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Introduction

Let M be a compact smooth ^/-dimensional Riemannian manifold without
boundary. Let X = (X19 , Xd) be a system of local coordinates centred at
xQ. The metric tensor is given by

ds2 = gijdXi (x) dXj (summed over /, / = 1, , d) .

We adopt the convention of summing over repeated indices except where
otherwise indicated. Let (gίj) denote the inverse of the matrix (g^ ).

Let V be a smooth vector bundle over M and let D be a second order dif-
ferential operator on V. Let e = (e19 , er) be a local frame for V defined
near x0. The coordinate system and frame e comprise a local system which
identifies a neighborhood of M with Rd and a portion of V with Rd X Rr.
Using this local system, we express the operator D:

+ fl^ + Dl ,D = ~

where hiJ, au and b are square r x r matrices. Let ξ € T*M and define

a\x,ξ) = Wξiξj , aι(x,ξ) = -ia& , a\x,ξ) = -6 .

The leading order symbol of D is a2, which is defined invariantly. The lower
order terms depend upon the local system chosen.

For the rest of this paper, we assume that the leading symbol is given by the
metric tensor, i.e., that hίJ = gίjl = gίj, which implies a\x,ξ) = \ξ\2. We
omit multiplication by the identity matrix on V, and apply the functional
calculus to define the operator exp ( — tD) for t > 0. Exp ( — tD) is an infinitely
smoothing operator from L\V) -*Cao(V). It is defined by a kernel function
K(t, x, y, D) such that:

exp ( - tD)u{x) = J K(t, x,y, D)u{y)d vol (y) ,

K(t, x, y, D) maps Vy to Vx, d vol (y) is the Riemannian measure. Seeley [8]
proved that K(t, x, x, D) has an asymptotic expansion as t -> 0+ of the form:
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K(t, x, x,D) ~ Σ En(x, D)t{n-d)n , t -> 0+ .

The En's are certain endomorphisms defined on the fibre. They vanish for odd
n since D is a differential operator. Although the defining relation is global, we
can compute them in terms of the derivatives of the symbol of the operator.
They are local invariants of the differential operator D. In the first section we
review the work of Seeley [8] to obtain explicit combinatorial formulas for En.

In the second section we apply invariance theory to investigate the form
which En has. We will express En in terms of noncommutative polynomials in
the covariant derivatives of certain tensors. By using H. WeyΓs theorem [9],
this will express En as a sum of various contractions of these tensors with
unknown coefficients. In the third section we will evaluate these coefficients to
determine Eo, E2, E4, EQ. In the final section we apply these results to the
Laplace operator acting on functions.

Let V have an inner product (, ) and suppose that D is self-adjoint. Take
a spectral resolution of D into eigenvalues λi and corresponding eigenfunctions
φi. Let

K(t, x, y,D) = Σ e x P ( — tλi)φi(x) ® φi(y) .

Let Bn(x, D) = Trace (En(x, D), Bn(D) = ί Bn(x, D)d vol (x). Then

Ύτ(K(t9x,x9D)) = Σ zπρ( — tλi)(φi,φi)(x) ~ Σ Bn(<

We integrate both sides of this expansion. The φt were an orthonormal basis
so they integrate to 1. Consequently

exp (-« f) ~ Σ ([ Bn{x,D)dyo\{x)\t^-^ ~ £ Bn(D)tf(n-d)/2

n = 0

The numbers Bn(D) are invariants of the differential operator, which depend
only on its spectrum.

Let D be some Laplacian of differential geometry. The invariants Bn(x, D)
will be certain expressions in the derivatives of the metric. We suppose that
Dp is the Laplace-Belltrami operator acting on p-forms. Sakai [7] has computed
a formula for B6(D0). Using this formula, he proved

Theorem (Sakai). Let M, M' be compact, connected orientable Einstein
manifolds of dimension 6 which have the same Euler characteristic. Suppose
that the spectrum of Do is the same for both manifolds. Then M is symmetric
if and only if Mr is symmetric.

Donnely [2] has been able to improve this result as follows: his major con-
tribution has been to remove the restriction that d = 6.
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Theorem (Donnely). Let M be an Einstein manifold which has the same
spectrum for all the operators Dp, p = 0, , d, as a symmetric space N. Then
N is Einstein and M is symmetric.

Donnely's proof goes as follows: he applied a theorem of Patodi's [6] to
show under these assumptions that N is Einsteinian. This result uses the com-
putation of Patodi of the invariants B4(DP). Let P denote the Pfaffian in
dimension 6. P can be denned for all values of d. Then it was shown in (3, 5)
that if d = 6,

P = Σ(-l)pB6(x,Dp) .

By applying the functorial properties of these invariants, this implies that P
must be a combination of the invariants BQ(x, Dp) for any d> 6, and therefore

that the number P is a spectral invariant for any d. Donnely used this obser-

vation together with the computation of Sakai to complete the proof.

In this paper, we derive a general formula for the endomorphism E6. In the
last section, we use this to derive Sakai's formula for Bβ(x,DQ). In a later
paper, we will apply this formula to determine B6(x, Dp) as well as to determine
B6 for other second order operators which occur in geometry. We hope that
these additional computations will enable us to remove the hypothesis that M
is Einsteinian and therby show that the property of being a symmetric space
is determined by the spectral geometry of the manifold.

Some of the computations in the determination of E6 are long and com-
binatorial in nature. In an earlier paper [4], we computed the endomorphisms
Eo, E2 and E4. We would like to express our appreciation to B. Galvannoni
and M. Freidman at the IBT-CO for making computer time available us for
use in the computation of E6.

1. In this section, we derive a combinatorial formula for the endomorphisms
En in terms of the derivatives of the symbol. We assume that the reader is
familar with the calculus of pseudo-differential operators depending upon a
complex parameter which was developed by Seeley [8]. Our arguments will be
purely formal since the questions of convergence have already been dealt with
by Seeley.

Let D be as described in the introduction. The symbol of D is given by:

σ(D)(x,ξ) = a%x,ξ) + aι(x,ξ) + a\x) ,

a\x, ξ) = |f |2 , a\x, ξ) = -iajξj , a\x, £ ) = - * ,

where the aj are homogeneous of order / in the dual variable ξ.
We introduce the following notational conventions:
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a — (o?15 , a a) is a multi-index ,

= o?! + + ad is the order of a ,

«tf! J

(d/«d)
β- ,

a\ =

Let c be a matrix or function. Let c/α = d^(c). We will also use the notation
c/ίχ...ik = d/djcίl d/dxh(c). We introduce the following notation for the
formal derivatives of the symbol of the operator:

gίj/a — d%(gij) is defined to have order \a\ ,

ai/a = da

x(ai) is defined to have order 1 + |o?| ,

b/a = da

x(b) is defined to have order 2 + \a\ .

Let P denote the noncommutative algebra in these formal variables and let Pn

be the linear subspace of all polynomials which are homogeneous of order n.
For P in Pn, define P(X, e, D) by evaluation in the local system (X, e) on the
symbol of the operator D. If the endomorphism defined by P is independent
of the particular local system chosen and depends only on the differential
operator D, then P is said to be invariant. Let Q be the subalgebra of all in-
variant expressions in the derivatives of the symbol. Let Qn denote the subspace
of invariant polynomials of order n. We will study <26 in detail in the next
section.

The leading symbol of D is self-adjoint, positive, nonzero. Let ε > 0 be
given. The spectrum of D lies in a cone C of slope ε about the real axis. Let
P be a path about the cone C with slope 2ε outside some compact set. For λ
on P, the operator (D — X)~ι is a uniformly bounded compact operator from
L\V) -> L\V). The integral

^ 7
2πi

converges absolutely for t > 0 and defines the operator exp ( — tD).

ipath P slope 2ε

slope ε

spectrum D J cone C

slope — e

^ slope — 2ε

We construct a pseodo-differential operator to approximate the resolvant
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(D - λ)-1 as follows: let b(x, ζ, X) ~ bo(x, ξ,λ) + + bn(x, ξ,λ) +
Let the complex parameter λ have homogeneity 2. Let the bt be homogeneous
of order — 2 — / in the variables (f, X). This infinite sum defines b asymp-
totically. The symbol of the composition of the operator defined by b is given by

σ(Bφ -λ))~Σ (da

ξb).(
a

Define

a2 = |f |2 - λ , άι = a1 = -ia£j , a0 = a0 = -b .

Decompose this sum into orders of homogeneity:

σ{B{D -λ))~Σ (Σn=j+laι+i_k(dlbj) (D%ak)/al) .
n = 0

The sum is over terms which are homogeneous of order —n. We wish to define
b so that

σ(Bφ - X)) ~I .

This yields the equations

/ = Σ (datbj)(D%ak)/al = bo(\ξ\2 - λ) ,

0= Σ (d"(bj)(Dlak)/al
n = j + \a\ + 2-k

= M i l 2 -λ)+ Σ (d<Ίbj)(D°xάk)/al .
n = j + \a\ + 2-k

j<n

These equations define the bn inductively. In the sum in the second equation,
if k = 2 and / < n, then \a\ Φ 0. Consequently we replace άk by ak. Define

K = (|f |2 - X)-1 , bn = -b0 (Σ (da

ξbj)(D°xak)/a\)
3<n

for n = j + \a\ + 2 - k.

It is clear that bQ is a scalar matrix.
Lemma 1.1.

(1) bn = Σ ^ , « W r « ( v ) /or *(n,α) = \(\a\ + n + 2) is an integer,

(2) the bn,a belong to Pn.

The proof of this lemma is by induction. It follows immediately from the
inductive definition given of the bn. The fact that a2 is a scalar matrix is essential
in order for us to express the dependence of bn upon the complex parameter
in this fashion. This assumption fails when we consider the ETA invariant
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defined by Atiyah-Patodi-Singer. It is this fact which makes the computation
of the local pole of the ETA function at zero so dificult.

Our final formula will express En in terms of the matrices bna. This will
imply that En(x,D) lies in Pn. Since En(x,D) is independent of the particular
local system chosen, it is invariant. We will exploit this invariance in the next
section.

We use this approximation to the resolvant to define an approximation of
exp (—tD):

*«(*, ξ, t) = - _ L - ί exp (~tλ)bn(x, ξ, λ)dλ .
2πi Jp

Let E(t) have symbol e0 + + en + . E(t) is a pseudo-differential ap-
proximation of exp ( — tD). Let Hs denote the Sobelev space defined as the
completion of the smooth functions in the s-norm to measure L2 derivatives.
Let A be any pseudo-differential operator. Define \A\SiS, to be the operator
norm (possibly infinite) of A as a map from Hs to Hs,. The following estimates
were proved by Seeley:

\E(f) - exp (~tD)\s,s, < C(s9 s', k)t* as t -> 0.

The constants C(s, s\ k) are finite for all s, s\ k. Consequently, the difference
of these two operators is an infinitely smoothing operator. The diference has
a kernel function which dies to infinite order as t —> 0. Consequently, the
asymptotic behavior of the kernel function of the operator exp ( — tD) is the
same as that of the kernel function of the operator E(t).

The kernel of a pseudo-differential A is given by the equation:

K(x,y) = J exp ( £ • ( * - y))σ(A)(x,ς)dξ.(2π)-*

provided that this integral converges absolutely. The normalizing constant

(2π)~d arises from the reverse Fourrier transform. We compute the kernel of

E(t):

en(x, ξ, 0 = — ^ T - ί bn(*, ξ, X) exp (-tλ)dλ
2πι JP

= —±τ Σ ί 6.,.«fβ«(M) exp (-tλ)dλ
2πι « JP

= - Σ *„,.(*)£" f τ Λ τ ( l f |2 ~ λ)'k(nia) e x p (~tX)dλ '

Jp (2π)d

We evaluate this countour integral using Cauchy's formula. This yields:
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en(x, ξ, t) = Σbnia(x)ξ»tk-1 exp (-t\ξ\2)/(k - 1)! ,

where k = k(n, a). This function dies exponentially as the dual variable tends
to infinity. It therefore defines a smooth kernel function. On the diagonal, we
compute

Kn(t,x,x) = -'J {2π)a(l_iv
We change variables in the integral. This gives rise to the formula

Kn(t,x,x) = Σ bn,.(.x)tk-1-"v*-d»cdj(k - 1)! ,

Since k(n,a) — 1 — £|α| = \n, this proves that

Kn(t,x,x) = ί^d)/2 Σ cdtabnta(x)nk - 1)! .

Since the kernel function for E(ί) is given by Ko + + Kn + , and the
kernel function for E(t) asymptotically approximates the kernel function for
exp ( — tD), this proves the convergence of the series given in the introduction
and shows that

En(x,D) = Σ K,a(x)cd,J(k - 1)! .

To complete the formula for En, we must evaluate the harmonic integral
defining c d j β. Let a = (αr1? ,αrd). If any of the at is an odd integer, this
integral vanishes. Consequently, we may suppose that a = 2/3. Since
n = 2k — \a\ — 2, En is zero unless n is even.

Lemma 1.2. cd,a = (4π)-d/2(2β)\/(β\ 4^').
Note that this formula agrees with the formula given in the author's thesis,

which was, however, expressed differently.
Proof. The identity

VT = Γ exp (-r)0) 5 = Γ exp {-r2)dr
Jθ J-oo

implies that

Γ r2k exp (-r2)dr = Γ r(*~ 5) exp (-r)dr = (k - .5)(A - 1.5)
J-oo Jo

- 3) . . . (l)/2*

2) . .



608 PETER B. GILKEY

Consequently

c- = ί w f 2 ί exp (-mdξ = fi ί w ( ^ exp {~mξd •
= (π)Λ/t(2β)l/(βl4}>X2π)d) = (.4π)-d/2(2β)l/(βl 4"") .

We summarize our conclusions in
Theorem 1.3.
(1) Define b0 = (|£| - X) and bn = -b0Σ(d"(bj)(Dlak)/al for n = j+ \a\

+ 2 - k, j < n.
(2) bn = Σ bnJ"W"'°i for k(n, a) = \{2 + n + \a\).

(3) En(x, D) = (4π)-a/2Σbn,2β(x)(2β) \j(β\A^\k- 1)!).
(4) En(x, D) belongs to Qn.
2. In this section, we will exhibit a basis for the vector space Qs. We have

previously constructed bases for Qo, Qx, Qi in [4]. Let D be as in section one
and let F be any connection on V. In a local system, we express V\(e) =
VΛldXi(e) = wt{e) where wt is an r x r matrix called the connection form.

Since M is a Riemannian manifold, let Fr be the Levi-Civita connection on
TM. The Christoffel symbols ΓiS

k are denned by the equation

= ΣΓυ«dldxk .

We extend the connection to T*M in the natural way. Then

The connection on TM and V induce connections on the complete tensor
algebra. The metric tensor is a map from T*M(x) Γ*M to R. We define the
operator DΓ by

DF: C~(F) -?U C-(V (x) Γ*M) -^-> CTO(F (x) Γ*M (x) T*M) m e t Π >

In polar geodesic coordinates, D is given by the formula

DF(s) - Σ -

where 5 is any smooth section to V.
We determine a unique connection from the differential operator D as follows.

The operator (D — Dv) is a first order operator for any connection. The leading
symbol of this operator is

σ(D - DF)(x, ξ) = Σξiiciί - 2g^wj + gjΊcΓ^) + zero order terms.
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The first order part is invariantly defined. We define the connection uniquely
by requiring that (D — Dv) is a 0-th order operator. This defines the wt by
the equations

α, - igVwj + gJ'ΓjS = 0 for i = 1, • , d .

We fix this invariantly defined connection henceforth.
The connection was defined so that E = (D — Dv) is an invariantly defined

0-th order operator. This implies that E is an endomorphism.
Theorem 2.1. Let D be given. There are a unique connection V on V and

a unique endomorphism E of V such that D = DF + E.
The derivatives of the symbol of D can be computed in terms of the deriva-

tives of the metric, the derivatives of the connection form wi9 and the en-
domorphism E. Let X be geodesic polar coordinates at x0, and e(x0) an arbitrary
frame for the fibre at xQ. Extend e to a smooth frame near x0 by parallel
transport along the geodesic rays from x0. If we require that gij(xQ) = dij9 then
this choice of coordinates is unique up to the action of 0(d), and the choice
of frame is unique up to the action of GL (dim (F)).

Let

Wij = Wjfί - Wίfj + WiWj - WjWi ,

where Rίjkm is the curvature tensor of the Levi-Civita connection on TM, and
Wij is an r X r matrix giving the curvature tensor of the connection on V. We
covariantly differentiate these tensors and the endomorphism E to form the
tensors

These tensors are of order 2 + s in the derivatives of the symbol of the
operator. The notation " " denotes covariant differentiation.

Since X is a system of geodesic polar coordinates, we can express the or-
dinary derivatives of the metric tensor in terms of the Rίjkm.... tensors at JC0.
Furthermore, we can express the ordinary derivatives of the connection form
Wi at xQ in terms of the values of the Rίjkm]... and Wij.... tensors at JC0. Finally,
it is clear that we can compute the ordinary derivatives of the endomorphism
E in terms of the E... tensors and the derivatives of the metric and connection
forms. (A proof of these facts is to be found in the appendix to [1]). Con-
sequently, we can express any element of Qn in terms of the tensors listed
above.

Since we are considering endomorphism valued invariants, the action of
GL (dim (F)) on the choice of frame can be ignored. We apply H. WeyPs
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theorem [9] on the invariants of the orthogonal group to deduce that every
element of Qn can be constructed in terms of contractions of indices. Since the
algebra of invariant polynomials is noncommutative, we must consider con-
tractions of all possible noncommutative expressions. This proves

Theorem 2.2. A basis for Qn can be constructed, which consists of con-
tractions of various noncommutative expressions in the tensors listed above
which are of order n. We contract these tensors by summing over repeated
indices.

We first consider those invariants which depend on the metric tensor alone.
Donnely [2] has computed all the invariants of the metric tensor, which are
of order 6. These are listed in the first column of table I of the appendix. Next,
we consider those invariant expressions depending only on the metric and con-
nection curvature tensors. After reducing by the Bianchi identities, there are
a total of 11 such expressions which are listed in the third column of table I.
Finally, we consider those invariants which involve the endomorphism E. There
are 18 such expressions which are listed in fifth column of table I. The com-
putations showing that these 46 invariants are linearly independent and span
<26 are routine in nature and are therefore omitted. In the next section, we
express E6 in terms of these 46 invariants.

3. In an earlier paper [4], we computed that

Eo = (Aπ)-d/2I ,

E2 = {AπYd'\E - iRtjiJ) ,

We sum over repeated indices in any orthonormal frame for TM. The Rijkm;...
tensor acts on V by scalar multiplication.

The formula for E6 involves 46 terms and is much more complex. A basis
for the invariants of order 6 is given in table I. Suppose that these invariants are
denoted by P1 ? , P4 6. Since E% is an invariant of order 6, we can express
E = cιPι + + c4 6£4 6 where the c4's are certain universal constants. These
constants are listed in table I. Thus our formula reads

£6 = (4π)-d/\-ψ\ Rijij kknn + ' " + ThERwnRijkn)

The remainder of this section is devoted to the determination of the constants
ct. They are determined by considering the following special example: let M
be the d-dimensional torus for some d > 6. Choose a metric of the form

ds2 = gtdXi2 .

Suppose that gi/t vanishes identically. Let ht = g^1 be the inverse function.
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The Christoffel sumbols Γiά

k vanish identically unless exactly two of the indices
are equal. We compute that

TV =

The curvature tensor tensor i^^m vanishes unless at least two of the indices

agree. We compute that

Rtjij = i(h:\ht/jY + hj\hj/tγ - ±(ftraλi/ϋ + hj%/u)

+ i Σ K*hfhi/khj/k ,

- iihfhj^hi/j + h?hk/jhi/k) for / =£ Λ .

In these two formulas, we do not sum over repeated indices. The other nonzero
curvatures can be obtained from these two by using the symmetries.

Let V = M X Rr, and let α l s , ad and i b e r X r matrix valued functions.
We suppose that at is not a function of xt—i.e., ai/t = 0. Let D be the dif-
ferential operator

D = —{hid2jdx\ + did/dXi + b) summed over repeated indices.

This differential operator defines a connection on V. The connection form is

Wi = \K\a, + Σ hjΓjf) = }hr% + $Σ Kλhkli .
3 k

The sum over k ranges over k Φ i since hiβ = 0. The curvature form is

The endomorphism E defined by the operator D is given by

E = b - i Σ hτιa\ + Σ (-ih^hthk/it) + -^hk%(hk/ίγ
i i,k

+ Σ Σ ihfh^hj^ .
i 3<k

These formulas together with the formulas for differentiating tensors enables
us to express all the invariants listed in table I in terms of the ordinary deriva-
tives of the functions ht and matrices at and b.

By using the combinatorial formulas obtained in the first section, we can
express the endomorphism E6 for this operator in terms of the ordinary deriva-
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tives of the functions ht and matrices at and b. We have the identity E = cιPι

+ + ci6P46. This gives rise to a certain system of equations in the deriva-
tives of these functions and matrices. This system is given in tables I-A and
following. It is invertible and enables us to determine the Q ' S .

We illustrate this method as follows: we apply the formula of the first sec-
tion to compute that the coefficient of the monomial b/mi in E6 is g^. The
only invariant of table I which contains the term b/nn is E.Ujj. Furthermore,
the coefficient of bnm in E.Ujj is 1. This implies that the coefficient of E.Ujj

in the expansion of E6 must be ̂  which is indicated in the sixth column of
table I. The determination becomes more complicated for the other invariants.
We are solving an upper-triangular system of equations which is very sparce.
In tables I-A through I-H, we carry out the computations to determine the
coefficients which are given in table I.

We consider a very special example in which the computations are particularly
simple. This example gives us enough information to determine the coefficients
Q'S and hence to determine E6 for a general operator.

4. In this section, we apply the formula of table I to obtain Sakai's formula.
Let Do be the Laplace-Beltrami operator acting on functions. For this operator,
the connection V on the vector bundle M X R is flat. The endomorphism E is
zero. Consequently, E6(x, Do) is given by summing over the first column of
table I with the indicated coefficients. Since the vector bundle is 1-dimensional,
B6(x, DO) = Eβ(x,D0). In order to obtain Sakai's formula for the integral of
BQ(x, D O ) , we must integrate by parts. We use the relations:

I Rijij kkmni = = 0 5

I Rijij nRkmkm n + RijijRkmkm nn — U J

I Rίjίk nRmjmk n + RijikRmjmk nn — 0 >

I Rijik nRmjmn k + ^•ijik^-mjmn kn ~ 0 •>

I Rίjίk nRmjmnik = 1 4^-iJiJ;n^-kmkm ,n + •Rijik-R~mjmp<R-qkqp

I RijknRίmkpRjmnp ~ I ~T

We use these relations together with table I to prove
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Theorem 4.1.

(1) £,(*, Do) = -^L ( - \%Riβj,tkmm +

-f- 28RίjijRijijIvkmkm;nn ί

~Γ

9

(2) = ί Blx,D,)dw\(x)
J M

7! J ^
n-L^mjmk n

~T

In these formulas we sum over repeated indices. This answer agrees with the
formula given by Sakai for B6(D0). In a later paper, we will apply the formula
in table I to compute B6(DP) as well as for the reduced Laplacian { —
acting on tensors of all types.

Table I

Polynomial

Rijij kkmm

K-ijίj jcK-nmnm k

Rijik; nRmjmk; n

Rίjik nRmjmn k

Rίjkm nRijkm n

RijijRkmkm nn

^•ijik^-mjmk nn

RίjikRmjmn kn

^•ijkm^-ίjkm nn

-KijijΉ-mnmnK-pqpq

Coeίϊ.

-18/7!
17/7!

-2/7!
-4/7!

9/7!
28/7!

-8/7!
24/7!
12/7!

-35/9.7!

Polynomial

WiJ tWij t

Wij.,jWikik

WijWjjcWu

RijknWijWkn

RiμkWjnwkn

RijijWknWkn

RijikWkn;nj

Rijij;kWkn;n

Coeff.

1/45
1/180
1/60
1/60

-1/30
-1/60

1/90
-1/72

0

0

Polynomial

E iijj

EE,U

E ϋE

E;iE;ί

E*
EWijWij

WijEWij

WijWijE

RijijE;kk

RijiicE-jic

Coeff.

1/60
1/12
1/12
1/12
1/6

1/30
1/60
1/30

-1/36
-1/90
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Table I (Continued)

Polynomial

K-ijijΛXγfiγπYipIXqftqp

K-ϊjijI\.rrιnpql\.mnpq

RijikRjnmnRkpmp

^•ίjik^-npmp^-jnkm

RijikRjnmpRknmp

RijknRίjmpRknmp

RίjknRimkpRjmnp

Coeff.

14/3.7!

-14/3.7!

208/9.7!

-64/3.7!

16/3.7!

-44/9.7!

-80/9.7!

Polynomial

Rίjkn vWij k

Coeff.

0

Polynomial

Rijij kE k

E;jWij;i

WiJ iE-j

EERijij

ERijij kk

ERijijRknkn

ERijikRnjnk

ERijknRijkn

Coeff.

-1/30

-1/60

1/60

-1/12

-1/30

1/72

-1/180

1/180

The 46 invariants in this table are a basis for P 6 \ The coefficients next to each in-
variant should be multiplied by (4π)-<*/2 and summed to give £ 6 . Each invariant is to
be summed over repeated indices for any orthonormal frame for the tangent bundle.
The notation i?^ fcn;..., Wij;..., and E;... is explained in section two.

Polynomial

E iijj

EE,u

E iiE

RijijE kk

RίjikE jk

Wij;kkWij

WijWij;kk

RijikWkn nj

EQ

Coeff.

1/60

1/12

1/12

-1/36

-1/90

1/60

1/60

0

1

J3/11Π

1

0

0

0

0

0

0

0

1/60

BB/n

0

1

0

0

0

0

0

0

1/12

Table

B/nB

0

0

1

0

0

0

0

0

1/12

I-A

B/22
' #33/11

0

-1/4

-1/4

- 1

0

0

0

0

-1/72

B/n
' #33/11

- 1

-1/4
-1/4

_\

-1/2
0

0

0

-1/40

4̂/1233
'^2/1

0

0

0

0

0

-1/2

0

0

-1/120

-42/1
•A 1/233

0

0

0

0

0

0

-1/2

0

-1/120

^2/211
• #33/11

1/2

1/8

1/8

1/2

1/4

0

0

-1/4

1/80

Polynomial

E iijj

E iE i

Rijij kE k

E jWij i

Wij iE j

Wij;kWij;k

Wij;jWik;k

Rijij kW kn;n

Rijkn;vWij;k

E6

Coeff.

1/60

1/12

-1/30

-1/60

1/60

1/45

1/180

0

0

1

Bn
Bn

0

1

0

0

0

0

0

0

0

1/12

Bn
• #33/111

-1/2

-1/2

- 1

0

0

0

0

0

0

-1/60

Table

Bn
Άι/22

- 1

0

0

1/2

0

0

0

0

0

-1/40

Ϊ I-B

Λ\/22
•Bn

1

0

0

0

1/2

0

0

0

0

1/40

^1/23
A1/23

- 2

0

0

0

0

1

0

0

0

-1/90

A1/22
• ̂ 1/33

-1/2

0

0

0

0

0

1/4

0

0

-1/144

A1/33
• #33/111

0

0

0

0

0

0

0

1/2

- 1

0

^4l/22
• #33/111

0

0

0

0

0

0

0

1/2

0

0
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Table I-C

Polynomial

E 3

EWijWtj

WijEWij

WijWijE

WijWjkWki

WijWij;kk

Wij JcJcWiJ

RijknWijWkn

RijikWjnWkn

RijijWknWkn

E6

Coeff.

1/6

1/30

1/60

1/30

-1/30

1/60*

1/60*

-1/60

1/90

-1/72

1

£ 3

1

0

0

0

0

0

0

0

0

0

1/6

BA1/2

A 2/1

0

-1/2

0

0

0

0

0

0

0

0

-1/60

Ai/2
BA2/1

0

0

-1/2

0

0

0

0

0

0

0

-1/120

A1/2
A2/1B

0

0

0

-1/2

0

0

0

0

0

0

-1/60

A1/2A2/3
As/i

0

0

0

0

-1/8

0

0

0

0

0

1/240

Ai/sAs/i
#33/11

0

1/8

1/8

1/8

0

3/2

-1/2

1/2

1/4

1/2

7/480

^4l/2^2/l
#33/11

0

1/8

1/8

1/8

0

0

0

0

1/8

1/2

7/1440

Aδ/βAe/δ
#33/11

0

1/8

1/8

1/8

0

0

0

0

0

1/2

1/288

*-see preceding tables for determination of the coefficients of this polynomial in Eβ,

Table I-D

Polynomial

EE;ίί**

E 3

E2Rijij

ERίjij kk

ERijίjRknkn

ERijikRnjnk

ERijknRίjkn

E6

Coeff.

1/6*

1/6*

-1/12

-1/30

1/72

-1/180

1/180

1

£2#ll/22

0

-3/4

- 1

0

0

0

0

-1/24

##11/2222

-1/4

0

0

_ 1

0

0

0

-1/120

BH11/22H11/22

7/8

3/16

1/2

4

1

1/2

1

3/160

##ll/33#22/33

1/4

3/8

1

1

2

1/2

0

1/80

##ll/22#33/44

0

3/8

1

0

2

0

0

1/44

*-see preceding tables for determination of this coefficient.

**-we have combined the entries for EE Λ i and E;iiE.

Table I-E

Polynomial

E iijj

E-tE.i

Rijij kE k

Rijij kknn

Rίjij kRnmnm k

Rijik nRjnjmk n

Coeff.**

28*

140*

-56*

- 6

17/3

-2/3

#22/111111

-1/4

0

0

- 1

0

0

#44/133#22/lll

1/2

1/8

1/2

2

2

0

#22/133#22/lll

7/2

1/8

1/2

15

2

1/2

#ll/345#22/345

3

0

0

12

0

3

#ll/345#ll/345

15/2

0

0

36

0

3/2
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Table I-E (Continued)

Polynomial

Rijik nR-mjmn k

Rijkm nRijkm n

E6

Coeff.**

-4/3

3

1680

#22/111111

0

0

- 1

#44/133#22/lll

0

0

17/6

#22/133#22/lll

0

0

17/2

#ll/345#22/345

3

0

6

#ll/345#ll/345

3/2

6

9

**-We have multiplied the coefficients by 1680 to reduce the fractions involved. Thus
the actual coefficient of E ΛE Λ, for example, is 140/1680.

*-see preceding tables for determination of this coefficient.

Table I-F

Polynomial

E iijj

Rijij kknn

EE,U

RijijE; kk

Rijij kkE

RijikE jk

KίjijK-kmkm; nn

RijikRmjmk nn

K-ijiJcitrnjmn kn

^ijkm^-ijkm; nn

E,

Coeff.

28*

- 6 *

280**

-140/3*

-56*

-56/3*

28/3

-8/3

8

4

1680

#ll/3333#22/44

0

0

1/16

1/4

1/4

0

1

0

0

0

7/6

#ll/2222#ll/33

3/4

3

1/16

1/4

1/4

0

1

1/4

0

0

7/2

#ll/3333#22/33

3/4

3

1/16

1/4

1/4

1/8

1

1/4

1/4

0

19/6

#ll/2222#ll/22

9/2

20

1/16

1/4

1/4

1/8

1

1/2

1/4

1

19/2

*-see preceding tables for computation of this coefficient. All coefficients have been
multiplied by 1680 to reduce the number of fractions involved.

**-we have combined the terms in EE Λi and E ΛiE.

Table I-G

Polynomial

EE.U

RijijE kk

E 3

E'Rijij

ERijij kk

ERijijRkmkm

ERijikRmjmk

ERijkmRijkm

RijijRkmkm nn

Coeff.

280**

-140/3*

280*

-140*

-56*

70/3*

-28/3*

28/3*

28/3*

#33/66-flril/44#22/55

0

0

-3/32

-3/8

0

-3/2

0

0

0

#33/66#ll/45#22/45

-1/8

-1/2

0

0

-1/2

0

-1/4

0

- 2

#33/66#ll/45#ll/45

-5/16

-5/4

0

0

-3/2

0

-1/8

-1/2

- 6
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Table I-G (Continued)

Polynomial

RijijRmnmnRopop

KijijΉ-mnmo-K-pnpo

KijijKmnop** 7nnop

E6

Coeff.

-35/27

14/9

-14/9

1680

#33/66#ll/44#22/55

- 6

0

0

-35/36

#33/66#n/45#22/45

0

- 1

0

-14/9

#33/66#ll/45#ll/45

0

-1/2

- 2

-7/3

*-see preceding tables for computation of this coefficient. All coefficients have been
multiplied by 1680 to reduce the number of fractions involved.

**-we have combined the terms in EE-,u and E uE.

Table I-H

Polynomial

E iijj

Rabab ccdd

EE,u

RijijE kk

RijikE jk

Rίjίj kkE

RababRijίj kk

^abac^ibίc; j j

RabacRibij cj

RabcdRabcd ee

E 3

E'Rijij

ERijijRabab

ERabacRdbdc

ERabcdRabcd

RίjijRababRcdcd

RijijRabacRdbdc

RijijRabcdRabcd

RijikRjnmnRkpmp

RijikRnpmpRjnkm

RijikRjnmpRknmp

RijknRijmpRknmp

RijknRimkpRjmnp

EQ

Coeff.

28*

- 6 *

280**

-140/3*

-56/3*

-56*

28/3*

-8/3 ; ί

8*

4*

280*

-140*

70/3*

-28/3*

28/3*

-35/27*

14/9*

-14/9*

208/27

-64/9

16/9

-44/27

-80/27

1680

#ll/44#ll/55

• #11/66

- 3

- 1 2

-3/8

-3/2

0

-3/2

- 6

-6/4

6/8

0

-3/32

-3/8

-3/2

-3/8

0

- 6

-3/2

0

-6/8

0

0

0

0

-175/12

#ll/44#ll/55

• #22/44

-3/4

- 3

-3/16

-3/4

-1/8

-3/4

- 3

-1/2

-4/8

0

-3/32

-3/8

-3/2

-1/4

0

- 6

- 1

0

0

-1/4

0

0

0

-21/4

#ll/44#ll/44

• #22/44

-21/8

- 1 1

-9/32

-9/8

-9/16

-5/4

- 5

-5/4

-9/8

0

-3/64

-3/16

-3/4

-1/4

-1/4

- 3

- 1

- 1

-3/8

-1/4

-1/4

0

0

-61/8

#H/44#ll/44

• #11/44

-79/8

- 4 6

-7/32

-7/8

-7/16

- 1

- 4

- 2

_ι
- 4

-1/64

-1/16

-1/4

-1/8

-1/4

- 1

-1/2

- 1

-2/8

-1/4

-1/2

- 1

0

-305/24

#ll/22#22/33

#33Ί1

-3/4

- 3

3/16

3/4

3/8

3/4

3

3/4

0

0

-6/64

-6/16

-3/2

-6/16

0

- 6

-6/4

0

0

-6/8

0

0

-6/8

-3/4

*-see preceding tables for computation of this coefficient. All coefficients have been
multiplied by 1680 to reduce the number of fractions involved.

**-we have combined the terms in EE-}u and E;uE.
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