

det / = uxvy — uyvx = 0 at p, and

(4.3) grad (det/) = ( w ^ + w^^y - uxyvx - uyvxx ,

UχVvy + uxvyy — uyyvx — uyvxy) Φ 0 at p .

Note that det / = 0 implies that the rank of / is < 2, and that grad (det /) Φ 0
implies that the rank of / > 0. Hence

(4.4) the rank of / = 1 at a good point .

By assumption w(O, y) = 0 for all y, hence uy(0, y) — 0, uyy(0, y) = 0, etc.
for all y. Since the restriction of F to the y-axis is an immersion (by the defi-
nition of a fold point ), the vector (uy(0, y), vy(0, y)) Φ 0, that is, ^ ( 0 , y) Φ 0
for all y. Since fold points are good points, (4.4) implies that ux(0, y) = 0 for
all y, and (4.3) implies that uxx(0, y) Φ 0 for all y.

By Taylor's Theorem, there is a C°° function w(x, y) such that u(x, y) =
w(O, y) + ux(0, y)x + w(x, ;y);t2 = w(x, y)x2. Note that w(O, y) = iMΛa.(0, y) =£ 0
for all y.

Hence, in some neighborhood of the y-axis, w(x, y) > 0 and <pohoa~\x,y)

= (x(w(x,yψ\v(x,y)) and is CTO. Since J_(JC(W(JC, y))1/2)(0, y) = w(0,};)1/2

5

^ 0, _(I;(Λ,y))(O,y) = vJO,y) ^ 0, φohoa~1 is nonsingular at (O,y) for

ally.
Our next goal is to prove that the mapping h is C°° and nonsingular at cusp

points of ƒ.
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The mapping G: R2-+ R2 given by G(x, y) = (xy + 2x\ y + 3x2) is proper
and stable, with a cusp point at (0, 0) and fold points elsewhere on the x-axis.
The image of the x-axis in the ζ37-plane is {(ζ,η): 21 ζ2 = 4η3}. The inverse
image of this set under G is the union of the x-axis and the curve {(x, y): Ay
+ 9χ2 = 0}. The stratifications defined by G, as shown in Fig. 6, are: <^(G) =
{Sι U • • • U S6, S7, S8, S9}; STJίG) = {S19 • • •, S9}, where S19 • • •, S4 c ΛΛ3, S 5

and S6 c # F 3 , S7 and S8 c F3 and 5 9 c C 3 ; ^ 2 ( G ) = {T1? • • •, ΓJ, where
Tλ and Γ2 C R2, T2 and Γ4 c F2, and Γ5 = C2. The induced map G : ^ 3 ( G )
-> ^ 2 ( G ) maps 5X, S2 and S3 to T1? 54 to Γ2, 56 and Ss to Γ4, 55 and S7 to Γ3,
and 59 to T5.

Solid lines indicate strata.

Fig. 6

Let p be a cusp point of ƒ; then q = h(p) is a cusp point of g. By (1.1. b),
coordinate systems (V, φ) and (W, ψ) can be chosen around q and g(q) respec-
tively such that, for G: R2 -> R2 given by G(x, y) = (xy + 2x\ y + 3x2) =
(xy — x3, ;y) o H, where H is the diffeomorphism (JC, y + 3x2), we have
(ψogo^^O(-x,y) = G(x,y) in a neighborhood of (0, 0).

Again by (1.1.b) we get a coordinate system (U, a) about p such that for

F = ψokofoa~`we have ^ 3 ( F ) = {S15 • • •,Sβ} and φoho~^: s?,(F)->όf,(G)
takes Si to ^ for / = 1, • • •, 9. To complete the proof of Theorem 4.1, we
need to show that h is C°° and nonsingular at p, that is, ^ofto#~ 1 is C°° and
nonsingular at (0,0). For / = 1, • •., 9, (φ o A o a~1) \ St = (G | S<)~1 o (F | S€).

Proposition 4.5. F̂zϊA the same notation as above, the map H defined by
H\Si = (G\Si)'1 o(FIS€), fori=l,---,9, is C°° and nonsingular at (0, 0).

Proof. Let / denote the Jacobian matrix of F, and the singular set of F,
which is the x-axis, be parameterized by x. Then the definition of a cusp point
states that

(4.6) (ux(0, 0), vx(0, 0)) = 0 , (uxx(0, 0), vxx(0, 0)) Φ 0 .

Since fold and cusp points are good points, (4.4) implies that J has rank one
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on the x-axis. Since F is an immersion at fold points, the image of J(x, 0) at
fold points, and hence also at (0, 0) by the continuity of J, is tangent to the
curve 27ζ2 = 4η2. Hence ƒ(O, 0) maps the xy-plane onto the 27-axis. Therefore
uv(0,0) = 0 and vy(0, 0) Φ 0. If vy(0,0) were negative, then v(O, y) would be
negative for sufficiently small y > 0, that is, (0, y) would be in S1 and F(O, y)
= (w, v)(O, y) would be in T2, contradicting that F(SJ = Tv Thus

(4.7) ux(0, 0) = uy(0,0) - vx(0, 0) - 0 , vy(0,0) > 0 .

By (4.7) and (4.3), grad(det/) = (uxxvy,uxyvy) Φ 0 at (0,0). Using the
fact that the gradient vector of a function is always perpendicular to the level
surface of the function, that is, grad (det ƒ)(O, 0) is perpendicular to the set
det / = 0, which is the x-axis, and using that det ƒ(O, y) > 0 if y > 0 and
det ƒ(O, y) < 0 if y < 0, we see that

(4.8) K**(O,O) = O , I I * , ( O , O ) > O .

There are C°° functions a(x,y), b(x), c(y), d(x,y) and e(x) such that

u(x, y) = a(x, y)xy + b(x)x3 + c{y)y2 ,

v(x, y) = d(jc, y)y + ^(x)x2 .

Indeed, by Taylor's theorem, u(x, 0) = b(x)x\ w(O, y) = d(y)y\ Letting
w(x, y) = w(x, 3;) — b(x)x3 — c(y);y2, we see that w(x, 0) = >v(O, y) = 0 for all
x and j , and so w(x, y) = a(x, y)xy. Similarly, v(x, 0) = e(x)x2, and letting
z(x, y) = v(jc, y) — ^(JC)Λ:2 and noting that z(x, 0) = 0 for all x we have
z(x, y) = d(Λ, y)y.

By assumption, 2Ίu(x,O)2 = 4v(x,O)\ Thus, by (4.9), 21 (b(x)x3)2 =
4(e(x)x2)3, which implies that

(4.10) 27b(x)2 = 4e(x)3 for all x .

Together, (4.6), (4.7), (4.8), (4.10) and the fact that u(x, 0) > 0 for x > 0
imply that

(4.11) α(O, 0), 6(0), d(O, 0) and e(O) are positive .

We say that two maps ƒ and g are right-equivalent at 0 if there is a C°° map
/z, nonsingular at 0, such that h(O) = 0 and ƒ = goh near 0.

Note that in the derivation of (4.9) and (4.11), the precise positions of the
strata Sδ and S6 were not used, but only that they lie below the x-axis. So (4.9)
and (4.11) also describe the form of any map which is right-equivalent at 0 to
F by a local diίϊeomorphism which leaves strata S19 S7 and S8 invariant.

Now we replace F by maps Fi9 right-equivalent to F at 0, such that G — Ft

becomes successively simpler.
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Since 0 is a nondegerate critical point of u, by the Morse lemma, u is right-
equivalent at 0 to f(x, y) = x2 — y2 and so its zero set contains a manifold
transverse to the ;t-axis at 0. Thus there is a C°° function ƒ such that ƒ(O) = 0
and u(f(y),y) = 0 near 0. Let H,(x,y) = (x + f(y),y) andF1 = FoH,. Then

^i(*, y) = ("i(*, y), v,(x, y))

= (aλ(x, y)xy + b,(x)x3 + c,(y)y2, d,(x, y)y + e,(x)x2)

for some C°° functions au b19 c19 dx and eλ with aλ(0, 0), fc^O), ̂ ( 0 , 0) and ^(0)
positive. Now ĉ OOy2 = u(f(y), y) = 0 near 0, so cfy) = 0 near 0.

Since v^O, y) = ^ ( 0 , v)y, A^y) = ^ ( 0 , y)~1 is C°° near 0 with A^O) = 0 and
Aί(O) > 0. Let H2(x,y) = (x,K(y)) and F2 = F l O ^ 2 . Then

F2(x,y) = (u2(x,y),v2(x,y))

Z?2(x)x3 + c2(y)y2, d2(x, y)y + e,(x)x2)

for some C°° functions a2, b2, c29 d2 and e2 with a2(0, 0), b2(0), d2(0, 0) and e2(0)
positive. Note that v2(0, y) = vx(0, hλ(y)) = y near 0, so d2(0, y) = 1 near 0.
Since H2 leaves the y-axis invariant, c2(y) = 0 near 0.

Since u2(x, 0) = b2(x)x\ h2(x) = ((\u2(x, O))173)"1 is C°° near 0 with A2(0) = 0
and AJ(O) > 0. Let H,(x,y) = (h2(x),y) and F 3 = F2oH,. Then F 3 = (w3, v3)
= (a3xy + fc3x

3 + c3y
2, d2y + e3x

2) for some C°° functions α3, fc3, c3, d3 and e3

with fl3, fo3, d3 and ez positive at 0. Now u3(x, 0) = 2x\ i.e., b3(x) = 2 near 0;
hence e3(x) = 3 near 0 by (4.10). Since Hz leaves the y-axis pointwise invari-
ant, d3(0, y) = 1 and c3(y) = 0 near 0.

Since F,(x,O) = G(JC, 0) near 0, the vectors DF3(x,0)-d/dy = (α3(jt, O)JC,
d3(jc,O)) and DG(x,0)'3/dy = (x, 1), being tangent to the curve 27ζ2 = 4 ^
and having the same base point, are parallel for each x near 0, i.e., az(x, 0)
= d3(x, 0) for x near 0. Let H,(x, y) = (JC, y/d3(jc, y)) and F 4 = F 3 o fl4. Then
F 4 = (a4xy + bAx

z + cj2, dAy + eAx
2) for some C°° functions α4, Z?4, c4, d4 and β4

with α3, 63, d3 and ^3 positive at 0. Since //4 leaves the JC- and y-axes pointwise
invariant, 64(JC) = 2, c4(y) = 0, d4(0, y) = 1 and e4(;c) = 3 near 0. Further-
more, it is easy to see that Λ4(JC, 0) = dA(x, 0) = 1 near 0. Thus G — F^ —
(a5xy2, dδxy2) for some C°° functions aδ and dδ.

Proposition 4.5 is now an immediate consequence of the following corollary
of Tougeron's generalized implicit function theorem [16, Proposition II. 1.1]:
if φ, φ1: (Rp, 0) -> (Rq, 0) are C°°, with q < p, and if the component functions
of φ — ψι are contained in Ml(φ)2, where I(φ) is the ideal in C°°(i?p) generated
by determinants of the q X q minors of the Jacobian matrix of φ and M is
the maximal ideal in C°°(RP) of functions which vanish at 0, then there is a
C°° mapping ƒ: (Rp, 0) —> (2?p, 0) with component functions in Ml(φ) such that
p o (Id + ƒ) = φι near 0. Note that I(G) = yC~(R2) and so the hypotheses are
satisfied for φ = G and φι = F 4 . Since the resulting ƒ has component functions
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in yM, Id + ƒ is nonsingular at 0. Thus G is right-equivalent at 0 to F 4 and
hence to F.

This concludes the proof of Proposition 4.5 and hence of Theorem 4.1.
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