THE SPECTRAL GEOMETRY OF
 A RIEMANNIAN MANIFOLD

PETER B. GILKEY

Introduction

Let M be a compact smooth d-dimensional Riemannian manifold without boundary. Let $X=\left(X_{1}, \cdots, X_{d}\right)$ be a system of local coordinates centred at x_{0}. The metric tensor is given by

$$
d s^{2}=g_{i j} d X_{i} \otimes d X_{j} \quad(\text { summed over } i, j=1, \cdots, d)
$$

We adopt the convention of summing over repeated indices except where otherwise indicated. Let $\left(g^{i j}\right)$ denote the inverse of the matrix $\left(g_{i j}\right)$.

Let V be a smooth vector bundle over M and let D be a second order differential operator on V. Let $e=\left(e_{1}, \cdots, e_{r}\right)$ be a local frame for V defined near x_{0}. The coordinate system and frame e comprise a local system which identifies a neighborhood of M with R^{d} and a portion of V with $R^{d} \times R^{r}$. Using this local system, we express the operator D :

$$
D=-\left(h^{i j} \frac{d^{2}}{d x_{i} d x_{j}}+a_{i} \frac{d}{d x_{i}}+b\right)
$$

where $h^{i j}, a_{i}$, and b are square $r \times r$ matrices. Let $\xi \in T^{*} M$ and define

$$
a^{2}(x, \xi)=h^{i j} \xi_{i} \xi_{j}, \quad a^{1}(x, \xi)=-i a_{i} \xi_{i}, \quad a^{0}(x, \xi)=-b
$$

The leading order symbol of D is a^{2}, which is defined invariantly. The lower order terms depend upon the local system chosen.

For the rest of this paper, we assume that the leading symbol is given by the metric tensor, i.e., that $h^{i j}=g^{i j} I=g^{i j}$, which implies $a^{2}(x, \xi)=|\xi|^{2}$. We omit multiplication by the identity matrix on V, and apply the functional calculus to define the operator $\exp (-t D)$ for $t>0 . \operatorname{Exp}(-t D)$ is an infinitely smoothing operator from $L^{2}(V) \rightarrow C^{\infty}(V)$. It is defined by a kernel function $K(t, x, y, D)$ such that :

$$
\exp (-t D) u(x)=\int K(t, x, y, D) u(y) d \operatorname{vol}(y)
$$

$K(t, x, y, D) \operatorname{maps} V_{y}$ to $V_{x}, d \operatorname{vol}(y)$ is the Riemannian measure. Seeley [8] proved that $K(t, x, x, D)$ has an asymptotic expansion as $t \rightarrow 0^{+}$of the form:

[^0]$$
K(t, x, x, D) \sim \sum_{n=0}^{n} E_{n}(x, D) t^{(n-d) / 2}, \quad t \rightarrow 0^{+}
$$

The E_{n} 's are certain endomorphisms defined on the fibre. They vanish for odd n since D is a differential operator. Although the defining relation is global, we can compute them in terms of the derivatives of the symbol of the operator. They are local invariants of the differential operator D. In the first section we review the work of Seeley [8] to obtain explicit combinatorial formulas for E_{n}.

In the second section we apply invariance theory to investigate the form which E_{n} has. We will express E_{n} in terms of noncommutative polynomials in the covariant derivatives of certain tensors. By using H. Weyl's theorem [9], this will express E_{n} as a sum of various contractions of these tensors with unknown coefficients. In the third section we will evaluate these coefficients to determine $E_{0}, E_{2}, E_{4}, E_{6}$. In the final section we apply these results to the Laplace operator acting on functions.

Let V have an inner product (,) and suppose that D is self-adjoint. Take a spectral resolution of D into eigenvalues λ_{i} and corresponding eigenfunctions ϕ_{i}. Let

$$
K(t, x, y, D)=\sum \exp \left(-t \lambda_{i}\right) \phi_{i}(x) \otimes \phi_{i}(y) .
$$

Let $B_{n}(x, D)=$ Trace $\left(E_{n}(x, D), B_{n}(D)=\int B_{n}(x, D) d\right.$ vol (x). Then

$$
\operatorname{Tr}(K(t, x, x, D))=\sum \exp \left(-t \lambda_{i}\right)\left(\phi_{i}, \phi_{i}\right)(x) \sim \sum_{n=0}^{\infty} B_{n}(x, D) t^{(n-d) / 2}
$$

We integrate both sides of this expansion. The ϕ_{i} were an orthonormal basis so they integrate to 1 . Consequently

$$
\exp \left(-t \lambda_{i}\right) \sim \sum_{n=0}^{\infty}\left(\int_{M} B_{n}(x, D) d \operatorname{vol}(x)\right) t^{(n-d) / 2} \sim \sum_{n=0}^{\infty} B_{n}(D) t^{(n-d) / 2}
$$

The numbers $B_{n}(D)$ are invariants of the differential operator, which depend only on its spectrum.

Let D be some Laplacian of differential geometry. The invariants $B_{n}(x, D)$ will be certain expressions in the derivatives of the metric. We suppose that D_{p} is the Laplace-Belltrami operator acting on p-forms. Sakai [7] has computed a formula for $B_{6}\left(D_{0}\right)$. Using this formula, he proved

Theorem (Sakai). Let M, M' be compact, connected orientable Einstein manifolds of dimension 6 which have the same Euler characteristic. Suppose that the spectrum of D_{0} is the same for both manifolds. Then M is symmetric if and only if M^{\prime} is symmetric.

Donnely [2] has been able to improve this result as follows: his major contribution has been to remove the restriction that $d=6$.

Theorem (Donnely). Let M be an Einstein manifold which has the same spectrum for all the operators $D_{p}, p=0, \cdots, d$, as a symmetric space N. Then N is Einstein and M is symmetric.

Donnely's proof goes as follows: he applied a theorem of Patodi's [6] to show under these assumptions that N is Einsteinian. This result uses the computation of Patodi of the invariants $B_{4}\left(D_{p}\right)$. Let P denote the Pfaffian in dimension 6. P can be defined for all values of d. Then it was shown in $(3,5)$ that if $d=6$,

$$
P=\Sigma(-1)^{p} B_{6}\left(x, D_{p}\right) .
$$

By applying the functorial properties of these invariants, this implies that P must be a combination of the invariants $B_{6}\left(x, D_{p}\right)$ for any $d \geq 6$, and therefore that the number $\int P$ is a spectral invariant for any d. Donnely used this observation together with the computation of Sakai to complete the proof.

In this paper, we derive a general formula for the endomorphism E_{6}. In the last section, we use this to derive Sakai's formula for $B_{6}\left(x, D_{0}\right)$. In a later paper, we will apply this formula to determine $B_{6}\left(x, D_{p}\right)$ as well as to determine B_{6} for other second order operators which occur in geometry. We hope that these additional computations will enable us to remove the hypothesis that M is Einsteinian and therby show that the property of being a symmetric space is determined by the spectral geometry of the manifold.

Some of the computations in the determination of E_{6} are long and combinatorial in nature. In an earlier paper [4], we computed the endomorphisms E_{0}, E_{2} and E_{4}. We would like to express our appreciation to B. Galvannoni and M. Freidman at the IBT-CO for making computer time available us for use in the computation of E_{6}.

1. In this section, we derive a combinatorial formula for the endomorphisms E_{n} in terms of the derivatives of the symbol. We assume that the reader is familar with the calculus of pseudo-differential operators depending upon a complex parameter which was developed by Seeley [8]. Our arguments will be purely formal since the questions of convergence have already been dealt with by Seeley.

Let D be as described in the introduction. The symbol of D is given by :

$$
\begin{gathered}
\sigma(D)(x, \xi)=a^{2}(x, \xi)+a^{1}(x, \xi)+a^{0}(x), \\
a^{2}(x, \xi)=|\xi|^{2}, \quad a^{1}(x, \xi)=-i a_{j} \xi_{j}, \quad a^{0}(x, \xi)=-b, \\
D=-\left(g^{i j} \frac{d^{2}}{d x_{i} d x_{j}}+a_{j} \frac{d}{d x_{j}}+b\right),
\end{gathered}
$$

where the a^{j} are homogeneous of order j in the dual variable ξ.
We introduce the following notational conventions:

$$
\begin{aligned}
\alpha & =\left(\alpha_{1}, \cdots, \alpha_{d}\right) \text { is a multi-index }, \\
|\alpha| & =\alpha_{1}+\cdots+\alpha_{d} \text { is the order of } \alpha, \\
\alpha! & =\alpha_{1}!\cdots \alpha_{d}!, \\
d_{\alpha}^{\xi} & =\left(d / d \xi_{1}\right)^{\alpha_{d}} \cdots\left(d / d \xi_{d}\right)^{\alpha_{d}}, \\
D_{x}^{\alpha} & =(-i)^{|\alpha|}\left(d / d x_{1}\right)^{\alpha_{1}} \cdots\left(d / d x_{d}\right)^{\alpha_{d}} .
\end{aligned}
$$

Let c be a matrix or function. Let $c_{/ \alpha}=d_{x}^{\alpha}(c)$. We will also use the notation $c_{/ i_{1} \cdots i_{k}}=d / d x_{i_{1}} \cdots d / d x_{i_{k}}(c)$. We introduce the following notation for the formal derivatives of the symbol of the operator:

$$
\begin{aligned}
g_{i j / \alpha} & =d_{x}^{\alpha}\left(g_{i j}\right) \text { is defined to have order }|\alpha|, \\
a_{i / \alpha} & =d_{x}^{\alpha}\left(a_{i}\right) \text { is defined to have order } 1+|\alpha| \\
b_{/ \alpha} & =d_{x}^{\alpha}(b) \text { is defined to have order } 2+|\alpha|
\end{aligned}
$$

Let P denote the noncommutative algebra in these formal variables and let P_{n} be the linear subspace of all polynomials which are homogeneous of order n. For P in P_{n}, define $P(X, e, D)$ by evaluation in the local system (X, e) on the symbol of the operator D. If the endomorphism defined by P is independent of the particular local system chosen and depends only on the differential operator D, then P is said to be invariant. Let Q be the subalgebra of all invariant expressions in the derivatives of the symbol. Let Q_{n} denote the subspace of invariant polynomials of order n. We will study Q_{6} in detail in the next section.

The leading symbol of D is self-adjoint, positive, nonzero. Let $\varepsilon>0$ be given. The spectrum of D lies in a cone C of slope ε about the real axis. Let P be a path about the cone C with slope 2ε outside some compact set. For λ on P, the operator $(D-\lambda)^{-1}$ is a uniformly bounded compact operator from $L^{2}(V) \rightarrow L^{2}(V)$. The integral

$$
-\frac{1}{2 \pi i} \int_{P} \exp (-t \lambda)(D-\lambda)^{-1} d \lambda
$$

converges absolutely for $t>0$ and defines the operator $\exp (-t D)$.

We construct a pseodo-differential operator to approximate the resolvant
$(D-\lambda)^{-1}$ as follows: let $b(x, \xi, \lambda) \sim b_{0}(x, \xi, \lambda)+\cdots+b_{n}(x, \xi, \lambda)+\cdots$. Let the complex parameter λ have homogeneity 2 . Let the b_{i} be homogeneous of order $-2-i$ in the variables (ξ, λ). This infinite sum defines b asymptotically. The symbol of the composition of the operator defined by b is given by

$$
\sigma(B(D-\lambda)) \sim \sum_{\alpha}\left(d_{\xi}^{\alpha} b\right) \cdot\left(D_{x}^{\alpha}(\sigma(D-\lambda))\right) / \alpha!
$$

Define

$$
\tilde{a}^{2}=|\xi|^{2}-\lambda, \quad \tilde{a}^{1}=a^{1}=-i a_{j} \xi_{j}, \quad \tilde{a}^{0}=a^{0}=-b
$$

Decompose this sum into orders of homogeneity:

$$
\sigma(B(D-\lambda)) \sim \sum_{n=0}^{\infty}\left(\Sigma_{n=j+|\alpha|+2-k}\left(d_{\xi}^{\alpha} b_{j}\right) \cdot\left(D_{x}^{\alpha} a_{k}\right) / \alpha!\right)
$$

The sum is over terms which are homogeneous of order $-n$. We wish to define b so that

$$
\sigma(B(D-\lambda)) \sim I
$$

This yields the equations

$$
\begin{aligned}
I & =\sum_{0=j+|\alpha|+2-k}\left(d_{\xi}^{\alpha} b_{j}\right)\left(D_{x}^{\alpha} \tilde{a}_{k}\right) / \alpha!=b_{0}\left(|\xi|^{2}-\lambda\right) \\
0 & =\sum_{n=j+|\alpha|+2-k}\left(d_{\xi}^{\alpha} b_{j}\right)\left(D_{x}^{\alpha} \tilde{x}_{k}\right) / \alpha! \\
& =b_{n}\left(|\xi|^{2}-\lambda\right)+\sum_{n=j+|\alpha|+2-k}\left(d_{\xi}^{\alpha} b_{j}\right)\left(D_{x}^{\alpha} \tilde{a}_{k}\right) / \alpha!
\end{aligned}
$$

These equations define the b_{n} inductively. In the sum in the second equation, if $k=2$ and $j<n$, then $|\alpha| \neq 0$. Consequently we replace \tilde{a}_{k} by a_{k}. Define

$$
\begin{aligned}
& b_{0}=\left(|\xi|^{2}-\lambda\right)^{-1}, \quad b_{n}=-b_{0}\left(\sum_{j<n}\left(d_{\xi}^{\alpha} b_{j}\right)\left(D_{x}^{\alpha} a_{k}\right) / \alpha!\right) \\
& \quad \text { for } n=j+|\alpha|+2-k .
\end{aligned}
$$

It is clear that b_{0} is a scalar matrix.

Lemma 1.1.

(1) $b_{n}=\sum_{\alpha} b_{n, \alpha}(x) \xi^{\alpha} b_{0}^{k(n, \alpha)}$ for $k(n, \alpha)=\frac{1}{2}(|\alpha|+n+2)$ is an integer,
(2) the $b_{n, \alpha}$ belong to P_{n}.

The proof of this lemma is by induction. It follows immediately from the inductive definition given of the b_{n}. The fact that a_{2} is a scalar matrix is essential in order for us to express the dependence of b_{n} upon the complex parameter in this fashion. This assumption fails when we consider the ETA invariant
defined by Atiyah-Patodi-Singer. It is this fact which makes the computation of the local pole of the ETA function at zero so dificult.

Our final formula will express E_{n} in terms of the matrices $b_{n, \alpha}$. This will imply that $E_{n}(x, D)$ lies in P_{n}. Since $E_{n}(x, D)$ is independent of the particular local system chosen, it is invariant. We will exploit this invariance in the next section.

We use this approximation to the resolvant to define an approximation of $\exp (-t D)$:

$$
e_{n}(x, \xi, t)=-\frac{1}{2 \pi i} \int_{P} \exp (-t \lambda) b_{n}(x, \xi, \lambda) d \lambda
$$

Let $E(t)$ have symbol $e_{0}+\cdots+e_{n}+\cdots . E(t)$ is a pseudo-differential approximation of $\exp (-t D)$. Let H_{s} denote the Sobelev space defined as the completion of the smooth functions in the s-norm to measure L^{2} derivatives. Let A be any pseudo-differential operator. Define $|A|_{s, s^{\prime}}$ to be the operator norm (possibly infinite) of A as a map from H_{s} to $H_{s^{\prime}}$. The following estimates were proved by Seeley:

$$
|E(t)-\exp (-t D)|_{s, s^{\prime}} \leq C\left(s, s^{\prime}, k\right) t^{k} \quad \text { as } t \rightarrow 0
$$

The constants $C\left(s, s^{\prime}, k\right)$ are finite for all s, s^{\prime}, k. Consequently, the difference of these two operators is an infinitely smoothing operator. The diference has a kernel function which dies to infinite order as $t \rightarrow 0$. Consequently, the asymptotic behavior of the kernel function of the operator $\exp (-t D)$ is the same as that of the kernel function of the operator $E(t)$.

The kernel of a pseudo-differential A is given by the equation:

$$
K(x, y)=\int \exp (\xi \cdot(x-y)) \sigma(A)(x, \xi) d \xi \cdot(2 \pi)^{-d}
$$

provided that this integral converges absolutely. The normalizing constant $(2 \pi)^{-d}$ arises from the reverse Fourrier transform. We compute the kernel of $E(t)$:

$$
\begin{aligned}
e_{n}(x, \xi, t) & =-\frac{1}{2 \pi i} \int_{P} b_{n}(x, \xi, \lambda) \exp (-t \lambda) d \lambda \\
& =-\frac{1}{2 \pi i} \sum_{\alpha} \int_{P} b_{n, \alpha}(x) \xi^{\alpha} b_{0}^{k(n, \alpha)} \exp (-t \lambda) d \lambda \\
& =-\sum_{\alpha} b_{n, \alpha}(x) \xi^{\alpha} \int_{P} \frac{1}{(2 \pi)^{d}}\left(|\xi|^{2}-\lambda\right)^{-k(n, \alpha)} \exp (-t \lambda) d \lambda .
\end{aligned}
$$

We evaluate this countour integral using Cauchy's formula. This yields :

$$
e_{n}(x, \xi, t)=\Sigma b_{n, \alpha}(x) \xi^{\alpha} t^{k-1} \exp \left(-t|\xi|^{2}\right) /(k-1)!,
$$

where $k=k(n, \alpha)$. This function dies exponentially as the dual variable tends to infinity. It therefore defines a smooth kernel function. On the diagonal, we compute

$$
K_{n}(t, x, x)=\sum_{\alpha} b_{n, \alpha}(x) t^{k-1} \int \frac{1}{(2 \pi)^{d}(k-1)!} \exp \left(-t|\xi|^{2}\right) \xi^{\alpha} d \xi
$$

We change variables in the integral. This gives rise to the formula

$$
\begin{aligned}
K_{n}(t, x, x) & =\sum_{\alpha} b_{n, \alpha}(x) t^{t-1-|\alpha| / 2-d / 2} c_{d, \alpha} /(k-1)! \\
c_{d, \alpha} & =\int \frac{1}{(2 \pi)^{d}} \xi^{\alpha} \exp \left(-|\xi|^{2}\right) d \xi
\end{aligned}
$$

Since $k(n, \alpha)-1-\frac{1}{2}|\alpha|=\frac{1}{2} n$, this proves that

$$
K_{n}(t, x, x)=t^{(n-d) / 2} \sum_{\alpha} c_{d, \alpha} b_{n, \alpha}(x) /(k-1)!.
$$

Since the kernel function for $E(t)$ is given by $K_{0}+\cdots+K_{n}+\cdots$, and the kernel function for $E(t)$ asymptotically approximates the kernel function for $\exp (-t D)$, this proves the convergence of the series given in the introduction and shows that

$$
E_{n}(x, D)=\sum_{\alpha} b_{n, \alpha}(x) c_{d, \alpha} /(k-1)!
$$

To complete the formula for E_{n}, we must evaluate the harmonic integral defining $c_{d, \alpha}$. Let $\alpha=\left(\alpha_{1}, \cdots, \alpha_{d}\right)$. If any of the α_{i} is an odd integer, this integral vanishes. Consequently, we may suppose that $\alpha=2 \beta$. Since $n=2 k-|\alpha|-2, E_{n}$ is zero unless n is even.

Lemma 1.2. $c_{d, \alpha}=(4 \pi)^{-d / 2}(2 \beta)!/\left(\beta!4^{\mid \beta 1}\right)$.
Note that this formula agrees with the formula given in the author's thesis, which was, however, expressed differently.

Proof. The identity

$$
\sqrt{\pi}=\int_{0}^{\infty} \exp (-r)(r)^{5}=\int_{-\infty}^{\infty} \exp \left(-r^{2}\right) d r
$$

implies that

$$
\begin{aligned}
\int_{-\infty}^{\infty} r^{2 k} \exp \left(-r^{2}\right) d r & =\int_{0}^{\infty} r^{(k-.5)} \exp (-r) d r=(k-.5)(k-1.5) \cdots(.5) \sqrt{\pi} \\
& =\sqrt{\pi}(2 k-1)(2 k-3) \cdots(1) / 2^{k} \\
& =\sqrt{\pi}(2 k)(2 k-1) \cdots(1) /\left((2 k)(2 k-2) \cdots(2) 2^{k}\right) \\
& =\sqrt{\pi}(2 k)!/\left(k!4^{k}\right)
\end{aligned}
$$

Consequently

$$
\begin{aligned}
c_{d, \alpha} & =\int \frac{1}{(2 \pi)^{d}} \xi^{2 \beta} \exp \left(-|\xi|^{2}\right) d \xi=\prod_{i=1}^{d} \int \frac{1}{(2 \pi)^{d}}\left(\xi_{i}^{2 \beta i} \exp \left(-\xi_{i}^{2}\right) d \xi_{i}\right) . \\
& =(\pi)^{d / 2}(2 \beta)!/\left(\beta!4^{|\beta|}(2 \pi)^{d}\right)=(4 \pi)^{-d / 2}(2 \beta)!/\left(\beta!4^{|\beta|}\right) .
\end{aligned}
$$

We summarize our conclusions in

Theorem 1.3.

(1) Define $b_{0}=(|\xi|-\lambda)$ and $b_{n}=-b_{0} \sum\left(d_{\xi}^{\alpha} b_{j}\right)\left(D_{x}^{\alpha} a_{k}\right) / \alpha$! for $n=j+|\alpha|$ $+2-k, j<n$.
(2) $b_{n}=\sum_{\alpha} b_{n, \alpha} \xi^{\alpha} b_{0}^{k(n, \alpha)}$ for $k(n, \alpha)=\frac{1}{2}(2+n+|\alpha|)$.
(3) $\quad E_{n}(x, D)=(4 \pi)^{-d / 2} \Sigma b_{n, 2 \beta}(x)(2 \beta)!/\left(\beta!4^{|\beta|}(k-1)!\right)$.
(4) $E_{n}(x, D)$ belongs to Q_{n}.
2. In this section, we will exhibit a basis for the vector space Q_{6}. We have previously constructed bases for Q_{0}, Q_{1}, Q_{4} in [4]. Let D be as in section one and let V be any connection on V. In a local system, we express $\nabla_{i}(e)=$ $\nabla_{d / d x_{i}}(e)=w_{i}(e)$ where w_{i} is an $r \times r$ matrix called the connection form.

Since M is a Riemannian manifold, let ∇^{r} be the Levi-Civita connection on $T M$. The Christoffel symbols $\Gamma_{i j}{ }^{k}$ are defined by the equation

$$
\nabla_{i}^{r}\left(d / d x_{j}\right)=\Sigma \Gamma_{i j}{ }^{k} d / d x_{k}
$$

We extend the connection to $T^{*} M$ in the natural way. Then

$$
\nabla_{i}^{r}\left(d x_{j}\right)=-\sum_{k} \Gamma_{i k}{ }^{j}\left(d X_{k}\right) .
$$

The connection on $T M$ and V induce connections on the complete tensor algebra. The metric tensor is a map from $T^{*} M \otimes T^{*} M$ to R. We define the operator D_{∇} by

$$
D_{V}: C^{\infty}(V) \xrightarrow{\nabla} C^{\infty}\left(V \otimes T^{*} M\right) \xrightarrow{\nabla} C^{\infty}\left(V \otimes T^{*} M \otimes T^{*} M\right) \xrightarrow{\text { metric }} C^{\infty}(V) .
$$

In polar geodesic coordinates, D is given by the formula

$$
D_{\nabla}(s)=\sum_{i, j}-g^{i j} \nabla_{i} \nabla_{j}(s),
$$

where s is any smooth section to V.
We determine a unique connection from the differential operator D as follows. The operator $\left(D-D_{\nabla}\right)$ is a first order operator for any connection. The leading symbol of this operator is

$$
\sigma\left(D-D_{\nabla}\right)(x, \xi)=\Sigma \xi_{i}\left(a_{i}-2 g^{i j} w_{j}+g^{j k} \Gamma_{j k}{ }^{i}\right)+\text { zero order terms. }
$$

The first order part is invariantly defined. We define the connection uniquely by requiring that $\left(D-D_{r}\right)$ is a 0 -th order operator. This defines the w_{i} by the equations

$$
a_{i}-2 g^{i j} w_{j}+g^{j k} \Gamma_{j k}{ }^{i}=0 \quad \text { for } i=1, \cdots, d
$$

We fix this invariantly defined connection henceforth.
The connection was defined so that $E=\left(D-D_{\nabla}\right)$ is an invariantly defined 0 -th order operator. This implies that E is an endomorphism.

Theorem 2.1. Let D be given. There are a unique connection ∇ on V and a unique endomorphism E of V such that $D=D_{\nabla}+E$.

The derivatives of the symbol of D can be computed in terms of the derivatives of the metric, the derivatives of the connection form w_{i}, and the endomorphism E. Let X be geodesic polar coordinates at x_{0}, and $e\left(x_{0}\right)$ an arbitrary frame for the fibre at x_{0}. Extend e to a smooth frame near x_{0} by parallel transport along the geodesic rays from x_{0}. If we require that $g_{i j}\left(x_{0}\right)=\delta_{i, j}$, then this choice of coordinates is unique up to the action of $O(d)$, and the choice of frame is unique up to the action of $G L(\operatorname{dim}(V))$.

Let

$$
\begin{aligned}
R_{i j k m} & =G\left(\left(\nabla_{i} \nabla_{j}-\nabla_{j} \nabla_{i}\right) d / d x_{k}, d / d x_{m}\right), \\
W_{i j} & =w_{j / i}-w_{i / j}+w_{i} w_{j}-w_{j} w_{i}
\end{aligned}
$$

where $R_{i j k m}$ is the curvature tensor of the Levi-Civita connection on $T M$, and $W_{i j}$ is an $r \times r$ matrix giving the curvature tensor of the connection on V. We covariantly differentiate these tensors and the endomorphism E to form the tensors

$$
R_{i j k m ; i_{1} \cdots i_{s}}, \quad W_{i j ; i_{1} \cdots i_{s}}, \quad E_{; i_{1} \cdots i_{s}} .
$$

These tensors are of order $2+s$ in the derivatives of the symbol of the operator. The notation ";" denotes covariant differentiation.

Since X is a system of geodesic polar coordinates, we can express the ordinary derivatives of the metric tensor in terms of the $R_{i j k m ; \ldots}$ tensors at x_{0}. Furthermore, we can express the ordinary derivatives of the connection form w_{i} at x_{0} in terms of the values of the $R_{i j k m ; \ldots}$ and $W_{i j ; \ldots}$ tensors at x_{0}. Finally, it is clear that we can compute the ordinary derivatives of the endomorphism E in terms of the $E_{; \ldots}$ tensors and the derivatives of the metric and connection forms. (A proof of these facts is to be found in the appendix to [1]). Consequently, we can express any element of Q_{n} in terms of the tensors listed above.

Since we are considering endomorphism valued invariants, the action of $G L(\operatorname{dim}(V))$ on the choice of frame can be ignored. We apply H. Weyl's
theorem [9] on the invariants of the orthogonal group to deduce that every element of Q_{n} can be constructed in terms of contractions of indices. Since the algebra of invariant polynomials is noncommutative, we must consider contractions of all possible noncommutative expressions. This proves

Theorem 2.2. A basis for Q_{n} can be constructed, which consists of contractions of various noncommutative expressions in the tensors listed above which are of order n. We contract these tensors by summing over repeated indices.

We first consider those invariants which depend on the metric tensor alone. Donnely [2] has computed all the invariants of the metric tensor, which are of order 6. These are listed in the first column of table I of the appendix. Next, we consider those invariant expressions depending only on the metric and connection curvature tensors. After reducing by the Bianchi identities, there are a total of 11 such expressions which are listed in the third column of table I. Finally, we consider those invariants which involve the endomorphism E. There are 18 such expressions which are listed in fifth column of table I. The computations showing that these 46 invariants are linearly independent and span Q_{6} are routine in nature and are therefore omitted. In the next section, we express E_{6} in terms of these 46 invariants.
3. In an earlier paper [4], we computed that

$$
\begin{aligned}
E_{0}= & (4 \pi)^{-d / 2} I, \\
E_{2}= & (4 \pi)^{-d / 2}\left(E-\frac{1}{6} R_{i j i j}\right), \\
E_{4}= & (4 \pi)^{-d / 2}\left(\left(-\frac{1}{30} R_{i j i j ; k k}+\frac{1}{72} R_{i j i j} R_{k m k m}-\frac{1}{180} R_{i j i k} R_{n j n k}\right.\right. \\
& \left.\left.+\frac{1}{180} R_{i j k n} R_{i j k n}\right)-\frac{1}{6} R_{i j i j} E+\frac{1}{2} E^{2}+\frac{1}{12} W_{i j} W_{i j}+\frac{1}{6} E_{; k k}\right) .
\end{aligned}
$$

We sum over repeated indices in any orthonormal frame for $T M$. The $R_{i j k m ; \ldots}$ tensor acts on V by scalar multiplication.

The formula for E_{6} involves 46 terms and is much more complex. A basis for the invariants of order 6 is given in table I. Suppose that these invariants are denoted by P_{1}, \cdots, P_{46}. Since E_{6} is an invariant of order 6 , we can express $E=c_{1} P_{1}+\cdots+c_{46} E_{46}$ where the c_{i} 's are certain universal constants. These constants are listed in table I. Thus our formula reads

$$
E_{6}=(4 \pi)^{-d / 2}\left(-\frac{18}{7}!R_{i j i j ; k k n n}+\cdots+\frac{1}{180} E R_{i j k n} R_{i j k n}\right) .
$$

The remainder of this section is devoted to the determination of the constants c_{i}. They are determined by considering the following special example: let M be the d-dimensional torus for some $d \geq 6$. Choose a metric of the form

$$
d s^{2}=g_{i} d x_{i}{ }^{2}
$$

Suppose that $g_{i / i}$ vanishes identically. Let $h_{i}=g_{i}{ }^{-1}$ be the inverse function.

The Christoffel sumbols $\Gamma_{i j}{ }^{k}$ vanish identically unless exactly two of the indices are equal. We compute that

$$
\Gamma_{i i}{ }^{j}=\frac{1}{2} h_{j} h_{i}^{-2} h_{j / i}, \quad \Gamma_{i j}{ }^{i}=\Gamma_{j i}{ }^{i}=-\frac{1}{2} h_{i}^{-1} h_{i / j} .
$$

The curvature tensor tensor $R_{i j k m}$ vanishes unless at least two of the indices agree. We compute that

$$
\begin{aligned}
R_{i j i j}= & \frac{3}{4}\left(h_{i}^{-3}\left(h_{i / j}\right)^{2}+h_{j}^{-3}\left(h_{j / i}\right)^{2}-\frac{1}{2}\left(h_{i}^{-2} h_{i / j j}+h_{j}^{-2} h_{j / i i}\right)\right. \\
& +\frac{1}{4} \sum_{k \neq i, j} h_{i}^{-2} h_{j}^{-2} h_{i / k} h_{j / k}, \\
R_{i j i k}= & \frac{3}{4}\left(h_{i}^{-3} h_{i / j} h_{i / k}\right)-\frac{1}{2}\left(h_{i}^{-2} h_{i / j k}\right) \\
& -\frac{1}{4}\left(h_{j}^{-1} h_{j / k} h_{i / j}+h_{k}^{-1} h_{k / j} h_{i / k}\right) \quad \text { for } j \neq k .
\end{aligned}
$$

In these two formulas, we do not sum over repeated indices. The other nonzero curvatures can be obtained from these two by using the symmetries.

Let $V=M \times R^{r}$, and let a_{1}, \cdots, a_{d} and b be $r \times r$ matrix valued functions. We suppose that a_{i} is not a function of x_{i}-i.e., $a_{i / i}=0$. Let D be the differential operator

$$
D=-\left(h_{i} d^{2} / d x_{i}^{2}+a_{i} d / d x_{i}+b\right) \quad \text { summed over repeated indices. }
$$

This differential operator defines a connection on V. The connection form is

$$
w_{i}=\frac{1}{2} h_{i}^{-1}\left(a_{i}+\sum_{j} h_{j} \Gamma_{j j}^{i}\right)=\frac{1}{2} h_{i}^{-1} a_{i}+\frac{1}{4} \sum_{k} h_{k}^{-1} h_{k / i} .
$$

The sum over k ranges over $k \neq i$ since $h_{i / i}=0$. The curvature form is

$$
\begin{aligned}
W_{i j}= & \frac{1}{4} h_{i}^{-1} h_{j}^{-1}\left(a_{i} a_{j}-a_{j} a_{i}\right)+\frac{1}{2} h_{j}^{-1} a_{j / i}-\frac{1}{2} h_{i}^{-1} a_{i / j} \\
& -\frac{1}{2} h_{j}^{-2} h_{j / i} a_{j}+\frac{1}{2} h_{i}^{-2} h_{i / j} a_{i} .
\end{aligned}
$$

The endomorphism E defined by the operator D is given by

$$
\begin{aligned}
E= & b-\frac{1}{4} \sum_{i} h_{i}^{-1} a_{i}^{2}+\sum_{i, k}\left(-\frac{1}{4} h_{k}^{-1} h_{i} h_{k / i i}\right)+\frac{5}{16} h_{k}^{-2} h_{i}\left(h_{k / i}\right)^{2} \\
& +\sum_{i} \sum_{j<k} \frac{1}{8} h_{j}^{-1} h_{k}^{-1} h_{j / i} h_{k / i} .
\end{aligned}
$$

These formulas together with the formulas for differentiating tensors enables us to express all the invariants listed in table I in terms of the ordinary derivatives of the functions h_{i} and matrices a_{i} and b.

By using the combinatorial formulas obtained in the first section, we can express the endomorphism E_{6} for this operator in terms of the ordinary deriva-
tives of the functions h_{i} and matrices a_{i} and b. We have the identity $E=c_{1} P_{1}$ $+\cdots+c_{46} P_{46}$. This gives rise to a certain system of equations in the derivatives of these functions and matrices. This system is given in tables I-A and following. It is invertible and enables us to determine the c_{i} 's.

We illustrate this method as follows: we apply the formula of the first section to compute that the coefficient of the monomial $b_{/ 1111}$ in E_{6} is $\frac{1}{60}$. The only invariant of table I which contains the term $b_{/ 1111}$ is $E_{; i i j j}$. Furthermore, the coefficient of b_{11111} in $E_{; i i j j}$ is 1 . This implies that the coefficient of $E_{; i i j j}$ in the expansion of E_{6} must be $\frac{1}{60}$ which is indicated in the sixth column of table I. The determination becomes more complicated for the other invariants. We are solving an upper-triangular system of equations which is very sparce. In tables I-A through I-H, we carry out the computations to determine the coefficients which are given in table I.

We consider a very special example in which the computations are particularly simple. This example gives us enough information to determine the coefficients c_{i} 's and hence to determine E_{6} for a general operator.
4. In this section, we apply the formula of table I to obtain Sakai's formula. Let D_{0} be the Laplace-Beltrami operator acting on functions. For this operator, the connection ∇ on the vector bundle $M \times R$ is flat. The endomorphism E is zero. Consequently, $E_{6}\left(x, D_{0}\right)$ is given by summing over the first column of table I with the indicated coefficients. Since the vector bundle is 1-dimensional, $B_{6}\left(x, D_{0}\right)=E_{6}\left(x, D_{0}\right)$. In order to obtain Sakai's formula for the integral of $B_{6}\left(x, D_{0}\right)$, we must integrate by parts. We use the relations:

$$
\begin{aligned}
& \int R_{i j i j ; k k m m}=0, \\
& \int R_{i j i j ; n} R_{k m k m ; n}+R_{i j i j} R_{k m k m ; n n}=0, \\
& \int R_{i j i k ; n} R_{m j m k ; n}+R_{i j i k} R_{m j m k ; n n}=0, \\
& \int R_{i j i k ; n} R_{m j m n ; k}+R_{i j i k} R_{m j m n ; k n}=0, \\
& \int R_{i j i k ; n} R_{m j m n ; k}=\int \frac{1}{4} R_{i j i j ; n} R_{k m k m ; n}+R_{i j i k} R_{m j m p} R_{q k q p} \\
& -R_{i j i k} R_{m p m q} R_{j p k q}, \\
& \int R_{i j k n} R_{i m k p} R_{j m n p}=\int-\frac{1}{4} R_{i j i j ; n} R_{k m k m ; n}+R_{i j i k ; n} R_{m j m k ; n} \\
& -\frac{1}{4} R_{i j k m ; n} R_{i j k m ; n}-R_{i j i k} R_{j n m n} R_{k p m p} \\
& +R_{i j i k} R_{n p m p} R_{j n k m}+\frac{1}{2} R_{i j i k} R_{j n m p} R_{k n m p} \\
& -\frac{1}{4} R_{i j k n} R_{i j m p} R_{k n m p} .
\end{aligned}
$$

We use these relations together with table I to prove

Theorem 4.1.

$$
\begin{align*}
B_{6}\left(x, D_{0}\right)= & \frac{(4 \pi)^{-d / 2}}{7!}\left(-18 R_{i j i j j ; k m m}+17 R_{i j i j ; k} R_{m n m n ; k}\right. \tag{1}\\
& -2 R_{i j i k ; n} R_{m j m k ; n}-4 R_{i j i k ; n} R_{m j m n ; k}+9 R_{i j k m ; n} R_{i j k m ; n} \\
& +28 R_{i j i j} R_{k m k m ; n n}-8 R_{i j i k} R_{m j m k ; n n}+24 R_{i j i k} R_{m j m n ; k n} \\
& +12 R_{i j k m} R_{i j k m ; n n}-\frac{35}{9} R_{i j i j} R_{m n m n} R_{p q p q} \\
& +\frac{14}{3} R_{i j i j} R_{m n m p} R_{q n q p}-\frac{14}{3} R_{i j i j} R_{m n p q} R_{m n p q} \\
& +\frac{200}{9} R_{i j i k k} R_{j n m n} R_{k p m p}-\frac{64}{3} R_{i j i k} R_{n p m p} R_{j n k m} \\
& +\frac{16}{3} R_{i j i k} R_{\text {jnmp }} R_{k n m p}-\frac{44}{9} R_{i j k n} R_{i j m p} R_{k n m p} \\
& \left.-\frac{80}{9} R_{i j k n} R_{i m k p} R_{j m n p}\right) .
\end{align*}
$$

(2) $\quad B_{6}\left(D_{0}\right)=\int_{M} B_{6}\left(x, D_{0}\right) d \operatorname{vol}(x)$

$$
\begin{aligned}
= & \frac{(4 \pi)^{-d / 2}}{7!} \int_{M}\left(-\frac{142}{9} R_{i j i j ; k} R_{m n m n ; k}-\frac{26}{9} R_{i j i k ; n} R_{m j m k ; n}\right. \\
& -\frac{7}{9} R_{i j k m ; n} R_{i j k m ; n}-\frac{35}{9} R_{i j i j} R_{m n m n} R_{p q p q} \\
& +\frac{14}{3} R_{i j i j} R_{m n m p} R_{q n q p}-\frac{14}{3} R_{i j i j} R_{m n p q} R_{m n p q} \\
& +4 R_{i j i k} R_{j n m n} R_{k p m p}-\frac{20}{9} R_{i j i k} R_{n p m p} R_{j n k m} \\
& \left.+\frac{8}{9} R_{i j i k} R_{j n m p} R_{k n m p}-\frac{8}{3} R_{i j k n} R_{i j m p} R_{k n m p}\right) d \mathrm{vol} .
\end{aligned}
$$

In these formulas we sum over repeated indices. This answer agrees with the formula given by Sakai for $B_{6}\left(D_{0}\right)$. In a later paper, we will apply the formula in table I to compute $B_{6}\left(D_{p}\right)$ as well as for the reduced Laplacian $\left(-g^{i j} \nabla_{i} \nabla_{j}\right)$ acting on tensors of all types.

Table I

Polynomial	Coeff.	Polynomial	Coeff.	Polynomial	Coeff.
$R_{i j i j ; k k m m}$	$-18 / 7!$	$W_{i j ; k} W_{i j ; k}$	$1 / 45$	$E_{; i i j j}$	$1 / 60$
$R_{i j i j ; k} R_{n m n m ; k}$	$17 / 7!$	$W_{i j ; j} W_{i k ; k}$	$1 / 180$	$E E_{; i i}$	$1 / 12$
$R_{i j i k ; n} R_{m j m k ; n}$	$-2 / 7!$	$W_{i j ; k k} W_{i j}$	$1 / 60$	$E_{; i i} E$	$1 / 12$
$R_{i j i k ; n} R_{m j m n ; k}$	$-4 / 7!$	$W_{i j} W_{i j ; k k}$	$1 / 60$	$E_{i ;} E_{; i}$	$1 / 12$
$R_{i j k m ; n} R_{i j k m ; n}$	$9 / 7!$	$W_{i j} W_{j k} W_{k i}$	$-1 / 30$	E^{3}	$1 / 6$
$R_{i j i j} n_{k m k m ; n n}$	$28 / 7!$	$R_{i j k n} W_{i j} W_{k n}$	$-1 / 60$	$E W_{i j} W_{i j}$	$1 / 30$
$R_{i j i k} R_{m j m k ; n n}$	$-8 / 7!$	$R_{i j i k} W_{j n} W_{k n}$	$1 / 90$	$W_{i j} W_{i j}$	$1 / 60$
$R_{i j i k} R_{m j m n ; k n}$	$24 / 7!$	$R_{i j i j} W_{k n} W_{k n}$	$-1 / 72$	$W_{i j} W_{i j} E$	$1 / 30$
$R_{i j k m} R_{i j k m ; n n}$	$12 / 7!$	$R_{i j i k} W_{k n ; n j}$	0	$R_{i j i j} E_{; k k}$	$-1 / 36$
$R_{i j i j} R_{m n m n} R_{p q p q}$	$-35 / 9.7!$	$R_{i j i j ; k} W_{k n ; n}$	0	$R_{i j i k} E_{; j k}$	$-1 / 90$

Table I (Continued)

Polynomial	Coeff.	Polynomial	Coeff.	Polynomial	Coeff.
$R_{i j i j} R_{m n m p} R_{q n q p}$	$14 / 3.7!$	$R_{i j k n ; n} W_{i j ; k}$	0	$R_{i j i j ; k} E_{; k}$	$-1 / 30$
$R_{i j i j} R_{m n p q} R_{m n p q}$	$-14 / 3.7!$			$E_{; j} W_{i j ; i}$	$-1 / 60$
$R_{i j i k} R_{j n m n} R_{h p m p}$	$208 / 9.7!$			$W_{i j ; i} E_{; j}$	$1 / 60$
$R_{i j i k} R_{n p m p} R_{j n k m}$	$-64 / 3.7!$		$E E R_{i j i j}$	$-1 / 12$	
$R_{i j i k} R_{j n m p} R_{k n m p}$	$16 / 3.7!$		$E R_{i j i j ; k k}$	$-1 / 30$	
$R_{i j k n} R_{i j m p} R_{k n m p}$	$-44 / 9.7!$			$E R_{i j i j} R_{k n k n}$	$1 / 72$
$R_{i j k n} R_{i m k p} R_{j m n p}$	$-80 / 9.7!$		$E R_{i j i k} R_{n j n k}$	$-1 / 180$	
			$E R_{i j k n} R_{i j k n}$	$1 / 180$	

The 46 invariants in this table are a basis for $P_{6}{ }^{i}$. The coefficients next to each invariant should be multiplied by $(4 \pi)^{-d / 2}$ and summed to give E^{6}. Each invariant is to be summed over repeated indices for any orthonormal frame for the tangent bundle. The notation $R_{i j k n} ; \ldots, W_{i j} ; \ldots$, and $E_{;} \ldots$ is explained in section two.

Table I-A

Polynomial	Coeff.	$\boldsymbol{B}_{/ 1111}$	$\boldsymbol{B} \boldsymbol{B}_{/ 11}$	$\boldsymbol{B}_{/ 11} \boldsymbol{B}$	$\boldsymbol{B}_{/ 22}$ $\cdot \boldsymbol{H}_{33 / 11}$	$\boldsymbol{B}_{/ 11}$ $\cdot \boldsymbol{H}_{33 / 11}$	$\boldsymbol{A}_{/ 1233}$ $\cdot \boldsymbol{A}_{2 / 1}$	$\boldsymbol{A}_{2 / 1}$ $\cdot \boldsymbol{A}_{1 / 233}$	$\boldsymbol{A}_{2 / 211}$ $\cdot \boldsymbol{H}_{33 / 11}$
$\boldsymbol{E}_{; i i j j j}$	$1 / 60$	1	0	0	0	-1	0	0	$1 / 2$
$E E_{; i i}$	$1 / 12$	0	1	0	$-1 / 4$	$-1 / 4$	0	0	$1 / 8$
$E_{; i i} E$	$1 / 12$	0	0	1	$-1 / 4$	$-1 / 4$	0	0	$1 / 8$
$\boldsymbol{R}_{i j i j} E_{; k k}$	$-1 / 36$	0	0	0	-1	-1	0	0	$1 / 2$
$\boldsymbol{R}_{i j i k} E_{; j k}$	$-1 / 90$	0	0	0	0	$-1 / 2$	0	0	$1 / 4$
$W_{i j ; k k} W_{i j}$	$1 / 60$	0	0	0	0	0	$-1 / 2$	0	0
$W_{i j} W_{i j ; k k}$	$1 / 60$	0	0	0	0	0	0	$-1 / 2$	0
$R_{i j i k} W_{k n ; n j}$	0	0	0	0	0	0	0	0	$-1 / 4$
E_{6}	1	$1 / 60$	$1 / 12$	$1 / 12$	$-1 / 72$	$-1 / 40$	$-1 / 120$	$-1 / 120$	$1 / 80$

Table I-B

Polynomial	Coeff.	$\begin{aligned} & \boldsymbol{B}_{/ 1} \\ & \cdot \boldsymbol{B}_{/ 1} \end{aligned}$	$\begin{aligned} & B_{/ 1} \\ & \cdot H_{33 / 111} \end{aligned}$	$\begin{aligned} & B_{/ 1} \\ & \cdot \boldsymbol{A}_{1 / 22} \end{aligned}$	$\begin{gathered} A_{1 / 22} \\ \cdot \boldsymbol{B}_{/ 1} \end{gathered}$	$\begin{aligned} & A_{1 / 23} \\ & \cdot A_{1 / 23} \end{aligned}$	$\begin{aligned} & A_{1 / 22} \\ & \cdot A_{1 / 33} \end{aligned}$	$\begin{aligned} & A_{1 / 33} \\ & \cdot H_{33 / 111} \end{aligned}$	$\begin{aligned} & A_{1 / 22} \\ & \cdot H_{33 / 111} \end{aligned}$
$E_{; i i j j}$	1/60	0	$-1 / 2$	-1	1	-2	$-1 / 2$	0	0
$E_{; i} E_{; i}$	1/12	1	-1/2	0	0	0	0	0	0
$R_{i j i j ; k} E_{; k}$	$-1 / 30$	0	-1	0	0	0	0	0	0
$E_{; j} W_{i j ; i}$	$-1 / 60$	0	0	1/2	0	0	0	0	0
$W_{i j ; i} E_{; j}$	1/60	0	0	0	1/2	0	0	0	0
$W_{i j ; k} W_{i j ; k}$	1/45	0	0	0	0	1	0	0	0
$W_{i j ; j} W_{i k ; k}$	1/180	0	0	0	0	0	1/4	0	0
$\boldsymbol{R}_{i j i j ; k} W_{k n ; n}$	0	0	0	0	0	0	0	1/2	1/2
$R_{i j k n ; n} W_{i j ; k}$	0	0	0	0	0	0	0	-1	0
E_{6}	1	1/12	$-1 / 60$	-1/40	1/40	-1/90	$-1 / 144$	0	0

Table I-C

Polynomial	Coeff.	B^{3}	$B A_{1 / 2}$ $A_{2 / 1}$	$A_{1 / 2}$ $B A_{2 / 1}$	$A_{1 / 2}$ $A_{2 / 1} B$	$A_{1 / 2} A_{2 / 3}$ $A_{3 / 1}$	$A_{1 / 3} A_{3 / 1}$ $H_{33 / 11}$	$A_{1 / 2} A_{2 / 1}$ $H_{33 / 11}$	$\boldsymbol{A}_{5 / 6} A_{6 / 5}$ $H_{33 / 11}$
E^{3}	$1 / 6$	1	0	0	0	0	0	0	0
$E W_{i j} W_{i j}$	$1 / 30$	0	$-1 / 2$	0	0	0	$1 / 8$	$1 / 8$	$1 / 8$
$W_{i j} E W_{i j}$	$1 / 60$	0	0	$-1 / 2$	0	0	$1 / 8$	$1 / 8$	$1 / 8$
$W_{i j} W_{i j} E$	$1 / 30$	0	0	0	$-1 / 2$	0	$1 / 8$	$1 / 8$	$1 / 8$
$W_{i j} W_{j k} W_{k i}$	$-1 / 30$	0	0	0	0	$-1 / 8$	0	0	0
$W_{i j} W_{i j ; k k}$	$1 / 60^{*}$	0	0	0	0	0	$3 / 2$	0	0
$W_{i j ; k k} W_{i j}$	$1 / 60^{*}$	0	0	0	0	0	$-1 / 2$	0	0
$R_{i j k n} W_{i j} W_{k n}$	$-1 / 60$	0	0	0	0	0	$1 / 2$	0	0
$R_{i j i k} W_{j n} W_{k n}$	$1 / 90$	0	0	0	0	0	$1 / 4$	$1 / 8$	0
$R_{i j i j} W_{k n} W_{k n}$	$-1 / 72$	0	0	0	0	0	$1 / 2$	$1 / 2$	$1 / 2$
E_{6}	1	$1 / 6$	$-1 / 60$	$-1 / 120$	$-1 / 60$	$1 / 240$	$7 / 480$	$7 / 1440$	$1 / 288$

*-see preceding tables for determination of the coefficients of this polynomial in E_{6}.

Table I-D

Polynomial	Coeff.	$B^{2} H_{11 / 22}$	$B H_{11 / 2222}$	$B H_{11 / 22} H_{11 / 22}$	$B H_{11 / 33} H_{22 / 33}$	$B H_{11 / 22} H_{33 / 44}$
$E E_{; i i^{* *}}$	$1 / 6^{*}$	0	$-1 / 4$	$7 / 8$	$1 / 4$	0
E^{3}	$1 / 6^{*}$	$-3 / 4$	0	$3 / 16$	$3 / 8$	$3 / 8$
$E^{2} R_{i j i j}$	$-1 / 12$	-1	0	$1 / 2$	1	1
$E R_{i j i j ; k k}$	$-1 / 30$	0	-1	4	1	0
$E R_{i j i j} R_{k n k n}$	$1 / 72$	0	0	1	2	2
$E R_{i j i k} R_{n j n k}$	$-1 / 180$	0	0	$1 / 2$	$1 / 2$	0
$E R_{i j k n} R_{i j k n}$	$1 / 180$	0	0	1	0	0
E_{6}	1	$-1 / 24$	$-1 / 120$	$3 / 160$	$1 / 80$	$1 / 44$

*-see preceding tables for determination of this coefficient.
**-we have combined the entries for $E E_{; i i}$ and $E_{; i i} E$.

Table I-E

Polynomial	Coeff.**	$H_{22 / 111111}$	$H_{44 / 133} H_{22 / 111}$	$H_{22 / 133} H_{22 / 111}$	$H_{11 / 345} H_{22 / 345}$	$H_{11 / 345} H_{11 / 345}$
$E_{; i i j j}$	28^{*}	$-1 / 4$	$1 / 2$	$7 / 2$	3	$15 / 2$
$E_{; i} E_{; i}$	140^{*}	0	$1 / 8$	$1 / 8$	0	0
$R_{i j i j ; k} E_{; k}$	-56^{*}	0	$1 / 2$	$1 / 2$	0	0
$R_{i j i j ; k k n n}$	-6	-1	2	15	12	36
$R_{i j i j ; k} R_{n m n m ; k}$	$17 / 3$	0	2	2	0	0
$R_{i j i k ; n} R_{m j m k ; n}$	$--2 / 3$	0	0	$1 / 2$	3	$3 / 2$

Table I-E (Continued)

Polynomial	Coeff.**	$H_{22 / 111111}$	$H_{44 / 133} H_{22 / 111}$	$H_{22 / 133} H_{22 / 111}$	$H_{11 / 345} H_{22 / 345}$	$H_{11 / 345} H_{11 / 345}$
$R_{i j i k ; n} R_{m j m n ; k}$	$-4 / 3$	0	0	0	3	$3 / 2$
$R_{i j k m ; n} R_{i j k m ; n}$	3	0	0	0	0	6
E_{6}	1680	-1	$17 / 6$	$17 / 2$	6	9

**-We have multiplied the coefficients by 1680 to reduce the fractions involved. Thus the actual coefficient of $E_{; i} E_{; i}$, for example, is $140 / 1680$.
*-see preceding tables for determination of this coefficient.

Table I-F

Polynomial	Coeff.	$H_{11 / 3333} H_{22 / 44}$	$H_{11 / 2222} H_{11 / 33}$	$H_{11 / 3333} H_{22 / 33}$	$H_{11 / 2222} H_{11 / 22}$
$E_{; i i j j}$	28^{*}	0	$3 / 4$	$3 / 4$	$9 / 2$
$R_{i j i j ; k k n n}$	-6^{*}	0	3	3	20
$E E_{; i i}$	$280^{* *}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
$R_{i j i j} E_{; k k}$	$-140 / 3^{*}$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
$R_{i j i j ; k k} E$	-56^{*}	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
$R_{i j i k} E_{; j k}$	$-56 / 3^{*}$	0	0	$1 / 8$	$1 / 8$
$R_{i j i j} R_{k m k m ; n n}$	$28 / 3$	1	1	1	1
$R_{i j i k} R_{m j m k ; n n}$	$-8 / 3$	0	$1 / 4$	$1 / 4$	$1 / 2$
$R_{i j i k} R_{m j m n ; k n}$	8	0	0	$1 / 4$	$1 / 4$
$R_{i j k m} R_{i j k m ; n n}$	4	0	0	0	1
E_{6}	1680	$7 / 6$	$7 / 2$	$19 / 6$	$19 / 2$

*-see preceding tables for computation of this coefficient. All coefficients have been multiplied by 1680 to reduce the number of fractions involved.
${ }^{* * *}$-we have combined the terms in $E E_{; i i}$ and $E_{; i i} E$.

Table I-G

Polynomial	Coeff.	$H_{33 / 66} H_{11 / 44} H_{22 / 55}$	$H_{33 / 66} H_{11 / 45} H_{22 / 45}$	$H_{33 / 66} H_{11 / 45} H_{11 / 45}$
$E E_{; i i}$	$280^{* *}$	0	$-1 / 8$	$-5 / 16$
$R_{i j i j} E_{; k k}$	$-140 / 3^{*}$	0	$-1 / 2$	$-5 / 4$
E^{3}	280^{*}	$-3 / 32$	0	0
$E^{2} R_{i j i j}$	-140^{*}	$-3 / 8$	0	0
$E R_{i j i j ; k k}$	-56^{*}	0	$-1 / 2$	$-3 / 2$
$E R_{i j i j} R_{k m k m}$	$70 / 3^{*}$	$-3 / 2$	0	0
$E R_{i j i k} R_{m j m k}$	$-28 / 3^{*}$	0	$-1 / 4$	$-1 / 8$
$E R_{i j k m} R_{i j k m}$	$28 / 3^{*}$	0	0	$-1 / 2$
$R_{i j i j} R_{k m k m ; n n}$	$28 / 3^{*}$	0	-2	-6

Table I-G (Continued)

Polynomial	Coeff.	$H_{33 / 66} H_{11 / 44} H_{22 / 55}$	$H_{33 / 66} H_{11 / 45} H_{22 / 45}$	$H_{33 / 66} H_{11 / 45} H_{11 / 45}$
$R_{i j i j} R_{m n m n} R_{\text {opop }}$	$-35 / 27$	-6	0	0
$R_{i j i j} R_{m n m o} R_{\text {pnpo }}$	$14 / 9$	0	-1	$-1 / 2$
$R_{i j i j} R_{\text {mnop }} R_{\text {mnop }}$	$-14 / 9$	0	0	-2
E_{6}	1680	$-35 / 36$	$-14 / 9$	$-7 / 3$

*-see preceding tables for computation of this coefficient. All coefficients have been multiplied by 1680 to reduce the number of fractions involved.
${ }^{*} *$-we have combined the terms in $E E_{; i i}$ and $E_{; i i} E$.

Table I-H

Polynomial	Coeff.	$\left\|\begin{array}{c} H_{11 / 44} H_{11 / 55} \\ \cdot H_{11 / 66} \end{array}\right\|$	$\left\|\begin{array}{c} H_{11 / 44} H_{11 / 55} \\ \cdot H_{22 / 44} \end{array}\right\|$	$\begin{gathered} H_{11 / 44} H_{11 / 44} \\ \cdot H_{22 / 44} \end{gathered}$	$\begin{gathered} H_{11 / 44} H_{11 / 44} \\ \cdot H_{11 / 44} \end{gathered}$	$\begin{gathered} H_{11 / 22} H_{22 / 33} \\ \cdot H_{33} / 11 \end{gathered}$
$E_{; i i j j}$	28*	-3	$-3 / 4$	-21/8	-79/8	-3/4
$R_{a b a b ; c c d d}$	-6^{*}	-12	-3	-11	-46	-3
$E E_{; i i}$	280**	$-3 / 8$	$-3 / 16$	-9/32	$-7 / 32$	3/16
$R_{i j i j} E_{; k k}$	-140/3*	$-3 / 2$	$-3 / 4$	-9/8	$-7 / 8$	3/4
$R_{i j i k} E_{; j k}$	$-56 / 3^{*}$	0	$-1 / 8$	$-9 / 16$	$-7 / 16$	3/8
$R_{i j i j ; k k} E$	-56*	$-3 / 2$	$-3 / 4$	$-5 / 4$	-1	3/4
$R_{a b a b} \mathrm{R}_{i j i j ; \text { jk }}$	28/3*	-6	-3	-5	-4	3
$R_{a b a c} R_{i b i c ; j j}$	$-8 / 3^{*}$	-6/4	$-1 / 2$	-5/4	-2	3/4
$R_{a b a c} R_{i b i j ; c j}$	8*	6/8	$-4 / 8$	-9/8	-1	0
$R_{a b c d} R_{a b c d ; e e}$	4*	0	0	0	-4	0
E^{3}	280**	$-3 / 32$	$-3 / 32$	$-3 / 64$	-1/64	-6/64
$E^{2} R_{i j i j}$	-140*	$-3 / 8$	$-3 / 8$	$-3 / 16$	-1/16	$-6 / 16$
$E R_{i j i j} R_{\text {abab }}$	70/3*	$-3 / 2$	$-3 / 2$	-3/4	-1/4	$-3 / 2$
$E R_{a b a c} R_{d b d c}$	$-28 / 3 *$	$-3 / 8$	$-1 / 4$	$-1 / 4$	$-1 / 8$	$-6 / 16$
$E R_{a b c d} R_{a b c d}$	28/3*	0	0	$-1 / 4$	$-1 / 4$	0
$R_{i j i j} R_{a b a b} R_{c d c d}$	-35/27*	-6	-6	-3	-1	-6
$R_{i j i j} R_{a b a c} R_{d b d c}$	14/9*	-3/2	-1	-1	$-1 / 2$	-6/4
$R_{i j i j} R_{a b c d} R_{a b c d}$	-14/9*	0	0	-1	-1	0
$R_{i j i k} R_{j n m n} R_{k p m p}$	208/27	$-6 / 8$	0	$-3 / 8$	-2/8	0
$\boldsymbol{R}_{i j i k} R_{\text {npmp }} R^{\text {jnkm }}$	-64/9	0	$-1 / 4$	$-1 / 4$	$-1 / 4$	$-6 / 8$
$\boldsymbol{R}_{i j i k} \boldsymbol{R}_{j n m p} \boldsymbol{R}_{k n m p}$	16/9	0	0	$-1 / 4$	$-1 / 2$	0
$R_{i j k n} R_{i j m p} R_{k n m p}$	-44/27	0	0	0	-1	0
$R_{i j k n} R_{i m k p} R_{j m n p}$	-80/27	0	0	0	0	$-6 / 8$
E_{6}	1680	$-175 / 12$	-21/4	-61/8	-305/24	$-3 / 4$

*-see preceding tables for computation of this coefficient. All coefficients have been multiplied by 1680 to reduce the number of fractions involved.
**-we have combined the terms in $E E_{; i i}$ and $E_{; i i} E$.

References

[1] M. Atiyah, R. Bott \& V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973) 279-330.
[2] H. Donnely, Symmetric Einstein spaces and spectral geometry, Indiana Univ. Math. J. 24 (1974/75) 603-606.
[3] P. Gilkey, Curvature and the eigen-values of the Laplacian for elliptic complexes, Advances in Math. 10 (1973) 344-382.
[4] -, The spectral geometry of real and complex manifolds, Proc. Sympos. Pure Math. Vol. 27, Amer. Math. Soc., 1975, 265-280.
[5] V. K. Patodi, Curvature and the eigenforms of the Laplace operator, J. Differential Geometry 5 (1971) 233-249.
[6] -, Curvature and the fundamental solution of the heat equation, J. Indian Math. Soc. 34 (1970) 269-285.
[7] T. Sakai, On eigenvalues of Laplacian and curvature of Riemannian manifold, Tôhoku Math. J. 23 (1971) 589-603.
[8] R. T. Seeley, Complex powers of an elliptic operator, Proc. Symp. Pure Math. Vol. 10, Amer. Math. Soc., 1967, 288-307.
[9] H. Weyl, The classical groups, Princeton University Press, Princeton, 1946.
University of California, Berkeley

[^0]: Received May 24, 1974.

