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SCALAR CURVATURE AND CONFORMAL DEFORMATION
OF RIEMANNIAN STRUCTURE

JERRY L. KAZDAN & F. W. WARNER

1. Introduction

In this paper we consider the problem of describing the set of scalar curva-
ture functions associated with Riemannian metrics on a given connected, but
not necessarily orientable, manifold of dimension > 3 . In recent work [10],
[11] we have considered the analogous problem of Gaussian curvature on 2-
manifolds. The key to our study of Gaussian curvatures was the Gauss-Bonnet
theorem which imposes sign restrictions on the Gaussian curvatures of com-
pact 2-manifolds depending on the Euler characteristic. There is also a topolo-
gical implication of scalar curvature which provides an obstruction to positive
scalar curvature for certain special manifolds.

Lichnerowicz has shown [13] that if the scalar curvature is nonnegative, but
not identically zero, on a compact even-dimensional spin manifold, then there
are no harmonic spinors. From this fact, using the Atiyah-Singer index theo-
rem (see also [1]) he concluded that the Hirzebruch A genus of such a mani-
fold must be zero. Thus one cannot have a metric with nonnegative scalar
curvature, except possibly identically zero, on a compact spin manifold whose
A genus is not zero. Examples of such manifolds arise in the theory of spin
cobordism; see [14]. By a different use of the index theorem, N. Hitchin [8,
Chap. 4, § 3] has recently shown that an exotic sphere which does not bounded
a spin manifold does not admit a metric of positive scalar curvature. We wish
to thank I. M. Singer for bringing the Lichnerowicz result to our attention.

The above are the only connections known to us between scalar curvature
and the topology of the underlying manifold. There is a result due to Yamabe,
Trudinger, Elίasson, and Aubin which shows that there is no topological ob-
struction to constant negative scalar curvature. Yamabe in [20] attempted to
show that any Riemannian structure on a compact manifold of dimension > 3
could be pointwise conformally deformed to one of constant scalar curvature.
Trudinger [19] pointed out a serious gap in Yamabe's proof, and the assertion
is in doubt. However, Trudinger was able to obtain Yamabe's assertion under
the additional assumption that one begins with a metric whose total scalar
curvature (i.e., the integral of the scalar curvature) is nonpositive. The result-
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ing constant scalar curvature in this case is necessarily negative. More recently,
Elίasson [7] and Aubin [2] have shown that every compact manifold of dimen-
sion > 3 possesses a metric whose total scalar curvature is negative. This, to-
gether with Trudinger's result, shows that every compact manifold of dimen-
sion > 3 admits a Riemannian metric with constant negative scalar curvature.

Our main theorem makes the much stronger assertion that there are no
topological obstructions to scalar curvatures which may change sign as long as
they are negative somewhere.

Theorem 1.1. Let M be a compact manifold of dimension > 3 . //
K € C°°(M), and if K is negative somewhere on M, then there is a Riemannian
structure on M with K as its scalar curvature.

Except for scalar curvature identically zero, this result together with the
results of Lichnerowicz and Hitchin provides a complete description of scalar
curvatures on the special manifolds mentioned above. The existence or non-
existence of the constant function 0 as a scalar curvature on these manifolds
is still undetermined.

Theorem 1.2. Let M be either a compact spin manifold with A genus not
zero or else an exotic sphere which does not bound a spin manifold. Then
K ^ 0 e C°°(M) is the scalar curvature of some Riemannian metric on M if
and only if K is negative somewhere on M.

An interesting open problem is to determine if there are other obstructions
to positive scalar curvature on compact manifolds.

The next theorem concerns scalar curvature identically zero.
Theorem 1.3. // a compact manifold of dimension > 3 admits a metric of

scalar curvature k > 0, then it admits a metric of scalar curvature identically
zero.

Since there are no known obstructions to zero scalar curvature, it is con-
ceivable that every compact manifold (dim > 3) admits a zero scalar curvature
metric. This is an open question see "Added in proof" at the end of the paper.

Much more can be said about scalar curvatures of open manifolds. In fact,
for a large class of open manifolds every smooth function is a scalar curvature.

Theorem 1.4. Let M be a noncompact manifold of dimension > 3 diffeo-
morphic to an open submanifold of some compact manifold Mx. Then every
K e C°°(M) is the scalar curvature of some Riemannian metric on M.

As a special case, any K € C°°(Rn) is the scalar curvature of some metric on
Rn (n>3). We believe that Theorem 1.4 is true for any noncompact manifold
of dimension > 3 however some additional technical work will be needed to
avoid the assumption that M sits in a compact manifold.

Just as in our earlier work [10], [11], our approach to these problems is to
attempt to realize the candidate function K as the scalar curvature of a metric
which is either pointwise conformal or else just conformally equivalent to a
prescribed metric. (We say the metrics gλ and g are pointwise conformal if
gλ = p(χ)g for some positive function p e C°°(M), whereas we say that gλ and
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g are conformally equivalent if there are a diffeomorphism φ of M and a posi-
tive function p e C°°(M) such that pg is the metric obtained by pulling back g1

under φ, i.e., ^*fe) = pg. Pointwise conformal is the special case of con-
formal equivalence in which one demands that the diffeomorphism φ be the
identity map.) Now if a given metric g on M, where dimM = n > 3, has scalar
curvature k, and we seek K as the scalar curvature of the metric gλ — ui/(n~2)g
pointwise conformal to g, then u > 0 must satisfy

(1.5) A(jl ~ ^Δu - ku + Ku(n+2)/(n~2) = 0 ,
n - 2

where Δ is the Laplacian in the g metric. Consequently, the problem of show-
ing that K is the curvature of a metric gι conformally equivalent to g is pre-
cisely that of finding a diffeomorphism φ of M such that one can find a solution
u > 0 of

(1.6) A(jl ~ ^ Δu - ku + (Koφ)u(n+2)/in-2) = 0 ,
n — 2

since then the metric gx = (φ~ι)*(u*nn~2)g) will have scalar curvature K.
To summarize, we ask if a given function K is the scalar curvature of:
(A) some metric on M?
(B) a metric conformally equivalent to some prescribed metric g?
(C) a metric pointwise conformal to some prescribed metric g?

(C) yes => (B) yes => (A) yes of course, but it is a priori possible that for a
given metric g, the answer to, say, (B) is " n o " but the answer to (A) is
"yes". In fact, we shall show that (A) yes Φ$ (B) yes ^> (C) yes.

Our results in this paper are proved by applying the techniques and results
from [10] and [11] to obtain new existence and nonexistence theorems for
(1.5). We shall assume the reader is familiar with those papers and shall refer
to them freely. In addition, we will crucially use the existence of certain met-
rics (made explicit in § 3) which were established by Avez [3] for odd dimen-
sional manifolds, and by Elίasson [7] and Aubin [2] in general.

It turns out that (1.5) is easier to analyze if we free it from geometry and
consider instead

(1.7) Δu- hu + Hua = 0 , u > 0 ,

where h and H are arbitrary functions, and a > 1 is a constant. Basic existence
theorems for (1.7) are collected in § 2, where we use the method of upper and
lower solutions.

In § 3 we apply the results of § 2 to prove Theorems 1.1 and 1.3. There we
note that Theorem 1.1 extends to Holder continuous IΓs. Theorem 1.2 is an
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obvious consequence of Theorem 1.1. Our proof of Theorem 1.1 shows that
any K which is negative somewhere is the curvature of a metric which is con-
formally equivalent to, for example, any metric with negative scalar curvature.
A precise statement is in Theorem 3.3. In carrying out our analysis of Ques-
tion (B), the sign of the lowest eigenvalue λλ(g) of the linear part of (1.5),
namely,

(1.8) Lφ = _ 4 ( " - D j p + kψ =

plays a prominant part because the sign of ^(g) is a conjormal invariant, as
we shall prove in Theorem 3.2. The sign of this eigenvalue plays the same
role here as did the sign of the total curvature (which is a topological invariant
by the Gauss-Bonnet theorem) in our investigation of Gaussian curvatures on
compact 2-manifolds. There are topological obstructions to the existence of
metrics with λλ{g) > 0, but there are none to λx{g) < 0 see "Added in proof".

A study of Question (C) is made in § 4-§ 5. We do this by examining the
existence of positive solutions to (1.7). The case λλ(g) < 0 is in §4, while
h(g) > 0 is in § 5. The significant item in § 5 is a gradient obstruction to
solving (1.7) on Sn with the standard metric. This obstruction shows, in par-
ticular, that there are no solutions of (1.5) if K = const. + 1st order spheri-
cal harmonic. An application of this sheds some further light on the gap in
Yamabe's paper.

Theorem 1.4 is proved in § 6, where remarks on Questions (B) and (C) for
open manifolds are also made.

2. Preliminaries on Δu — hu + Hua = 0.

Let M be a compact connected π-dimensional manifold, which is not neces-
sarily orientable and possesses a given Riemannian structure g. We denote the
volume element of this metric by dV, the gradient by F, and the associated
Laplacian by Δ (we use the sign convention which gives Δu = uxx + uyy for
the standard metric on R2). The mean value of a function / on M is written /,
that is,

/ = 1 f fdV .
vol(M) JMvol (M)

We let HS)P(M) denote the Sobolev space of functions on M whose deriva-
tives through order s are in Lp. The norm on HS>P(M) will be denoted by || \\StP.
In the special case s = 0,HStP(M) is just LP(M), and we denote the norm by
|| ||p. The usual L2(M) inner product will be written < , >.
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We recall the Sobolev inequality which asserts that for p > n = dim M there
is a constant γ > 0 such that

(2.1) | | l i t < r | | u | | l f P for all u € Hhp(M) ,

and the obvious extension to bounding ||Fw||oo if u e H2>P(M) [4, p. 221]. A
consequence of (2.1) is that u and Fw are continuous for all u e H2p(M). We
will always assume that p > n = dimM.

We consider the equation

(2.2) -Lu = Δu - hu = -Hua , u > 0 ,

where here /z and H are prescribed functions, and a > 1 is constant. We let ^
be the first eigenvalue of the operator L of (2.2). Thus, if φ is the correspond-
ing eigenfunction, which we assume normalized by \\φ\\2 = 1, then

(2.3) Lφ = λιΨ .

Note that φ is never zero (the variational characterization of λλ—see Remark
2.4 below—shows that one can take ψ > 0, while the strong maximum principle
shows that then φ > 0). Thus the eigenspace has dimension 1, and we can—
and do—assume that φ > 0.

Remark 2.4. Our main concern will be with the sign of λλ. In practice,
one observes that λλ < 0 under the conditions h < 0, but h φ. 0. This follows
from the variational characterization of the first eigenvalue of L, that is,

where the min is taken over, say, all v € Hh2(M) with v ^ 0. In particular, by
letting V Ξ l w e find ^ < h < 0. To rule out λx = 0, observe that then v = 1
would minimize the functional and hence would be an eigenfunction, so that
—Δv + hv = ^w = 0. But since h ^ 0, this is impossible.

It is obvious that if /* = 0 then λλ = 0, since then φ = 1 is an eigenfunction.
It is almost as obvious that if /* > 0 ( ^ 0), then λλ > 0. To see this, just inte-
grate (2.3) over M and recall that φ > 0.

Our first lemma gives an elementary sign condition on H which is necessary
for a positive solution of (2.2) to exist.

Lemma 2.5. // λλ and φ > 0 are as in (2.3), and u is a solution of (2.2),
then

*i<φ, u) = <φ, Hua> .

In particular, if u > 0 and if H is never zero, then necessarily λλ and H must
have the same sign. If H and h are never zero, they must have the same sign.
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Proof. If u is a solution of (2.2), then

λλ(φ, U) = <Lφ, ύ} = (φ, Lu) = (cp, Hua} .

Remark 2.4 and the fact that φ > 0 and w > 0 yield the sign conditions.
q.e.d.

If both λλ < 0 and // < 0, or else if λ1 = 0 and H = 0, this necessary sign
condition turns out to be sufficient (Theorem 2.11). However it is not sufficient
in certain cases where both λι > 0 and H > 0 (Theorem 5.17).

Except for Theorem 2.11, the remainder of this section concerns existence
for (2.2) in the case λx < 0.

Lemma 2.6. Let h,H e LP(M) for some p > n = dim M. // there exist
functions u+,u_ e H2>P(M) such that

(2.7) Lu+ > Hu+

a , Lu_ < Hu_a ,

with 0<u_< u+, then there is a u <= H2>P(M) satisfying (2.2). Moreover, u is
Cj+2+a in any open set in which h and H are Cj+a; in particular, u is C°° in
any open set in which h and H are C°°.

Here Cj+a is the set of functions whose /th derivatives are continuous and
satisfy a Holder condition with exponent 0 < a < 1. u+ and u_ are called upper
and lower (or super and sub) solutions respectively. The Lp assumptions in
this lemma will be needed to obtain the results (Theorem 1.4) on scalar cur-
vatures on open manifolds. For scalar curvatures on compact manifolds
(Theorem 1.1) we will only need the lemma with h,H € C°°. This lemma is
proved in detail in [10] for a slightly different equation. Since the proof is ex-
actly the same (in fact it works for a fairly general class of equations) we shall
not present it here. The basic idea of the proof is a standard iteration argument
as follows (for simplicity assume that h and H are smooth). One lets

f(x, u) = hu — Hua , k = l.u.b. fu(x, u)
xeM

U-(X)<U<U+(X)

and if necessary, add a positive constant to k to insure that k > 0. Set u0 — u+,
and then define uj+1 inductively as the unique solution on M of

Δuj+ι — kuj+1 = f(x, Uj) — kuj .

One uses the maximum principle to show that

A standard argument (as in [6, pp. 370-371] for example) shows that the Uj
converge to a solution u of the desired equation. Since 0 < u_ < u < u+, one
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has u > 0 too. For the details, especially the treatment of the case with Lp

data, we refer the reader to [10, § 9].
We will now show that if λγ < 0, then one can always find a positive lower

solution of (2.2) less than any positive continuous function. This reduces the
existence problem for (2.2) to that of finding upper solutions.

Lemma 2.8 (Existence of lower solutions). Let h,H e Lp with p > dimM.
// λλ < 0, then given any positive continuous function u on M, there is a func-
tion u_ € H2p with 0 < u_ < u satisfying Lu_ < Hu_a.

Proof. If H is bounded from below, it is easy to verify that we can let
u_ = aφ, where φ is the first normalized eigenfunction, and a > 0 is a suffi-
ciently small constant. For H € Lp, let Hx(x) = min (— 1, H(x)), and let w be
a solution of

(2.9) Lw - λxw = H1- <Hl9 φ)φ ,

which exists since the right side is orthogonal to ψ. Let β > 0 and γ > 0 be
chosen so large that w + βφ is positive and λλγ < (Hx,φ}. Then z =
w + (β + γ)ψ is a positive solution of (2.9). Now let the constant a > 0 be
so small that aa~1za < 1 and that az < u, where u is from the statement of
the lemma. We claim that u_ = az is the desired positive lower solution, which
follows since

Lu_ - Hu_a < Lu_ - Hγu_a

= a[λxz + # ! - <β

= α [ φ + βφ) + (

< 0 .

Remark 2.10. One can give a more elementary proof of Lemma 2.8 if the
hypothesis λλ < 0 is replaced by h < 0. Since this is all that is needed for
most geometric applications, we sketch the proof. With Hx = min(— 1,H),
choose a > 0 so that (h — aHl71> = 0, and let w e H2p be a solution of
Δw — h — aHx. It is straightforward to verify that u_ = exp (w — β) is a
positive lower solution for any sufficiently large positive constant β. This can
be made less than any given positive function u by choosing β still larger.

Our task now is to find upper solutions for (2.2) under hypotheses suitable
for our geometric applications. This is particularly easy if H < 0, the result
in this case constituting a proof of the sufficiency of the sign condition in
Lemma 2.5.

Theorem 2.11. (a) Assume H = 0. Then a positive solution of (2.2) ex-
ists if and only if λλ = 0.

(b) Assume H e LP(M) and H < 0. Then a positive solution of (2.2) exists
if and only if λ1 < 0.
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Proof, (a) If H = 0 and a positive solution exists, then λx = 0 by Lemma
2.5. If ^ = 0, then the positive eigenfunction φ is a positive solution of (2.2)
with H = 0.

(b) With // < 0, if a positive solution exists, then λλ < 0 by Lemma 2.5.
Conversely, if ^ < 0, then u+ = large constant is an upper solution, while
Lemma 2.8 guarantees the existence of a positive lower solution u_<u+. Thus
there is a solution u by Lemma 2.6.

Remark 2.12. A useful substitute for Theorem 2.11 in the case λ1 > 0 is:
there is some H e C°°(M) with H>0 such that one can find a positive solution
of (2.2) // and only if λλ > 0. The necessity that λx > 0 follows from Lemma
2.11. To prove the sufficiency, let φ > 0 be an eigenfunction of (2.3). Then

Lφ = λxφ = (λλφ
ι-a)φa = Hφa ,

where we have denned H = Xx(pl~a > 0.
In order to prove Theorem 1.1, we need to prove existence for (2.2) for a

large class of functions H, which are negative somewhere but are permitted to
change sign. //, however, H changes sign then equation (2.2) may not have a
solution (see Prop. 4.11). This accounts for the technical assumption of the
following lemma, which simply asserts that there exist upper solutions (and
hence solutions by Lemma 2.8) if h = const < 0 and H is "mostly negative".
At the cost of slightly further complication one can replace the assumption
h = const < 0 by λλ < 0. This extension is not needed for our purpose, so we
relegate it to the reader.

For this lemma we introduce the change of variable v = uι~a used to
linearize the classical Bernoulli equation uf — hu = Hua. Thus, let

(2.13) A
9 Z

a — 1

Then v > 0 satisfies

(2.14) Jt, + .*„ = : » + (1 + ft)
b b

„ + (1 + ft),
b b v

which is essentially identical to one version of the equation which we studied
in our earlier work (see (10.3) in [10]).

Lemma 2.15. Let H e LP(M) for some p > dimM, and let a > 1 and
r < 0 be constants. Then there is a constant η>0 such that if \\H + 1 \\p < η
then there is a positive solution u € H2>V{M) of

(2.16) Δu- ru= -Hua ,

with u smooth on any open set where H is smooth.
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Proof. Let c = -b + r/b < 0, where b = (a - I ) " 1 . By Remark 10.11
of [10], there is a constant η > 0 depending on c but independent of H such
that if ||H + l\\p < η, then there exists a function v e H2tP(M) having the
properties v > 0, \Fv\/v < 1, and

T{v) = Δv + cv- — - i^J > 0 .
b v

Consequently,

Δv + Lv _ * _ ( 1 w]P*r = Γ ( t 0 + (JL _ c - fc&> > 0 .
b b v \b v2 I

In view of (2.13) and (2.14), the function w+ = t ; ~ δ > 0 i s a n upper solution
of (2.16). But by Remark 2.10 or Lemma 2.8 there is a lower solution
0 < u_ < u+. Therefore Lemma 2.5 proves there exists a positive solution
u e H2tP of (2.16) with u e C°° on any open set where H e C°°.

3. Scalar curvature on compact manifolds

In this section M will be a compact connected π-dimensional manifold
(n > 3) which is not necessarily orientable. If M has a Riemannian metric g
with scalar curvature k, we will write

(3.1) Lu = - 4 ( n ~ l^Δu + ku ,
n — 2

where J is the Laplacian of the metric, and we will write λλ(g)—or sometimes

just λi—for the first eigenvalue of L. The integral kdv will be called the
JM

total scalar curvature of the metric.
We first observe that the sign of λλ(g) is a conformal invariant.
Theorem 3.2. // the metrics gλ and g2 on M are conformally equivalent,

then λ^gi) and ^ fe) have the same sign or are both zero.
Proof. Since gλ and g2 are conformally equivalent, then g2 = φ*(pg1) for

some diffeomorphism φ and some positive function p e C°°(M). Because φ is
an isometry of the metrics g2 and pgu we know that λλ(g2) = Λ(P£i) Thus it is
sufficient to show that λx(pg^ and λ^g^ have the same sign, that is, to show
that the sign of λx is a pointwise conformal invariant.

Consider (1.5). By Theorem 2.11 in the case Λfe) < 0 or the case ^fe) = 0,
and Remark 2.12 in the case ^(gi) > 0, we find that gλ is pointwise conformal
to a metric gQ whose scalar curvature Ko has the same sign as λ^g^. Therefore
the metric g0 is pointwise conformal to pgλ. Theorem 2.11 and Remark 2.12
then show that λλ(pg^) has the same sign as Ko, which has the same sign as λ^gj.
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Remark. By being more explicit in the above discussion, one can show
that

UpgJ = λ^gd = < 7 ; j 1 ( g 1 ) ,
<ψ, uaψ\

where we have written p = ua~ι with a = (n + 2)/(n — 2), and let φ > 0
(respectively ψ > 0) be the first eigenfunction of L in the & (respectively, pgt)
metric. The inner product < , \ is in the & metric. Since the quotient on the
right is positive, this evidently shows that Λ(P£i) and λ^gj have the same sign.

The next theorem, concerning conformally equivalent metrics in the case
λx < 0, is the main step in proving Theorem 1.1.

Theorem 3.3. Let M have a Riemannian metric g. If the first eigenvalue
λλ(g) of L is negative, then a function K e C°°(M) is the scalar curvature of a
metric g conformally equivalent to g if and only if K is negative somewhere
on M.

Remark 3.4. In view of Remark 2.4, λx will be negative if the total scalar
curvature of g is negative.

Proof of Theorem 3.3. The necessity that K be negative somewhere fol-
lows from Lemma 2.5.

Sufficiency. Since λλ < 0, by Theorem 2.11 the function Kλ = —1 is the
scalar curvature of a metric g1 which is pointwise conformal to the given metric
g. Thus we need only to show that K is the scalar curvature of a metric g2

conformally equivalent to g19 that is, that for some diffeomorphism φ of M
one can find a positive solution of

(3.5) 4 ( w ~ l)Δλu + u= -(Koψ)u(n+2)/in-2) ,
n — 2

where Δλ is the Laplacian in the gί metric. For convenience write s =

(n - 2)/(4n - 4).
Let φ be a diffeomorphism of M, which makes K o φ nearly (in LP(M)) equal

to a negative constant. Then there is a constant a > 0 such that as(Koφ) is
nearly equal to — 1 in Lp on M. More precisely, given ε > 0 we can choose
the above diffeomorphism φ and constant a > 0 so that

\\as{Koψ) + l | | p < e

for some p > dimM. This enables us to apply Lemma 2.15 with r = — s and
H = as(K o φ) to conclude that there is a diffeomorphism φ such that a positive
solution v of

n — 2
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exists. Therefore u = ai(n~2)v is the desired positive solution of (3.5). (See
Theorem 11.6 of [10] for more details of a similar proof.) q.e.d.

In order for Theorem 3.3 to be useful, it is important to know the follow-
ing.

Lemma 3.6 (cf. [7, § 1]). On any compact connected manifold of dimen-
sion > 3 there exists a Rίemannian metric g whose total scalar curvature is
negative, and hence having λλ(g) < 0.

Elίasson actually proves that the total scalar curvature can assume any real
value, even if one also requires that the total volume is 1. He does this by
fixing a metric g0 on M and seeking the desired metric g in the form g =
β(ψgo + dφ (x) dφ), where θ, ψ and ψ are smooth functions with θ > 0 and
ψ > 0. By an explicit computation he show that there are functions θ, ψ, ψ so
that the total scalar curvature has the desired value.

Our main result, Theorem 1.1, is now quite easily proved.
Proof of Theorem 1.1. Given M and K e C°°(M) with K negative some-

where, let g be a metric having λλ(g) < 0. Such a metric exists by Lemma 3.6.
Then Theorem 3.3 shows that K is the scalar curvature of a metric conformally
equivalent to g.

Remark 3.7. By appealing to the full regularity assertion of Lemma 2.5,
it is easy to see that if in Theorem 1.1 one only assumes K is Holder contin-
uous, then there is a metric with Holder continuous second derivatives having
K as its scalar curvature.

Lemma 3.6 shows that on any M there is always a metric g with λλ(g) < 0.
It is unknown if there always exist metrics with λ^g) = 0 see "Added in proof".
However, there are topological obstructions to having a metric with λ^g) > 0.

Proposition 3.8. M admits a metric g with λ^g) > 0 if and only if M ad-
mits a metric having strictly positive scalar curvature.

Thus the manifolds of Theorem 1.2 do not admit a metric g with λ^g) > 0.
Proof. This is immediate from Remark 2.12 applied to (1.5). It shows that

if λλ(g) > 0, then g is pointwise conformal to a metric having strictly positive
scalar curvature, q.e.d.

The next theorem is a partial answer to the existence of a metric with

Us) = o.
Theorem 3.9. // M admits a metric gλ with λ^g^ > 0, that is, if M admits

a metric having positive scalar curvature, then it admits a metric g with λx(g)
= 0.

Proof. By Lemma 3.6 there is a metric g0 with λ^go) < 0. Let gt = tgλ +
(1 — t)g0 for 0 < t < 1, and let Lt be the operator of (3.1) corresponding to
the metric gt. Since Lt depends continuously—even analytically—on t, the first
eigenvalue λλ(gt) depends continuously on / [9, VII, § 6, esp. §6.5]. However
λ(#o) < 0 and λ^gj > 0, so λ^gj = 0 for some 0 < τ < 1. q.e.d.

The proof of Theorem 1.3 is almost an immediate consequence.
Proof of Theorem 1.3. Combine Theorem 3.9 with part (a) of Theorem
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2.11 applied to (1.5), to obtain the desired metric, q.e.d.
The analogue of Theorem 3.3 on Question (B) is open for the case of a

metric g with either λλ(g) = 0 or λλ(g) > 0; see "Added in proof".

4. Poinίwise conformal deformation of scalar curvature: The case λλ(g) < 0

Let M be as in § 3. Question (C) concerning pointwise conformation defor-
mation of scalar curvature is the subject of this section. Thus we are discussing
existence and nonexistence of positive solutions for (1.5), where k is prescrib-
ed in advance. We wish to determine the conditions on K which guarantee
existence Lemma 2.5 shows that K must satisfy an elementary sign condition
depending on the first eigenvalue λγ of (3.1). If K satisfies this sign con-
dition, can one solve (1.5)? We will show that the answer to this is " n o " in
general.

This section will consider the case λλ < 0, while the cases λγ = 0 and λx > 0
—for which our results are rather fragmentary—are in § 5. Our proofs are
adapted from similar results in §§ 10 and 11 of [10].

Given a smooth metric g on M, let PC (g) denote the set of functions
K e C°°(M) which are the scalar curvatures of metrics pointwise conformal to
g in other words, PC (g) is the set of functions for which one can find a posi-
tive solution of (1.5).

Theorem 4.1. Assume K < 0. Then KeFC (g) if and only if λ,(g) < 0.
Proof. An immediate consequence of Theorem 2.11.
Theorem 4.2 (Uniqueness). If K < 0 ( ^ 0 ) , then K is the scalar curvature

of at most one metric pointwise conformal to the given metric g.
Proof. We must show that (1.5) has at most one positive solution. By the

change of variable u = exp (bw), where b = (a — I ) " 1 , w is a solution of

Aw + b\Vw\2 - — + —ew = 0 .
b b

If K < 0 (Ξ£ 0), then there is at most one solution of this equation by a standard
maximum principle argument. See [6, pp. 322-323] or [4, pp. 283-284].

q.e.d.
If one still assumes that λx < 0, but allows K to be positive occasionally,

then it is more involved to determine if K e PC (g). Lemma 2.15 shows that
if K is not "too positive too often", then indeed K e PC (g). For the remainder
of this section, we will investigate the border between existence and nonexist-
ence. Since by Theorem 4.1 if λλ(g) < 0 then one can always pointwise con-
formally deform g to a metric of constant negative scalar curvature, we can
without loss of generality restrict our attention to the case where the given
metric already has a constant negative scalar curvature k = — c, where c > 0
is a constant. Thus (1.5) reads
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(4.2) 4 ( π ~ ^ Δ u + cu = -Ku(n+2)nn~2) , u > 0 .
n — 2

In order to understand (4.2), one must first free it from geometric consider-
ations and examine

(4.3) Δu + γu = -Hua , u > 0 ,

where a = const > 1, f = const > 0 and # e C°°(M) are not tied to geometry.
Under the change of variable v = uι~a, as in (2.13) and (2.14), we find that

(4.4) j V - J L v = * L + (i + fc)ZϋJ! , v>0,
b b v

with b = (a- I ) " 1 > 0.
First we show that if H is "too positive too often", then a positive solution

of (4.3) will not exist.
Proposition 4.5. A necessary condition for a solution of (4.3) to exist is

that the unique solution of

(4.6) Δψ - JLφ = ξ.
b b

be positive, i.e., φ > 0. A weaker necessary condition is H < 0.
Proof. We work with (4.4), which we assume has a solution v > 0. Then

z = v — φ is a solution of

which, by the maximum principle, implies that v < φ. But v > 0. Thus ψ > 0.
Integrating (4.6) shows that H < 0, which is weaker than φ > 0 as we shall
prove in Proposition 4.12.

Proposition 4.7. // (4.3) has a solution for given (γ, H), and if 0 < γλ < γ
and either H1<H or Hλ — aH for some constant a > 0, then (4.3) has a solu-
tion given O Ί , # I )

Proof. Assume γ1 <γ and Hί < H. In view of Lemmas 2.6 and 2.8, it is
sufficient to find an upper solution u+ of (4.3). Let u > 0 be the solution for
the given (γ,H). Then

Δu + Tιu + Hλu
a = (Δu + γu + Hua) + (Tί - γ)u + (Hλ - H)ua < 0 .

Thus a solution exists given (γ^HJ. Next, say Hx = aH, and u is a solution
of (4.3). Then a~bu is a solution of (4.3) which H replaced by Hx = aH.
Therefore a solution exists for (γ, HJ and hence for (γ19 Hx).
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Proposition 4.8. If H < 0, then there is a constant 0 < γo(H) < oo such
that one can solve (4.3) for 0 < γ < γQ(H) but not for γ > γQ(H).
_Proof. In view of Proposition 4.7, it is sufficient to show that given H with
H < 0, there is a constant γ > 0 small enough so that (4.7) has a solution. As
before, Lemmas 2.6 and 2.8 reduce this to the existence of an upper solution
u+. Writing v = u1~a as in (4.4), it is sufficient to find v > 0 satisfying

(4.9) Δv - JLv - - - (1 + b)^l > 0 .
b b v

Let Δψ = (H — H)/b, and let v = ψ + μ, where the constant μ is chosen so
large that both v > 0 and

E. < _ ( i + b,
2b Ψ + μ

Then pick γ > 0 so small that

-μ).

It is clear that v satisfies (4.9). q.e.d.
Our next proposition discusses when γo(H) = oo.
Proposition 4.10. If H < 0, then γo(H) = oo. However, if H(x0) > 0 for

some x0 e M, then γo(H) < oo.
It would be pleasant if one could improve this to read "γo(H) = oo if and

only if H < 0 (=έ 0)", much as in Theorem 10.5 (a) of [10].
Proof. If H < 0, then γo(H) = oo by Theorem 2.11 (in this case, one can

even use constants for u+ and u_).
To prove the second half, recall that by Proposition 4.5 if a solution exists,

then the unique solution ψ of (4.6) must be positive. But the Asymptotic
Theorem 4.4 in [10] asserts that

l im^Cx; γ) = — H(x)

uniformly in x. Since H(x0) > 0, φ(x0 γ) < 0 for γ > 0 sufficiently large. Hence
γo(H) < oo. q.e.d.

The next proposition shows that if one allows H to be positive occasionally,
then the critical constant γo(H) may be arbitrarily small. This shows why one
needs the technical hypothesis in Lemma 2.15 to obtain existence in this case.

Proposition 4.11. Given any fixed γ > 0, there exists H e C°°(M) with
Ή < 0 such that γ > γo(H) i.e., for these γ and H, (4.3) has no solution.

Proof. By Proposition 4.5, we need only to find H such that the solution
of (4.6) is not everywhere positive. Pick a smooth function ψ ^ 0 with ψ = 0.
Let a > 0 be so small that ψ + a still changes sign, and let H =
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+ a). Then H = — γa < 0, and the unique solution of (4.6) is ψ = ψ + a
which is not everywhere positive, q.e.d.

Finally, we apply these results for (4.3) to (4.2).
Theorem 4.12. Let M be a compact connected manifold of dimension

> 3 with a metric g of constant negative scalar curvature k = —c, and let
KeC~(M).

(a) If Kz PC (g), then the unique solution of

{n — l)Δφ — cψ = K

must be positive, i.e., ψ > 0.
(b) If K € PC( g) and either Kλ < K or else Kx = aK for some constant

a > 0, thenK.eFCig).
(c) If K <0, there exists a constant γo(K) > 0 such that K e PC (g) for

c < γo(K) but not for c > γo(K).
(d) There exists K e C°°(Λf) with K < 0 such that K $ PC (g).
Proof. These follow from Propositions 4.5,4.7,4.8, and 4.11 respectively.
Remark 4.13. In calculus of variations approaches to solving (2.2), such

as used by Yamabe, Trudinger, and Elίasson, one attempts to realize a solu-
tion as an extremum of a suitable functional defined on Hlf2(M). In this ap-
proach one needs to have Hl2 compactly imbedded in La+1 where a is the
exponent in (2.2). There is, therefore, difficulty with exponents a >
(n + 2)/(n — 2) since the imbedding HU2 —> Lp is not compact for p =
1 + (n 4- 2)/(n - 2) = 2n/(n — 2) and since there is no imbedding of Hl2

into Lp for p > 2n/(n — 2). Using the non-variational technique of upper and
lower solutions one can circumvent these difficulties. We have in (4.1) gener-
alized Corollary 1 of [19] to show that with K < 0 and k < 0 (k Ξ£ 0), (1.5)
has solutions with the exponent (n + 2)/(n — 2) replaced by any constant
a> 1.

5. Pointwise conformal deformation of scalar curvature: The case λ^g) > 0

Little is known about the existence of a positive solution to (1.5) if λλ(g) > 0.
We shall give a necessary condition for a solution to exist in the case λλ(g) = 0
and also in the case where M = Sn with the standard metric. To begin, we
note the following which is an immediate consequence of Theorem 2.11 (a)
applied to (1.5).

Proposition 5.1. The function K = 0 belongs to PC (g) if and only if
λ,(g) = 0.

Consequently, for Question (C) in the case λ^g) = 0 one needs only to find
which functions K are scalar curvatures of a metric pointwise conformal to a
metric with scalar curvature zero, that is, for which K e C'iM) one can find
a positive solution of (see (1.5))
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(5.2) 4Q - \ ) Δ u = _Ku(n+2)/(n-2) m

n - 2

As we saw in Lemma 2.5, an obvious necessary condition for a positive solu-
tion to exist is that either X Ξ O O Γ else K changes sign. There is another neces-
sary condition too.

Proposition 5.3. // a positive solution u of (5.2) exists and K ^ 0, then K

must change sign and KdV < 0.
J M

Proof. To simplify notation, rewrite (5.2) as Δu = —Hua. Then multiply
by u~a and integrate by parts to find

- f HdV=[ ^LdV=a[ \MdV>0. q.e.d.

It is not known if these two necessary conditions on K for solvability of (5.2)
are sufficient, although by analogy with Theorem 5.3 of [10], one might sus-
pect that they are.

Given a metric g and a function K e C°°, if λ^g) and K have opposite signs,
then K $ PC (g) by the sign condition of Lemma 2.5. On the other hand, if
Zι(g) < 0 and K < 0, then K e PC (g) by Theorem 4.1. This leads one to guess
that if λ,(g) > 0 and K > 0, then K e PC (g). The main result of this section
is to prove that in certain cases this is false. We will consider (1.5) on the
sphere Sn C Rn+1 with its standard metric g. Then the scalar curvature is a
positive constant, so λ^g) > 0. We will exhibit positive functions K which do
not belong to PC (g). Our proof is similar to Theorem 8.8 of [10] concerning
Δu — \ ~ Ke2u on S2. As we shdll see, the sphere Sn appears to be the only
compact manifold on which this type of obstruction to the solvability of (1.5)
can occur.

The Basic Identity (8.1) of [10] asserts that for any functions u and F

(5.4) IΔuVuVF = -(2HF - {ΔF)g){Vu,Vύ) ,

where HF denotes the Hessian (2nd covariant derivative) of F, g is the metric
tensor, and the symbol " Ξ " is used to denote equality modulo terms which
are divergences. (On Rn with its standard basis, g is of course the identity
matrix, and HF the matrix of second derivatives.)

We now assume that our underlying manifold is the unit sphere Sn with g its
standard metric. If F is a first order spherical harmonic on Sn, that is, a non-
trivial solution of

(5.5) ΔF = -nF

on Sn, then HF — —Fg so that
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(5.6) 2HF - (ΔF)g = (n - 2)Fg .

Substituting (5.6) in (5.4) we obtain

(5.7) 2ΔuFu FF = ~(n - 2)F\Fu\2 .

But

F\Vu\2 = \FΔ(u2) - FuΔu = -%nuΨ - FwJw (by (5.5)) .

Thus (5.7) becomes

(5.8) IΔuVu-VF = {n- 2){\nu2F + FuΔύ)

for any function M on 5n.

Consider now u to be a solution of the equation

(5.9) Δu= -q(x,u)

on Sn, and let

(5.10)

where γ is a constant to be chosen at one's convenience depending on the
specific form of q. Considering u as a function of x e Sn we have

(5.11) PQ = Q* + q(x,u)Pu,

where Qx denotes the gradient of Q(x, ύ) on Sn with the variable u held con-
stant. Now use (5.9) on both sides of (5.8) to obtain

(5.12) -2qVu-VF = (n - 2){\nu2F - Fuq) .

Applying (5.11) and (5.5) to the left hand side of (5.12) gives

-2qVu VF = 2QX-VF - 2FQ-FF = 2QX VF + 2QΔF

= 2Qx-FF-2nQF .

From (5.13) and (5.12) it follows that

(5.14) 2QX-FF = \n{n - 2)uΨ + [2nQ - (π - 2)uq]F .

This identity will yield the desired obstructions since for certain functions q the
integral of the left side is positive while the integral of the right is negative
or zero. We consider a special case.

Assume that n > 3 and that q(x, ύ) has the form
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(5.15) q(x,u) = cu

where both c and a are constants with a > 1 and H e C°°(M). Then with γ = 0
in (5.10), one finds that (5.14) becomes

FHFF = I —«(n — 2) + 2cL 2F
Λ + 1 L2 J

(5.16)
+ L + 1 ~ (" ~ 2 ) j H w α + 1 F

In order to get an obstruction upon integrating (5.16), one needs control over
the signs of the individual terms. Since each spherical harmonic F of degree 1
changes sign, the integral of the first term on the right side of (5.16) will be
of indeterminate sign unless its coefficient is zero. Therefore we assume that
c has the particular value

c= -\n(n-2) .

Note that the scalar curvature k of Sn is n(n — 1) so that the coefficient of u
in (1.5) is —\n(n — 2) once the equation has been multiplied through by
\{n — 2) /(n — 1) to make the coefficient of Δu equal to 1. Thus the above
value for c is precisely the value of geometric interest. We now integrate
(5.16).

Theorem 5.17. // u is a positive solution of the equation

(5.18) Δu - \n(n - 2)u + Hua = 0

on the standard n-sphere {n > 3), then

(5.19) ί ua+ΨH-FFdV = —{n - 2)(rL±^L - a) ί ua+ΉFdV
Jsn 2 \n — 2 / Js»

for all spherical harmonics F of degree 1.
For a = (n + 2)/(n — 2), the right side of (5.19) is zero, and we see that

(5.18) has no positive solutions if H is any function such that FHFF0 has a
fixed sign for some spherical harmonic Fo of degree 1. In particular, there are
no positive solutions for H of the form H — const + FQ. If a > (n + 2)/(n — 2)
and if H is a spherical harmonic Fo of degree 1, the two sides of (5.19) have
opposite signs for F = F o, so again there can be no positive solution of (5.18).

Corollary 5.20. // K e C°°(Sn) is a spherical harmonic of degree 1, or
more generally if FKFFQ has a fixed sign for some spherical harmonic Fo of
degree 1, then K cannot be realized as the scalar curvature of a metric point-
wise conformal to the standard metric on Sn.

Remark 5.21. It is natural to inquire if one can obtain obstructions to the
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existence of solutions as in Theorem 5.17 on manifolds other than Sn. The key
role of the sphere in the above derivation appears in the existence of a non-
trivial function F satisfying (5.5), (5.6) and therefore HF + Fg = 0. A theorem
of Obata [15] asserts that if a complete connected Riemannian manifold M of
dimension n > 2 admits a nontrivial solution φ of Hφ + cψg = 0, c > 0, where
g is the metric tensor, then M is isometric to a standard rc-sphere of radius
1/Vc in Euclidean (n + l)-sρace. Hence it appears that obstructions of the
form (5.19) to the existence of solutions of (5.18) are peculiar to the sphere.

In this regard, it is interesting to note another, perhaps more conceptual,
method for deriving (5.14) and hence Theorem 5.17 and Corollary 5.20. It is
based on an idea of G. Rosen [18]. A solution u of (5.9) is a critical point of
the functional

(5.22) J(u) = ί [\Fuf - 2Q(x,u)]dV .
J M

Let φλ: S
n —> Sn be the (conformal) diίϊeomorphism induced on Sn under stereo-

graphic projection from Rn of the map Φλ\ Rn —> Rn defined by Φλ(z) = λz.
Then φ1 = id, so

(5.23)
dλ

= 0

If one carries out the computation of (5.23), using F\Vuf = —\nu2F +
Fuq(x, ύ) (see before (5.8)), one obtains (5.14).

Remark 5.24. If H is positive somewhere, one can solve (5.18) by the
calculus of variations for exponents a < (n + 2)/(n — 2). Hence if H = Fo,
a spherical harmonic of degree 1, then (5.18) has solutions for all 1 < a <
(n + 2)/(n — 2) but, according to Theorem 5.17, not for a = (n + 2)/(n — 2).
This has some bearing on Yamabe's attempt to prove that on any compact
Riemannian manifold of dimension n > 3, (1.5) has a solution with K a suit-
able constant [20]. In order to circumvent difficulties with the exponent
(n + 2)I{n — 2) (see Remark (4.13)), Yamabe looked for the solution of (1.5)
as a limit of solutions ua of this equation with exponent a approaching
(n + 2)/(n — 2) from below. To find the solutions ua he used the calculus of
variations. The case of (5.18) in which H = FQ is a special case of (1.5) in
which Yamabe's method necessarily fails. Yamabe's situation differs in the
respect that he was looking for a solution with K constant. If his method is to
work, it must make critical use of this fact. The above suggests that his method
may well fail even with K constant.

The gap in Yamabe's proof was indicated by Trudinger [19] who also gave
an objection to Yamabe's method similar to ours above but for a different
equation. Trudinger pointed out that Yamabe's method fails in the analogous
case of the Dirichlet problem for the equation Δu = —λua, λ > 0, on a star-
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like domain Ω in Rn. For this equation Pohozaev [17] has shown that there
are positive solutions (with u = 0 on dΩ) for a < (n + 2)/(/i — 2) but no posi-
tive solutions for the critical exponent (n + 2)/(n — 2). On the other hand,
as is pointed out in [12], for any a > 1 there is a positive solution if Ω C Rn

is a shell {rx < | * | < r2}. Thus the existence of a positive solution in this case
depends on geometric aspects of Ω (for further discussion, see [12]).

6. Scalar curvature on open manifolds

Proof of Theorem 1.4. M is now a noncompact manifold of dimension
> 3 diίϊeomorphic to an open submanifold of a compact manifold M1 ? and
K € C^iM). With no loss of generality, we can assume that Mλ — M contains
an open set, that M and M1 are connected, and that M1 has a metric g of con-
stant scalar curvature k = — 1 (such a metric exists by Theorem 1.1). All Lp

statements on M and M1 will be with respect to this metric.
By Proposition 2.5 of [11] there is a diffeomorphism φ of M such that

Kr = Koφ e LP(M) for some p > dimM. Extend 25̂  to Λ^ by defining it to
be identically equal to —1/s, where s = ^(n — 2)/(n — 1), on M1 — M. Then
the extended Kλ e Lv(Md a n d equals — 1/Λ on some open set in M1# There-
fore, given any ε > 0, by Proposition 2.6 of [11] there is a diffeomorphism ψ
of Mx such that p ^ oψ + 1 ||p < ε. This fact together with Lemma 2.15 guar-
antees that there is a diffeomorphism ψ of M1 such that there exists a positive
solution w € H2>P(M) of

ft — 2

with w smooth on any open set where Kx o ψ is smooth.
In particular, u is C°° on ψ - 1(M) c Mλ. Consequently gx = u4/(n~2)g is a

metric on ψ - 1 (M) with scalar curvature Â x o ψ, so that Ĉx is the curvature of
the pulled-back metric ψ'^igx) on M, and finally K is the curvature of the
metric φ'^ίψ'^igi)] on M. q.e.d.

Let us consider Questions (B) and (C). An immediate consequence of our
proof of Theorem 1.4 is the following.

Proposition 6.1. If M is as in Theorem 1.4, then any K e C°°(M) is the
scalar curvature of a metric which is conformally equivalent to some metric of
constant scalar curvature — 1.

Because the above construction involves a diffeomorphism ψ of Mx which
depends on K, one can not prescribe the metric of scalar curvature — 1 on M
in advance. Further investigation is needed to fully resolve Question (B).

Beyond the meager pointwise conformal statement implicit in Theorem 6.1,
we can only mention some situations where it is not possible to solve (1.5).

Proposition 6.2. Let M be a complete Riemannίan manifold of dimension
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> 3 whose metric g has nonnegative Rίcci curvature. If K € C°°(M) has the
property K < const < 0, then K $ PC (g).

A special case is M = Rn, n > 3 with the standard metric.
Proof. If k is the scalar curvature of g, then & > 0. We claim there is no

positive solution denned on all of M of

(6.3) 4 ( " ~ l)Δu -ku= -Ku'n+2)^n~2) .
n — 2

In fact, if u > 0 were such a solution, then

4 ( n - l ) L

for some constant ε > 0. Therefore there would be a solution of

Δu > £u<n+2)/(n-2) ,

which is impossible by a theorem of Osserman [16, Remark 3, p. 1645] and
its generalization by Calabi [5, Theorem 4].

Added in proof. In [21] we show that there are topological obstructions
to zero scalar curvature and hence to λ^g) = 0. Indeed, if M is a compact
spin manifold with A genus not zero and with first Betti number not zero, then
M does not admit a metric of zero scalar curvature. In addition, [21] contains
a computation of the 1st and 2nd variations of λλ. In [22] we have obtained a
more direct proof of Theorems 1.1 to 1.4. This proof does not yield informa-
tion on pointwise conformal change of metrics, but it does yield additional
facts on conformal change. For example, Question (B) in the compact case is
answered for λι — 0 and partially for λλ > 0. It is shown there that every C°°
function on Sn is the scalar curvature of some metric. Thus the functions K in
Corollary 5.20 which cannot be realized as scalar curvatures of metrics point-
wise conformal to the standard metric on Sn are, nevertheless scalar curvatures
of some metrics.
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