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CONFORMALITY OF RIEMANNIAN
MANIFOLDS TO SPHERES

KRISHNA AMUR & V. S. HEGDE

1. Introduction

Let M be an orientable smooth Riemannian manifold of dimension n with
Riemannian metric gtj. Let V be the covariant differentiation operator on M,
and Khijk9 Kij9 r be the Riemann curvature tensor, Ricci curvature tensor, and
scalar curvature tensor of M respectively. Let X denote the infinitesimal con-
formal transformation on M so that we have

(l l) (^xg)ij = FtXj + PjXt = 2pgίj ,

where p is a function, and £gx denotes the Lie differentiation with respect to X.
Assuming that ££'xr = 0 Yano, Obata, Hsiung-Mugridge, Hsiung-Stern (see
[1]? [2], [6], [8]) have studied the condition for a Riemannian n-manifoldM to
be conformal to an n-sphere. The purpose of this paper is to relax the condi-
tion 3? xr = 0 further, that is, to assume <£Dp<£xr = 0, and to obtain conditions
for M to be conformal to an n-sphere where Dp is the vector field associated
with the 1-form dp. Towards this end we prove the following theorems.

Theorem 1.1. If a compact orientable smooth Riemannian manifold M of
dimension n > 2 admitting an infinitesimal conformal transformation X: <gxg

\άΌ= 2pg, p Φ constant with &Dp&xr = 0 satisfies f (A^O3 + —&x&Όpr\
JM\ n2 I

> 0 where Aυ = Ktj — {arjn)gij and a = 1, then M is conformal to an n-
sphere.

Theorem 1.2. Let M be an orientable smooth Riemannian manifold of
dimension n > 2 admitting an infinitesimal conformal transformation X satis-
fying (1.1) such that p Φ constant, and J£DpJgxr = 0. Then M is conformal to
an n-sphere if Sex^Όpr > 0 and &x \Gf = 0 where Gi3 = Kυ - (r/w)^€i.

Theorem 1.3. Let M be an orientable smooth Riemannian manifold of
dimension n > 2 admitting an infinitesimal conformal transformation X satis-
fying (1.1) such that p Φ constant and <£DpJgxr = 0. Then M is conformal to
an n-sphere if SέxS£Όpr > 0 and S£x \ W\2 = 0 where W is a tensor defined in
5 2.
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It is shown in § 5 that when S£xr = 0, Theorems 1.1 and 1.2 reduce to
those of Yano [6], and Theorem 1.3 reduces to that of Hsiung and Stern [2].
Also it is proved that when r = constant, the condition a = 1 in Theorem 1.1
may be replaced by a > 1, and the manifold M would then be isometric to a
sphere. The following known theorems are needed in the proofs of our theo-
rems.

Theorem 1.4 (Obaίa [3]). // a complete Riemannίan manifold M of dimen-
sion n>2 admits a nonconstant junction p such that FtFjp = — c1ρgi^ where
c is a positive constant, then M is isometric to an n-sphere of radius 1/c.

Theorem (1.5 Tashiro [4]). // a complete Riemannian manifold M of di-
mension n > 2 admits a nonconstant function p such that V\Pjp + (ijrήΔpgij
= 0, then M is conformal to an n-sphere.

2. Notations and formulas

The raising and lowering of the indices are, as usual, carried out respectively
with gίj and giά. The tensors thus obtained are called associated tensors. Let
S, T be covariant tensors of order s with local components Su...is and Tίl...ίs

respectively. The associated contravariant components of T are Tix'"u. We
define the inner product of S and T by S^.^T1'"*9 and denote it by <S, Γ>.
If S = T we write \S\2 for (S, 5 ) . For the sake of easy reference we list some
known formulas for details see Yano [7]:

(2.1) J?xr = 2(n- l)Ap - 2rp ,

(2.2)

(2.3) ^xKhίjk = 2pKhiJk -

(2.4) ^ A j = gijdp - (n - 2)ViPj ,

(2.5) VkV^ - V,VkY^ =

where Δ is the Laplace-Beltrami operator on M, and Y is any diίϊerentiable
vector field on M. If the associated 1-form of a vector field Y is ξ, the com-
ponents of ΔY and Δξ are given by

(2.6) ΔY: -gW.FjY* + K{Yh , Δξ: -g^V^.Y, + K\Yh .

If d is the exterior differentiation operator on M, and / is any function on M,
then we denote the associated vector field of the 1-form df by Of.

Write fi = FJ, and f = gίjfj, and define the tensors Z and W by

(2.7) Zhίjk = Khίjk —
n(n - 1)
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r> OΛ k = aZhijk + b^^Gίj — b2ghjGik + b^g^g^

— b4gikGhj + bδghiGjk — b6gjkGhί ,

where a, bλ, , b6 are any constants.

3. Lemmas

Lemma 3.1. Let M be a compact orientable Riemannian manifold of di-
mension n>2. For any vector field Y and a diβerentiable function f we have

[ (PtY^dv = 0 , ί Δfdv = 0 .
J M J M

The first equation is the well known Green's formula, and the second follows
as a consequence of the first.

Lemma 3.2 (Yano and Sawakί [9]). Let M be a compact oriented
Riemannian manifold of dimension n > 2 admitting an infinitesimal non-
isometric conformal transformation X satisfying (1.1). Then for any function
f on M we have

pfdv= - 1 f
M n JM

Lemma 3.3. For a manifold M having the same properties as in Lemma
3.2, we have

(3.1) f {Δpfdv - ί pΨtΔpdv = [ (KίjpJ -
JM JM JM

Furthermore, if r = constant, then

(3.2) f (άpγdv = -!—-[ P

l

Pidv
JM n — 1 JM

Proof. VtfΔp) = pψtάp - {ΔpY = (K^p* - g'ΨJjpJp* - (ΔpY by
(2.5). Integrating and using Lemma 3.1 we get (3.1).

Setting ££xr = 0 in (2.1) and using the result in (a) we obtain (3.2).
Lemma 3.4. Let M be a manifold having the same properties as in Lemma

3.2 and satisfying the condition J£DpJ£xr — 0. Then

(3.3) ί {rp*Pi)dv = (n - 1) f (Δp)2dv + ~ f &x&Dprdv .
JM JM n JM

Furthermore, if i f xr = 0, then
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(3 .4) - ί &x&Dμrdv = [ rpφ'dv - — * — f r2p2dv .
n J M J M n — I J M

Proof. From (2.1) we have

0 = &DpSexr

= 2[(n -

p((n - \)Δp - pr)

- ppψf - rpφ*] .

Integrating and using Lemmas 3.2 and 3.3 we get (3.3). If ^xr = 0, then
(n — \)Δp — pr. Substituting this in (3.3) we obtain (3.4).

4. Proofs of Theorems

Proof of Theorem 1.1. For an arbitrary vector field Y, by writing Fj =
gJΨi and using (2.5) we find that

Putting Yι = pl, integrating the above equation, using Lemmas 3.1 and 3.3,
and setting Kiό = Aiά + (ra/rήgij we get

f AijP*p>dv + ~(-n + 2a- a2) ί (Δpfdv + ^ f rPiP*dv
JM n JM n JM

J M
FFp + —gΔp dv = 0 .

Substituting (3.3) in the above equation and simplifying we obtain finally

ί
JM

(4.1)

ί. FFp + - ( 1 + Via - l)(n -
n

dv = 0 .

Hence Theorem 1.1 follows from Theorem 1.5 and the integral formula (4.1).
Proof of Theorem 1.2. From (2.2) and (2.4) we easily get

(4.2) <G, FFp} = -
n — 2

1

2(« - 2)
Ψ 1(712
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On the other hand,

(4.3) VKGijPp3) = GijPy + p<G, VVp) + "^^9^^

Multiply (4.2) by p and integrate, integrate (4.3), and eliminate p(G, VVρ)dv
J M

from the two resulting equations so that we have the integral formula

J M

(4.4)

n - 2

Hence Theorem 1.2 follows from Theorem 1.1 and the integral formula (4.4).
Proof of Theorem 1.3. From (2.7), (2.8), (2.3), (2.4) and (2.2) we get

(for details see [2])

(4.5) <&XW, W} = 2p\W|2 - c<G, VVp) ,

where c is a constant given by

£ ^ 1 = 2a Σ bt +
n — 2

- 2(6,6, + bA - Z>A) + (« - 1) Σ bt* .

J M

(4.7)

Here c > 0. Use of (2.2) yields

(4.6) 2X I Wf = 2<J?XW, Wy - Sp | Wf

Thus from (4.3), (4.5) and (4.6) we obtain

[
J M

- 2 ί p*\Wfdv + 1 ί ^ l ^ p d i ; + f ί &x&Ώφrdv .

Hence Theorem 1.3 follows from Theorem 1.1 and the integral formula (4.7).

5. Special cases

1. Let a = 1 and £?xr — 0. The condition for conformality in Theorem
1.1 reduces, by (3.4), to
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Also we have

where \Kf = KMjkK
hi'k and | # | 2 = R^K". The condition &x&Dpr > 0 for

M implies by (3.4) that

f ( w ^ - ^
Jjf \ w — 1

With these, Theorem, 1.1 and 1.2 reduce to results due to Yano [6], and
Theorem 1.3 reduces to that due to Hsiung and Stern [2].

2. Let a > 1 and r = constant. From (4.1) it follows that M is isometric
to a sphere if

M

when a = 1, this is a known condition [5]

ί Gijpiptdv > 0

for M to be isometric to a sphere.
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