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INTEGRABLE ALMOST TANGENT STRUCTURES

F. BRICKELL & R. S. CLARK

Suppose that [ is a given pseudogroup of local diffeomorphisms f: R* — R™.
A maximal atlas of charts of a manifold M whose changes of coordinates be-
long to " determines a I structure on M. These particular charts of M are
said to be adapted for the I structure.

The set I of all local diffeomorphisms f whose derivatives Df have values
in some given Lie subgroup G of GL(R™) is an important example of a pseudo-
group. A [, structure on M is called an integrable G structure. Examples of
these are integrable almost complex structures and integrable almost tangent
structures.

I' structures on manifolds M and M, are said to be isomorphic if there exists
a bijection

oM —-M

such that x is an adapted chart of M iff xo ¢ is an adapted chart of M,.

Any complex manifold has a standard integrable almost complex structure.
A well-known theorem states that any integrable almost complex structure on a
manifold M is isomorphic to this standard structure on some complex manifold.

Any tangent manifold has a standard integrable almost tangent structure. But
an integrable almost tangent structure on a manifold M is not necessarily iso-
morphic to this standard structure on some tangent manifold. In this paper we

find necessary and sufficient conditions for the existence of such a tangent mani-
fold.

1. Locally affine structures

Suppose given a " structure on a manifold M. An atlas of adapted charts
of M whose changes of coordinates belong to a given subpseudogroup I of I
determines a subordinate I structure on M. In general such a subordinate
structure does not exist.

A locally affine structure on M is a pseudogroup structure with coordinate
transformations of the type

z—Az+ b,

where A ¢ GL(R™), b ¢ R*. A manifold with such a structure carries a standard
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flat linear connection whose components with respect to the adapted charts are
Zero.

A subpseudogroup structure with coordinate transformations of the type
z— Az

is a locally centro-affine structure.

A locally affine structure does not necessarily admit a subordinate locally
centro-affine structure. In order to be able to state conditions for it to do so we
recall [3] that a vector field V' on a manifold M is concurrent with respect to
a linear connection V on M if

VxVZX

for any vector field X in M.

Theorem 1. A locally affine structure on M has a subordinate locally centro-
affine structure iff M admits a global vector field concurrent with respect to its
flat connetion.

Proof. Suppose that M has a subordinate locally centro-affine structure.
For each chart y adapted for this structure we define the local vector field

yia/ayl .

These local fields agree on the intersection of their domains and so define a
global vector field ¥ on M. This is concurrent with respect to the flat connec-
tion I since, if X = a%/ady?,

VyV = aiVa/ayi(yja/ayf) =a9/dy' =X .

Conversely, suppose that M carries a concurrent vector field V. For each
chart y adapted for the locally affine structure let V' = v%9/dy*. Then for any
vector field X = a%/dy*

Py =ald? 9
oyt oy’
Since this must be X it follows that
v=YyY-+c

for some ¢ ¢ R™. Such functions v are therefore charts adapted for the locally
affine structure and so, on any intersection of domains,

7=Av + b,

where A, b have values in GL(R™) and R”" respectively. But because V is a
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global vector field, it follows that b = 0. The charts v therefore define a locally
centro-affine structure on M subordinate to the given locally affine structure.
q.e.d.
We shall say that a locally affine structure on a manifold M is complete if
the flat connection on M is complete. Any complete locally affine structure on
a connected manifold M determines a complete locally affine structure on its
simply connected covering manifold M’. This structure on M’ is isomorphic to
the standard locally affine structure on R™ determined by its identity chart [2].
Theorem 2. A locally affine structure on a connected manifold M which
(i) is complete,
(ii) admits a subordinate locally centro-affine structure,
is isomorphic to the standard structure on R™.
Proof. Theorem 1 shows that M carries a concurrent vector field V. This
lifts to a concurrent vector field W on R”. If y is the identity chart on R™, an
argument used in the previous proof shows that

9

W=0"+ c)—
oy*

for some c* € R, and so W has just one zero. This arises from a zero of the
vector field V. But since W has only one zero, R™ must cover M just once.

2. Integrable almost tangent structures

A manifold M modelled on R* @ R" carries a foliation (of dimension n) if
if it has a pseudogroup structure whose coordinate transformations are local
diffeomorphisms of the type

(z,w) — (fz, 8(z,w)) ,

where f is a local diffeomorphism in R”. If (x,y) is an adapted chart at a point
m e M, the leaf F,, containing m is determined locally by x = xm and it admits
y|F, as a chart.

An integrable almost tangent structure [1] on M is a pseudogroup structure
with coordinate transformations of the type

(z,w) — (fz, Df),w + b2) ,

where f is a local diffeomorphism in R”, and the local function b: R" — R" is
differentiable. An integrable almost tangent manifold carries an underlying
foliation #. A chart (x,y) which is adapted for the almost tangent structure
is necessarily adapted for &, and the charts y|F, determine a locally affine
structure on the leaf F,,.

A subpseudogroup structure with coordinate transformations of the type
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(z, w) — (fz, (Df),w)

is a nearly tangent structure.

Theorem 3. An integrable almost tangent structure on M has a subordinate
nearly tangent structure iff M admits a global vector field which is tangent to
the underlying foliation & and concurrent with respect to the locally affine
Structure on each leaf of F.

Proof. Suppose that M has a subordinate nearly tangent structure with
charts (x,y). The local vector fields y%3/dy* agree on the intersection of their
domains since

ia_i<ax1 0 oy’ a)_iaxf 0 _ ;0
ay’ oyt ox? ayt oy oxt oyl oyt
and together they define a global vector field 4 on M. This vector field is
tangent to the foliation &, and is concurrent with respect to the locally affine
structures on the leaves.

Conversely suppose that M carries such a vector field 4. For each chart
(x, y) adapted for the almost tangent structure let 4 = v%/dy*, where v* depend
on x,y. Then for any vector field X = a%’d/ay® on a leaf

ovi 9

Vyd = a'—— .
* oy oy’

Since this must be X, it follows that
v=Yy -+ C(X)

for some local differentiable function c¢: R” — R™. Consequently (x, v) are also
charts of M adapted for the almost tangent structure and so on any intersection
of their domains

X =), v o

vi 4+ bi(x) .
In terms of such a chart, 4 = v%9/ov?, and because A is a global vector field
it follows that b* = 0. The charts (x, v) therefore define a subordinate nearly
tangent structure on M. q.e.d.

Suppose that M is a manifold with a nearly tangent structure, and that A is
the associated vector field defined in Theorem 3.

Theorem 4. The set of zeros of A can be given the structure of a regular
submanifold M’ of M of dimension n.

Proof. Let M’ be the set of zeros of A, and p a given point of M’. Choose
a chart § = (x,y) at p adapted for the nearly tangent structure and having
range U X V C R*® R", where U and V are open cubes in R”. The inter-
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section M’ N (domain &) is just the set of points for which y = 0.

If y: M’ — M is the natural injection, then x’ = xoj is an injection M’ —
R™ with range U. It is therefore a chart for M’. If X’ is another chart for M’
at p obtained from & = (X, ), then ¥ ox’~! = Xox~', and this is a local
diffeomorphism in R"™. As p varies over M’, the charts x’ obtained in this way
define a manifold structure of dimension » on M’.

The representative for j in terms of the charts x’, £ is the function z — (z, 0).
Consequently M’ is a submanifold of M. The domain of x” is the intersection
of the domain of & with M’. This implies that M’ is a regular submanifold of
M.

3. The main theorem

We shall say that an integrable almost tangent structure on a manifold M is
complete if the locally affine structure on each leaf of the foliation & is com-
plete.

Suppose that such a structure is given on M, and that it admits a subordinate
nearly tangent structure. Each leaf then admits a subordinate locally centro-
affine structure. According to Theorem 2, the locally affine structure on each
leaf is isomorphic to the standard structure on R”, and therefore admits a
global adapted chart s.

The vector field 4, introduced in Theorem 3, has just one zero in each leaf.
We can therefore define the function z: m — p, where p is the zero in the leaf
F,,. This maps M onto M’.

Choose a point p € M’, and let j,: F, — M be the natural injection. Let £ =
(x,¥) be a chart of M at p chosen as in the proof of Theorem 4. Then the
chart yoj, is adapted for the locally centro-affine structure on F, and on its
domain

Yoj,=As+ b

for some 4 € GL(R"™), b € R". The function As + b is a global chart for the
manifold F,. It can be shown to be adapted to the locally centro-affine structure
on F,. This extension of the chart yoj, can be carried out for each point p in
the open set

W = &)U

of M’. Consequently it defines a function Y on z~(W’) with values in R™.
The function x is constant on the slices of &, and so it also can be extended
to a function X on z~}(W’) with values in R™. This is constant on the leaves
of #.
Lemma. The function (X,Y): M — R*"@ R™ is a chart adapted to the
nearly tangent structure on M.



562 F. BRICKELL & R. S. CLARK

Proof. In the first place we observe that (X, Y) is a local injection onto the
open set U X R".

We shall say that (X, Y) is nearly tangent at a point m, if it is defined on
some neighborhood of m, and if its restriction to this neighborhood is a chart
adapted to the nearly tangent structure on M. To prove the lemma it is suffi-
cient to show that (X, Y) is nearly tangent at each point of its domain 7~ *(W").

Let p be a point of W’, and consider the set S of points in F, at which
(X, Y) is nearly tangent. S is not empty because (X, Y) is nearly tangent at all
points of the domain of the chart &. § is, of course, an open subset of F,. We
complete the proof of this lemma by showing that S is also a closed subset of
F, and will therefore coincide with F,.

Choose a point m in the closure of S, and then choose a chart & = (%, )
at m, with range U X V (where U,V are open in R"), adapted for the nearly
tangent structure. The domain of & will meet S, and we choose a point g of
the intersection. Since (X, Y) is nearly tangent at g, there is a neighborhood

W1 = E—I(Ul X Vl)

of g, where U, and V, are cubes contained in U and ¥, such that (X,7) is
defined on W, and its restriction to W, is a chart adapted to the nearly tangent
structure. Consequently on W,

0X?

Xt = fi(x) , Y —
f@ =

¥,

where f is a local diffeomorphism in R" with domain U,.

The first relation holds on W = &~ (U, X V). The second relation also holds
on W because the functions Y and y induce the same locally centro-affine
structure on each leaf of &# which meets W,. Consequently the function (X, Y)
is defined on W and its restriction to W is a chart adapted to the nearly tangent
structure on M. But m ¢ W and therefore m e S. It follows that S is a closed
subset of F,. q.e.d.

Suppose that M’ is any manifold modelled on R”, and that TM’ is its tangent
manifold. Let #’: TM’' — M’ be the natural projection. Associated with any
chart x’ of M’ with domain W’ we have a standard chart (X’, Y’) of TM’ with
domain (z/)~'W’ defined by

X:v—-xm, Y:v—a,

where v = a%(3/0x'%),,. These charts define a nearly tangent structure on TM’
whose underlying integrable almost tangent structure is complete.
Conversely, we have
Theorem 5. An integrable almost tangent structure on a manifold M which
(i) is complete,
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(i) admits a subordinate nearly tangent structure,
is isomorphic to the standard structure on a tangent manifold.

Proof. Let M’ be the submanifold of M defined in Theorem 4. Choose any
point m € M and a chart § = (x,y) of M at p = zm as in the proof of Theorem
4. The previous lemma shows that this can be extended to a chart (X, Y) at m.

Let X’ be the chart of M’ at p associated with &. The local function

m — Yi(m)(@/ox'?),

is independent of the choice of £. Such functions determine a bijection ¢ be-
tween M and TM’. In terms of the chart (X,Y) of M and the standard chart
(X’,Y’) of TM’ associated with x/, the representative of ¢ is the identity
function on U X R™. Consequently ¢ is a diffeomorphism of M onto TM’.

Since it maps the atlas of adapted charts (X, Y) of M to the atlas of adapted
charts (X’,Y’) of TM’, ¢ is an isomorphism of the integrable almost tangent
structures on these manifolds. q.e.d.

A manifold with an integrable almost tangent structure does not necessarily
admit any subordinate nearly tangent structure.

To illustrate this, consider the circle S and its atlas .« whose charts are restric-
tions of the global function (cosa,sin@) — «. Two such charts differ by a
coordinate transformation given locally by

z—z2+c

for some ¢ € R, and so &/ determines a locally affine structure /", on S. This
structure is complete. Now consider the torus T = S X S. The atlas of charts
x Xy, where x,y e o, defines an integrable almost tangent structure 3 on 7.
The leaves of the foliation & are the circles F, = p X S. The locally affine
structure on any leaf is isomorphic to /', and so it is complete. Since T is
compact, it cannot be a tangent manifold. It follows from Theorem 5 that the
integrable almost tangent structure Y cannot admit any subordinate nearly
tangent structure.
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