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ALMOST CONTACT MANIFOLDS WITH KILLING
STRUCTURES TENSORS. II

D. E. BLAIR & D. K. SHOWERS

1. Introduction

Almost contact manifolds with Killing structure tensors were defined in [2]
as nearly cosymplectic manifolds, and it was shown normal nearly cosymplectic
manifolds are cosymplectic (see also [4]). In this note we study a nearly
cosymplectic structure (<p, ξ, η, g) on a manifold M2n+1 with η closed primarily
from the topological viewpoint, and extend some of Gray's results for nearly
Kahler manifolds [5] to this case. In particular on a compact manifold satisfying
some curvature condition we are able to distinguish between the cosymplectic
and non-cosymplectic cases. In addition, we show that if ξ is regular, M2n+1 is
a principal circle bundle S1 —> M2n+1 —> K2n over a nearly Kahler manifold K2n,
and moreover if M2n+1 has positive ^-sectional curvature, then M2n+1 is the
product K2n x S1.

2. Almost contact structures

A (2n + l)-dimensional C°° manifold M2n+1 is said to have an almost con-
tact structure if there exist on M2n+1 a tensor field φ of type (1,1), a vector
field ξ and a 1-form η satisfying

η(ξ) = hφξ = 0, ηoφ = 0, φ2 = -I +

Moreover, there exists for such a structure a Riemannian metric g such that

η{X) = g(ξ, X) , g(φX, ψY) = g(X, Y) - η{X)η{Y) ,

where X and Y are vector fields on M2n+1 (see e.g., [14]). Now define on
M2n+1 X R an almost complex structure J by

where / is a C°° function on M2n+1 x R, [15]. If this almost complex structure
is integrable, we say that the almost contact structure is normal the condition
for normality in terms of φ, ξ and η is [φ, φ] + ξ (x) άη — 0, where [φ, φ] is the
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Nijenhuis torsion of φ. Finally the fundamental 2-form Φ is defined by Φ(X, Y)

= g(X,φY).
An almost contact metric structure (φ, ξ, η, g) is said to be cosymplectic, if

it is normal and both Φ and η are closed [l j . (Our notion of a cosymplectic
manifold differs from the one given by P. Libermann [9].) The structure is
said to be nearly cosymplectic if ψ is Killing, i.e., if (F' xψ)Y + (Fγψ)X = 0,
where F denotes the Riemannian connexion of g. The structure is said to be
closely cosymplectic if ψ is Killing and η is closed.

Proposition 2.1. On a nearly cosymplectic manifold the vector field ξ is
Killing.

Proof. It suffices to show that g(Fxξ, X) = 0 for X belonging to an
orthonormal basis. Clearly g(Fζξ, ξ) = 0, so we may assume that X is orthog-
onal to ξ. Thus

g(Fxξ,X) = g(φFxξ,ψX) = -g((Fxφ)ξ,φX) = g((F,φ)X,φX)

= ϊ(ξg(φX,φX) - ξg(X,X)) = 0 .

Remark. (1) From Proposition 2.1 it is clear that on a closely cosym-
plectic manifold we have Fxη = 0.

(2) If an almost contact metric structure is normal and Fxφ = 0, then it
is cosymplectic; conversely on a cosymplectic manifold Fxφ = 0, [1].

(3) Since ξ is parallel on a closely cosymplectic manifold, it is clear that
(Fxφ)ξ = 0, from which, since φ is Killing, Fξφ = 0.

A plane section of the tangent space M^ + 1 at m € M2n+1 is called a φ-section
if it is determined by a vector X orthogonal to ξ such that {X, φX} is an ortho-
normal pair spanning the section. The sectional curvature K(X, ψX) is called
a φ-sectional curvature [13].

Given two ̂ -sections determined, say by unit vectors X and Y, we define
the φ-bisectional curvature B(X, Y) by

B(X,Y) = g(RXφXY,φY) ,

where Rxγ denotes the curvature transformation of F.
A local orthonormal basis of the form {ξ,Xi9 Xt* = φXt}, / = 1, , w on

an almost contact manifold M2n+1 is called a φ-basis. It is well known that such
a basis always exists. Let {η^ω^ω^ be the dual basis. A 2-form a is said to
be of tridegree (1,1,0) if a satisfies a(X, φY) + a(φX, Y) = 0. For a more
general discussion of p-forms of tridegree (λ, μ, v), λ + μ + v — p on almost
contact manifolds see [12]. We denote by //110(M2r*+1) the space of harmonic
2-forms on M2n+1 of tridegree (1,1,0).

3. Closely cosymplectic manifolds

Lemma 3.1. On a closely cosymplectic manifold we have



ALMOST CONTACT MANIFOLDS 579

Wzφ)Y\\2 = g(ΆχγX, Y) ~ g{RxγφX,φY) .

The proof is a long but straightforward computation similar to the proof
of the corresponding result on nearly Kahler manifolds [6].

Corollary 3.2. On a closely cosymplectic manifold

g(RχγX, Y) = g(RφXφYφX,φY) .

Corollary 3.3. On a closely cosymplectic manifold g(Rξχζ, X) = 0 in
particular the sectional curvatures of plane sections containing ξ vanish.

This last corollary generalizes the result for cosymplectic manifolds [1].
Lemma 3.4 [11]. Let a be a 2-form on an almost contact manifold satisfy-

ing a(X, ψY) + a(φX, Y) = 0. Then for any m e M2n+\ there exists a φ-basis
of M^ + 1 such that au* = a(Xi,Xi*) are the only nonzero components of a.

Proof. For X orthogonal to ξ we have

a(ξ,X) = -a(ξ,φ2X) = a(φξ,φY) = 0 .

Now let S(X, Y) = a(φX, Y). Then S(X, Y) = S(Y,X) and S(φX,φY) =
S(X, Y), i.e., S is a symmetric bilinear form invariant under φ. If Xλ is an
eigenvector of S orthogonal to ξ, then so is ψXλ. Thus we can inductively
choose a ^-basis {f, Xi9 Xt* = ψX \ such that the only nonvanishing components
of S are of the form SH — SiH* = aiH.

Theorem 3.5. Let M2n+1 be a compact closely cosymplectic manifold having
nonnegatίve φ-bisectional curvature and satisfying K(X, Y) + K(X, φY) > 0
for linearly independant X, Y,φX,φY orthogonal to ξ. Then M2n+1 is cosym-
plectic or not cosymplectic according as dimJί/

110(M2w+1) = 1 or 0.
Proof. Let a be a 2-form of tridegree (1,1,0). Then by Lemma 3.4 there

exists a ^-basis such that the only nonzero components of a are au* =
a(Xι, φXi). Thus using Lemma 3.1 we have for the Bochner-Lichnerowicz form:

F(a) - Rμ^->*a\...λp - ^^RκλμvccκλH' λ**μ\z..,P

= 2 Σ (Ru*jJ*(«ii* ~ ajj*)2 + 2 WXiφ)Xj\\2 (αk + <*„.)) ,

where tc, λ, range over 1, , In + 1. Now as R^JJ* > 0, we have
F(a) > 0 hence if a is harmonic, then F(a) = 0 giving

If now M2n+1 is not cosymplectic, it is clear that Fz.φ Φ 0 for some i, and
one can then check that (FZiφ)Xj Φ 0 for some /. Thus au* = 0 and ajj* = 0.
But if (VXiψ)Xk = 0, then by Lemma 3.1, Ru.kk* = Rίkίk + RikHk. > 0
giving akk* = <xu*. Thus a = 0 and we have dim# 1 1 0 (M 2 w + 1 ) = 0.
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In the cosymplectic case, the fundamental 2-form Φ € Hm(M2n+1), so that
dim#110(M2w+1) > 1. Therefore, if a e Hm(M2n+1), then by a decomposition
theorem of [3], a = β + fφ, where 2L (iiω^ciω^β = 0 and / is a function.
Thus 2 βu* = 0, and by equation (*) we have βu* = βJJm giving β = 0. Hence
a = fΦ, and dim# 1 1 0 (M 2 w + 1 ) = 1.

4. Fibration of closely cosymplectic manifolds

Let M 2 r ι + 1 be a compact almost contact metric manifold on which ξ is regular,
i.e., every point m e M2n+1 has a neighborhood through which the integral
curve of ξ through m passes only once. Since M2n+1 is compact, the integral
curves of ξ are homeomorphic to circles. If now ξ is parallel, then its integral
curves are geodesies, and it follows from a result of Hermann [8] that M2n+1 is
a principal circle bundle over an even-dimensional manifold K2n(S1 > M2n+1

>K2n).
Theorem 4.1. Let M2n+1 be a compact almost contact metric manifold on

which ξ is regular. If M2n+1 is closely cosymplectic (respectively cosymplectic),
then K2n is nearly Kdhler (respectively Kdhler).

Proof. As M2n+1 is closely cosymplectic, ξ is parallel and we have the fibra-

tion S1 > M2n+1 > K2n. Again since ξ is parallel and Vζψ = 0, we have

( J 2 » X = V&X - FψXξ - <pVςX + ΨVΣξ = (Vζψ)X - 0 .

Thus ψ is projectable, and we define J on K2n by JX = π^ψπX, where ft denotes
the horizontal lift with respect to the Riemannian connexion on M2n+1. It is
easy to see that J2 = — / on K2n. Now as ξ is also Killing, the metric g is
projectable to a metric g' on K2n, i.e., g'(X, Y)oπ = g(πX,πY). Letting V
denote the Riemannian connexion on K2n, by a direct computation we obtain
(V'XJ)Y = π*(Pzx<p)πY, from which the result follows.

Theorem 4.2. Let Sι > M2n+1 -^-> K2n be the above fibration with M2n+1

closely cosymplectic. If M2n+1 has positive φ-sectional curvature, then M2n+1

is the product space K2n X S1.
Proof. Since η is harmonic on M2n+1, we have Hι(M2n+ι, Z) Φ 0. Secondly,

by a direct computation positive ^-sectional curvature on M2n+1 implies positive
holomorphic sectional curvature on K2n, and hence πλ(K2n) = 0 by a result of
Gray [5]. We claim a principal circle bundle S1 —»M -+ K with πλ(K) == 0 and
Hι(M) Φ 0 is necessarily trivial. Let i b e a base point of M, and SI the fibre
over x. Then the sequence

> H\M, SI) -* HKM) ^U HKsl) > H2(M, Si) >

is exact. First note that Hι(SD « Z. Now by the universal coefficient theorem
H\M) is a free abelian group, and Hι(M, S\) « free Hι(M, Si) « free H^M, Si)
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^ free HX(K) = 0 where the identification of H^M, SJ.) and H^K) is made by
the Serre sequence of the fibration (see for example, Mosher and Tangora [10]).
Hence c* is a nontrivial monomorphism. Moreover torsion H2(M, SI) « torsion
fliίM, SJ.) « torsion Hi(K) = 0. Thus ί* is an isomorphism, and hence the
characteristic class of the bundle is zero.

5. Examples

It is well known that S6 carries a nearly Kahler structure, so let / denote
such an almost complex structure on S6 and let θ be a coordinate function on
S1. On S6 x S1 define φ, ξ, η by

where X is tangent to S6. Then as / is not parallel on S6 (i.e., S6 is not Kahlerian),
Vψ Φ 0 with respect to the product metric. However it is easy to check that
the structure defined on S6 x S1 is closely cosymplectic.

On the other hand, Gray [6] showed that every 4-dimensional nearly
Kahler manifold is Kahlerian. We now give the corresponding result for closely
cosymplectic manifolds.

Theorem 5.1. Every ^-dimensional closely cosymplectic manifold is cosym-
plectic.

Proof. As the manifold is closely cosymplectic, a direct computation shows
that (Vxφ)Y = ψiyxψ)ψΎ. Now let {ξ,X1,φX1,X2,φX2\ be a ^-basis. Then
computing Vφ on this basis we obtain Vψ — 0 and hence that the manifold is
cosymplectic.

In [2] one of the authors showed that besides its usual normal contact metric
structure, S5 carries a nearly cosymplectic structure which is not cosymplectic.
Consider S5 as a totally geodesic hypersurface of S6 then the nearly Kahler
structure induces an almost contact metric structure (φ9ξ,η,g) with φ and
hence η Killing. In view of Theorem 5.1 this nearly cosymplectic structure is not
closely cosymplectic.

Moreover this almost constact structure on S5 is also not contact as the fol-
lowing theorem shows.

Theorem 5.2. There are no nearly cosymplectic structures which are
contact metric structures.

Proof. Let M2n+1 be a nearly cosymplectic manifold, and suppose that its
(almost) contact form η is a contact structure (i.e., η Λ {drj)n Φ 0 everywhere).
Since the structure is contact and ξ is Killing, M2n+1 is K-contact and — ψX —
Vxξ. Now on a K-contact manifold the sectional curvature of a plane section
containing ξ is equal to 1, [7]. Thus if X is a unit vector orthogonal to ξ, then
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- φ[ξ,X],X) = -g((Fξφ)X + ψVxξ,X)

= 8((Fxφ)ξ,X) + giφ'X.X) = gWzφ)ξ,X) ~ 1

Therefore

0 = g((Fxφ)ζ,X) = -g(φFxξ,X) = -g(φ2X,X) = g(X,X) ,

and hence X = 0, a contradiction.
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