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CONFORMALITY OF RIEMANNIAN
MANIFOLDS TO SPHERES

KRISHNA AMUR & V. S. HEGDE

1. Introduction

Let M be an orientable smooth Riemannian manifold of dimension n with
Riemannian metric g;;. Let // be the covariant differentiation operator on M,
and K, x, K;;, r be the Riemann curvature tensor, Ricci curvature tensor, and
scalar curvature tensor of M respectively. Let X denote the infinitesimal con-
formal transformation on M so that we have

1.1 (£:8)i; =V X; + VX, = 2085 »

where p is a function, and #, denotes the Lie differentiation with respect to X.
Assuming that #,r = 0 Yano, Obata, Hsiung-Mugridge, Hsiung-Stern (see
[1]1, [2], [6], [8]) have studied the condition for a Riemannian n-manifold M to
be conformal to an n-sphere. The purpose of this paper is to relax the condi-
tion #,r = O further, that is, to assume ¥, % ,r = 0, and to obtain conditions
for M to be conformal to an n-sphere where Dp is the vector field associated
with the 1-form dp. Towards this end we prove the following theorems.
Theorem 1.1. If a compact orientable smooth Riemannian manifold M of
dimension n > 2 admitting an infinitesimal conformal transformation X : ¥ ,g

= 2pg, p + constant with ¥, % ;v = 0 satisfies I (A“pipj + %i”xfp,,r)d'v
4 n

> 0 where A;; = K;; — (ar/n)g;; and a = 1, then M is conformal to an n-
sphere.

Theorem 1.2. Let M be an orientable smooth Riemannian manifold of
dimension n > 2 admitting an infinitesimal conformal transformation X satis-
fying (1.1) such that p + constant, and ¥, % ,r = 0. Then M is conformal to
an n-sphere if &, %p,r > 0 and &, |G} = 0 where G;; = K;; — (r/n)g;;.

Theorem 1.3. Let M be an orientable smooth Riemannian manifold of
dimension n > 2 admitting an infinitesimal conformal transformation X satis-
fying (1.1) such that p + constant and & ,,% ;v = 0. Then M is conformal to
an n-sphere if &, %,,r > 0and & ,|W[ = 0 where W is a tensor defined in
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It is shown in § 5 that when #,r = 0, Theorems 1.1 and 1.2 reduce to
those of Yano [6], and Theorem 1.3 reduces to that of Hsiung and Stern [2].
Also it is proved that when r = constant, the condition « = 1 in Theorem 1.1
may be replaced by &« > 1, and the manifold M would then be isometric to a
sphere. The following known theorems are needed in the proofs of our theo-
rems.

Theorem 1.4 (Obata [3]). If a complete Riemannian manifold M of dimen-
sion n > 2 admits a nonconstant function p such that V.V ;0 = —c*pg;; where
c is a positive constant, then M is isometric to an n-sphere of radius 1/c.

Theorem (1.5 Tashiro [4]). If a complete Riemannian manifold M of di-
mension n > 2 admits a nonconstant function p such that V.V ;0 + (1/n)4pg;;
= 0, then M is conformal to an n-sphere.

2. Notations and formulas

The raising and lowering of the indices are, as usual, carried out respectively
with g% and g;;. The tensors thus obtained are called associated tensors. Let
S, T be covariant tensors of order s with local components S,....;, and T,,...,,
respectively. The associated contravariant components of 7 are Tt %. We
define the inner product of S and T by S,,...;, 7"% and denote it by <S, T).

If S = T we write |S} for (S, S). For the sake of easy reference we list some
known formulas; for details see Yano [7]:

@.1) Por=2n— Ddp — 2rp

(2.2) .8 = —208",

(2.3)  LKnije = 20Kni50 — 8uilV 500 + 8riVipx — 81V nor + 8V 1r0; »
2.4) LKy = gido — (n — 2)V 05,

2.5 VY —V V.Y =K;;,'Y", g yY; —V V.Y, =K'Y, ,

where 4 is the Laplace-Beltrami operator on M, and Y is any differentiable
vector field on M. If the associated 1-form of a vector field Y is &, the com-
ponents of 4Y and 4¢ are given by

(2.6) AY: —gMP WY+ KiYh, A& —gMP LY, + K'Y, .

If d is the exterior differentiation operator on M, and f is any function on M,
then we denote the associated vector field of the 1-form df by Df.
Write f, = V.f, and f* = g%f;, and define the tensors Z and W by

2.7 Zyijx = Kypije — ——rf(ghkgij — 8158i1) >
nn — 1) ‘
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Whise = aZnije + bi8nkGiy — 0:8riGin + b:8438nr

2.8)
— b,8:xGrj + 081G — begsxGhi »

where a, b,, - - -, by are any constants.

3. Lemmas

Lemma 3.1. Let M be a compact orientable Riemannian manifold of di-
mension n > 2. For any vector field Y and a differentiable function f we have

IM W, Ydv =0 , f Afdv =0.

The first equation is the well known Green’s formula, and the second follows
as a consequence of the first.

Lemma 3.2 (Yano and Sawaki [9]). Let M be a compact oriented
Riemannian manifold of dimension n > 2 admitting an infinitesimal non-
isometric conformal transformation X satisfying (1.1). Then for any function
f on M we have

IM ofdv = —% L, L fdv .

Lemma 3.3. For a manifold M having the same properties as in Lemma
3.2, we have

3.1 I (dp)idv :I oV dpdv = J (K507 — g7V 50)p%dv .
M M M
Furthermore, if r = constant, then
3.2) j (do)dv = LJ oloudv
M n—1Jx

Proof. Vp'dp) = p'W.dp — (p)? = (Kyyp! — 8597,7 000" — (dp)* by
(2.5). Integrating and using Lemma 3.1 we get (3.1).
Setting .#,r = 0 in (2.1) and using the result in (a) we obtain (3.2).
Lemma 3.4. Let M be a manifold having the same properties as in Lemma
3.2 and satisfying the condition &, % ,r = 0. Then

3.3) IM (ro'edv = (n — 1) jM Upydv + % J L.y

Furthermore, if & ,r = 0, then
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(3.4) lj PPy rdv = j rosp'dv — Lj rodv .
nJu M n—1Ju

Proof. From (2.1) we have
0=%p,L;r =2%p,((n — 1)dp — pr)
= 2[(n — DV dp — pp'V;r — rp;p'l .
Integrating and using Lemmas 3.2 and 3.3 we get (3.3). If #,r = 0, then
(n — 1)dp = pr. Substituting this in (3.3) we obtain (3.4).

4. Proofs of Theorems
Proof of Theorem 1.1. For an arbitrary vector field Y, by writing V// =
g7, and using (2.5) we find that
V’(VjYi 4Py, — Z—O‘g”V,Y‘) Y
n

= ("7 Y+ P, Y7 + Kyl Y™ — 2pp )Y+ Zall - @Y
n n

1

+ E(V"Yi Py, — Z_O‘gi,Vth) (Vin + Py — 2—0‘g“VtY‘> .
n n

Putting Y* = p¢, integrating the above equation, using Lemmas 3.1 and 3.3,
and setting K,;; = A4;; + (ra/n)g;; we get

J' Aupioidy + L(—n + 20 — oz2)j Uoydv + & f roupidv
M n M nJu
o 2
+ I ‘VVp + —gAp’ dv=0.
M n
Substituting (3.3) in the above equation and simplifying we obtain finally

I (Aijp’pj + ﬁggpgm})d?}
M n?
@4.1) 1 2
+ fM‘VVp + L1+ V=D = Dedp| dv = 0.

Hence Theorem 1.1 follows from Theorem 1.5 and the integral formula (4.1).
Proof of Theorem 1.2. From (2.2) and (2.4) we easily get

2—|G[2 — 1

(4.2) (G, IPpy =~ T

Z. |G} .
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On the other hand,

@3 PGupp') = Gur'e! + oG TPoy + " 20T .

Multiply (4.2) by p and integrate, integrate (4.3), and eliminate I LG, V¥ p>dv
M

from the two resulting equations so that we have the integral formula

1
[ (G + L)

4.4) ) L .
— 2 2 2 2\ 4 = .
n—2 M((p |GF + 4‘0$$IGI) v+2an$x$Dprdv

Hence Theorem 1.2 follows from Theorem 1.1 and the integral formula (4.4).
Proof of Theorem 1.3. From (2.7), (2.8), (2.3), (2.4) and (2.2) we get
(for details see [2])

(4.5) (LW WS =20|WE — (G, TVp>,

where c is a constant given by

c—42 _ 9, ﬁl b, + (i (—l)i‘lbi)z
— 2(byb, + by, — b)) + (n — 1) il b .
Here ¢ > 0. Use of (2.2) yields
(4.6) L \WE = 2UL W, W> — 8p|WP
Thus from (4.3), (4.5) and (4.6) we obtain
of (Curet + L2

@.7)
= 2] o WEdv + lj 0Ly |WEdv + if Lo Ly rdv .
u 2 Ju 2nJu

Hence Theorem 1.3 follows from Theorem 1.1 and the integral formula (4.7).

5. Special cases

1. Let @« =1 and #,r = 0. The condition for conformality in Theorem
1.1 reduces, by (3.4), to
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f (K ot 10 )d >0
el — v=0.
u oo n(n — 1)

Also we have

2
Z.|GE = Z,|RF, P\ WP =aZ,|K} + ﬁ———4;’~$le|2 ,
n.__

where |K[* = K,;;;K""”* and |R[ = K;;K*. The condition ¥,%,,r > 0 for
M implies by} (3.4) that

2 2
ro;0t — re )dv>0.
IM(‘DP n—1 -

With these, Theorem, 1.1 and 1.2 reduce to results due to Yano [6], and
Theorem 1.3 reduces to that due to Hsiung and Stern [2].

2. Leta > 1 and r = constant. From (4.1) it follows that M is isometric
to a sphere if

j Ay pteldv > 0;
M
when « = 1, this is a known condition [5]

M
for M to be isometric to a sphere.
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