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EXTENDIBILITY AND TRANSVERSALITY

STEPHEN J. GREENFIELD & MICHAEL MENN

1. Introduction

In [1] Errett Bishop wrote: "It is thought that a manifold Mn+ι c Cn has,
in general, the property that holomorphic functions in a neighborhood of M
extend to be holomorphic in some fixed open set." In this paper we analyze
Bishop's statement and discover an interpretation for "in general".

We say a subset K of Cn is extendible to a connected subset Kf of Cn (with
K c; Kf) if every function holomorphic about K extends to a holomorphic func-
tion defined in a neighborhood of Kf.

In [5] conditions were obtained for a real (n + A:)-dimensional submanifold
M of Cn to be extendible to a set containing an open subset of Cn. These con-
ditions were stated in terms of holomorphic and antiholomorphic vector fields
on M and their Lie brackets.

But from the point of view of [8] the conditions mentioned above can be
interpreted as restrictions on the (n + &)-jet of the map /: M —• Cn, where / is
the inclusion of M m Cn. Careful examination of the restrictions on the jet of /
reveals that "most" (n + &)-jets satisfy these restrictions; so, therefore, do
"most" maps in C m topology, for m large enough (verifying Bishop's remark).
More precise statements of this are made in § 4, where a corollary on function
algebras is also deduced.

In § 2 the notation and some of the main ideas of [8] are reviewed with
special attention to the situation considered here. Computations comparing jets
of maps and Lie brackets are done in § 3.

2. Singularities of maps of real manifolds into complex manifolds

If φ: X -> Y is a map of topological spaces and x ε X, then φx will denote
the germ of φ at x. Let J^(p, q) = {φ: Rp -+Rq\φ is C°° and φ(0) = 0} and
J(p9 q) = {φQ\φε &r(p9 q)}. If φ e ^ ( p , q) or φ € J(p, q), then [φ]n will denote

the set of germs at the origin of elements of ^(p, q) which agree with φ up to
and including order n. Let Jn(p, q) = {[φ]n \ φ e J(p, q)}. Jn(p, q) is a real finite
dimensional vector space. [φ]n will occasionally be abbreviated to φ.

Whenever m is an integer, S£m will denote the group of invertible germs in
/(ra,ra). There is a group action of jSfp X <£q on Jn(p,q); (a, β)([φ]n =
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[βφa~ι]n. Similar definitions can be made in the complex case. Let C^(p, q)
= {φ: Cp->CqIφ is h o l o m o r p h i c a n d 0(0) = 0}, CJ(p, q) = {φQ\φz C&ip, q)},
CJn(p, q) = {[φ]n I φ e CJ(p, q)}, and C£Pm be the group of invertible germs in
C7(m, m). CSev X CS£q acts on CJn(p, q).

By manifold we mean real C°° paracompact Hausdorίf manifold. All maps
of manifolds are C°°. By complex manifold we mean complex analytic para-
compact Hausdorff manifold. Maps of complex manifolds are holomorphic.

Let U C RP(U C Cp) be open and let φ: U -> Rq(φ: U ^Cq). Define
tφ: U —• J(p, q)(tφ: t/ —> C/(p, <?)) by *,(*) to be the germ at the origin ot y -»
φ(x + y) — Φ(x)- The projection of tφ onto Jn(v,q)(CJn(p,q)) will also be
written *,.

Let ^ m ( C ^ m ) be a subgroup of J?m(CJ£m). Suppose M is an m-dimensional
(complex) manifold and Q is an atlas of coordinate functions for M. The pair
(Aί,Q) will be called a (complex) manifold of type Sj^cSj if
ίαaαx-iteiOO) 6 ^m(C^m) for all x β M and coordinate functions al9 a2eQ
whose domain contains x. The atlas Q will be suppressed from the notation.

If X is a (complex) p-manifold and Y is a (complex) g-manifold, then
/"(X, Y)(CJn{X, Y)) will denote the fiber bundle with base X X Y, fiber
Jn(p,q)(CJn(p,q)) and group jg?p X Se(L{CSev X CJ^α). If Z is a (complex)
manifold of type SV{C^^) and Y is a (complex) manifold of type
then the group of Jn(X, Y)(C/n(Z, Y)) is reducible to J % x &q(C&v X

Let ΛΓ and Y be manifolds of type S£v and J£q, respectively. If A c /w(p, ̂ )
and is invariant under £frv X j ^ g , then A determines a subbundle Jn(X, Y \ A)
of / n ( Z , Y). If Λ is a submanifold of / n(p, q), then / π ( Z , Y; ^ ) is a submani-
fold of Jn(X, Y). Furthermore, the codimension of Jn(X, Y; Λ) on / W (Z, Y) is
the codimension of 4̂ in Jn(p, q).

Jn(X, Y) may be looked at as the set of ^-equivalence classes of germs of
maps of X into Y where two germs are n-equivalent if they agree to order n.
If /: X—> Y and x € Z , let /n(x) be the ^-equivalence class containing the germ
of / at x. Thus a map f: X —> Y induces a commutative triangle:

(W.Λ

Let A(f), the singular set of / of type A, be defined by A(f) = (fn)-λJn(X,
Y A). If / is such that fn is transversal to Jn(X,Y\ A), then / will be called
A -transversal. If / is ,4-transversal, then A(f) is a submanifold of Z with
codimension equal to that of A in Jn(p, q). Similar definitions and statements
may be made in the complex case.

Itf: X-*Y, let Tf: TX -> TY be the induced map of tangent bundles.
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If fax, ,am) is a tuple of integers with 0 < am < < a19 define P(al9 ,
am) to be the dimension of the symmetric product Ramo . . . 0 j R

α i (see [8, § 6]
for a definition of the symmetric product).

Theorem 2.1. Lei /? and q be positive integers. It is possible to assign to
each tuple (a19 , an) of nonnegative integers, with aλ>p — q and ax>
> an, a submanifold Z(au -,an) of Jn(p, q) in such a way that

i) each Z(a19 , an) is invariant undr S£v X £?q9

ii) if f: X -+Y is a map of a p-manifold into a q-manifold, then Z(a)(f)
= {x e XI dimension kernel Tfx = a),

iii) if f: X —>Y is a Z(a19 , am)-transversal map of a p-manifold into a
q-manifold (so Z(a19 , am)(f) is a manifold), then Z(a19 , flm, am+1)(f) =
{x e Z(a,, , am)(f) \ dimension (kernel Tfx Π TZ(a19 • • •, am)(f)x) = am+1},

iv) if f: X -+Y is Z(a)-transversal, then the codimension of Z(a)(f) in X is
a(<l — P + a)> If m>2 and f is Z(al9 ,am^-transversal and Z(al9 , a m ) -
transversal, then the codimension of Z(a19 ,am)(f) in Z(aλ, ,am_^(f) is
P(a19 , am)(q - p + a,) - Σf=2 P(^ > ajifli-i - ^ )

For a proof, see [2] or [8].
It is possible to define complex submanifolds CZ(al9 ,fl j °f CJn(p,q)

which are invariant under CSfp X C£Pq behaving analogously to the Z(a19 ,
an) with respect to holomorphic maps of complex manifolds. The proof is
formally identical to that of Theorem 2.1.

If X and Y are manifolds, let Cm(X, Y) denote the set of C°° maps of X into
Y, provided with the topology of compact convergence of all partials of order
less than or equal to n.

Let B be a submanifold of Jn(X, Y). Then, according to the Thorn trans-

versality theorem, {/: X —> Y \ fn is transversal to E] is dense (in fact, a Baire

set) in C π + 1 (Z, Y). It X is compact, this set is open as well as dense in Cn+1(X,

Y). See [7] for a proof of the transversality theorem.

If /: X -> Rq (or /: X -» Cq), then fj will denote the /th coordinate function

of /. If φ: R2P -> R2q, define 0: C* -+ Cq by ^( jή + fccj, — , jcf + IJCJ) =

0/*ί, , xξ, 4 , , xξ) + iφq+j(x\, -, xξ, x\9 , Λf). (Note that φ is not

necessarily holomorphic.) If S c C7(p, ̂ ) , let S = {φ e 7(2p, 2<?) | φ e 5}. A real

2^-manifold Y is a complex ^-manifold if and only if Y is a manifold of type

UP: Rp-^ R2q is a polynomial with P / ^ , , xp) = Σ tfu-jA1'''xiP>

define p(P): Cp-> Cq by

The function p induces a map Jn(p, 2q) -^ CJn(p, q) also denoted by ô. This
map is an isomorphism of real vector spaces. If A is a submanifold of CJn(p,
q) then, since p is an isomorphism, p~\A) is a submanifold of /w(p, 2#). It is
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easy to show that if A is invariant under CS£V X CJ&q9 then ρ~\Λ) is invariant
under &v x (C&q)\

Thus if X is a p-manifold, Y is a complex g-manifold, ax> p — q and

tfi > > an > 0, then /n(ϋf, Y ; p~ιCZ{al9 , α j ) is a submanifold of

Jn(X, Y).

Let X and Y be as above and let /: X —> Y be C°° (as a map of real mani-
folds). It is immediate that p~ιCZ(a^(j) = {* € X | the complex span of Tf(TXx)
is a (/? — ^^-dimensional complex subspace of TY /(ai)}. Suppose p < 2q so
that it is possible for Z(0)(/) to be nonempty. From the fact that Z(0)(/) is
open in X, it follows that if / is ^CZ^X/Mransversa l , then Z(0)(/) Π
p"ιCZ{a^{f) is a submanifold of X with codimension 2ax(q — p + aj. Define a
vector subbundle £ of TX over Z(0)(/) Π p-χCZ(aλ)(j) by £ = {v | v e ΓX* for
some * 6 Z(0)(/) Π p-lCZ{c0{S) and ιT/(ι;) e Γ/(ΓZJ}. The fiber of K is 2ar

dimensional. Define a: K-+K by Tf(a(y)) = zT/O).

/?2<7 will be identified with Cq by associating the tuple (aγ + ibl9 — -,aq + ibq)
with the tuple (aly ',aq,b19 - ,bq). We will need the following computa-
tional facts about p: Let / e ^(p, 2q) be a polynomial and let v, w e TR$. Let
p: Jn(p, 2q) —> CJn(p, q) be as above. Then it is simple to show:

i) T(pf)(v + ίw) = Tf(v) + ίTf(w),

ii) Ttpf(v + ίw) = TpTtf{v) + iTpTtf(w).

Proposition 2.2. Let X be a real p-manifold, Y be a complex q-manifold,
and F: X-*Y be p-ιCZ(a^ , aj-transversal If x e Z(0)(/) Π p~xCZ{ax,
- '' 9 «m)(/)> tet Wx — {v e Kx I v and a(v) both are elements of Tρ~λCZ(aλ, ,
aj(f)}. Let V = {xe Z(0)(/) n p-ιCZ{al9 , O f f ) I dimension Wx = 2am+ι}.
Then F e u b>am+1 P~lCZ{ax, . ., an, b)(f).

Proof. This is a local question. Suppose X = RP,Y — Cq — R2q,f: Rp-^Cq

is a p~ιCZ{aλ, , αm)-transversal polynomial, and 0 e V. Let v15 , vam+1 €
TRξ be such that Wo = span {̂ 1? . . ,n β l l + 1 ,α( ί ; 1 ) , ,^(/yαm+1)}. It follows
from i) that for / = 1, . . . , am+ί, T(pf)(Vj + ia{v3)) = Tf{v3) + iTf(a(v3)) = 0.

We will show that vs + ίa(v3) 6 kernel T(pf)Q Π ΊCZ{aγ, -, aj(pf\ for
each / so that the complex dimension of kernel T(pf)0 Π TCZ(al9 , am)(pf)0 is
at least am+1. If we also show that pf is CZ(a19 , αTO)-transversal at 0, then
the result will follow from the complex analogue of Theorem 2.1.

Jm(Rp, R2q) = Rp X R2q X Jm(p, 2q), and ^ is the projection of fm onto
Jm(p, 2q). Thus p~ιCZ{al9 , αjff) = t?{p-χCZ{β» , αm)), and ί, is trans-
versal to p-\CZ{aγ, , α j ) . If v, w z TRP, then Ttpf(v + ίw) = TpTtf(v) +
iTpTtf(w). That tpf is transversal to CZ{ax, , am) at 0 follows from the fact
that tf is transversal to ρ~ιCZ{ax, , α m ). Thus v + ήv e TCZ(a19 , am)(pf)
if and only if 7 7 ^ 0 + /w) 6 ΓCZ(α15 , am). But for / = 1, , m,
Ttpf(v3 + ia(v3)) - TpTtf(Vj) + iTpTtf(a(v3)). Since v3 and a(y3) both are
elements of Tp~lCZ{aly , am)(f), Ttf(v3) and Ttf(a(v3)) are elements of
Tp-'CZia,, ",aj. Thus 7 7 , / ^ + ia(v3)) € Γ C Z ^ , , flj, and Vj +
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ίa{Vj) e TCZ{ax, , am)(pf). Hence the proposition is proved.

Example 2.3. Let /: R2 -+ C2 be defined by f(x, y) = (x + ίy, i(x2 + y2)).
f is ^CZUMransversal. Furthermore, 0 e Z(0)(/) Π ρ~ιCZ(\, 1)(/), but
Wo Π ΓZ(0)(/) = {0} since ΓZ(0)(/) = {0}. It follows that the inclusion
V c U δ>αm + 1 ρ~ιCZ{aλ, ., am, b)(f) of Proposition 2.2 cannot be replaced by
V Clp-'CZia,, « , α m + 1 ) .

It is possible, despite Example 2.3, to interpret the sets p~ιCZ(a19 , am+1)(f)
(for suitably transversal /) in a more precise fashion than Proposition 2.2. This
would, however, take space. The point we are trying to make here is that the
singular types constructed in [8] give rise to singular types of maps of real
manifolds into complex manifolds.

3. Lie brackets

If U is an open subset of Rp, then φ: U - » R q and x e U define Dφx: Rp ->
Rq by Tφ(vx) = (Dφx(v))φ(x). Dφ will abbreviate Dφ0. Let Σ C Jn(p, q) be
open, and E19 E2, B be vector subbundles of Σ X Rp. Define F by the exact-
ness of 0 -• B -> Σ X Λ» -> F -^ 0. Let π: / π + 1 (p, ^) -> / n(p, #) be the projec-
tion.

If s and ί are nonnegative integers, let M(s, t) denote the set of linear maps
from Rs to Rι. Give M(s, i) the usual structure as a real vector space, so we
may identify M(s, t) with Rst.

Suppose that the fiber dimension of Et is e(i). Let φ € ^{p, q) be such that
[φ]n € Σ, and U be a neighborhood of [φ]n in I 7 such that Eι and E2 are both
trivial over U. Then there are bundle equivalences δt: U X 2£e(i) —>Ei/U. Define
C- maps Q : t/-> Af(β(0,p) by δt(Mn,v) = ([ψ]», Q(W W )(^)) . Q([ψ]-)
has rank e(0 and its image is {>v e i?^ | ([ψ]n, w) € E^. Straightforward linear
algebra shows that there are an integer N and smooth functions At: U—>M(p, N)
such that ([ψ]n, v) <= Et if and only if At([ψ]n)(v) = 0.

Let Vi'. U —>E€ be sections for i — 1,2. Recall that since ^ e ^ ( p , (?) there
is a map ^ : /?p —> /n(p, ^r). The sections ^ are pulled back to sections tfVi of
ί ^ i over tφl(JJ). Note that the bundles tfEt and î >B are equivalent to sub-
bundles of TRP over t^\U). Furthermore, there is an exact sequence 0 —• tfB

_* TRp - U t*F -> 0 over ^^(C/).

Define ϋt: tjKU)-> Rp by: / J ^ J C ) = (Όt(x))x. Alφ^ v^x) is zero for
each x € tφKU). Consequently all directional derivatives of y4ί(^( ))^t( ) are 0.
Thus (DUi o ̂ )(»2(0))) ^i(O) + ^^[^l") -Dv^UO)) = 0 and (Z>U2 o ί#)(^(0)))

ϊ;2(0) + ^ 2([^]w) ^^2(^i(O)) = 0. Since D(Atotφ) is determined by [φ]n+1 and
the kernel of A^lφY1) is {v | v0 ε (tfEX), it follows that the Lie bracket
Ufv19 tfv2](O) is determined up to (t*Eλ + t*E2\ by [φ]n+1 and the vJiiφY).

If we suppose that Et c 5 for ι = 1, 2, then eίtίjfVi, ί*/y2](0)) is determined
by [φ]n+1 and t ; ^ ^ ] " ) . £ * <g> £ * ® F = {([ψ]», L) | [ψ]» e ^ and L: (E 1 )^ ] n x
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(E2)mn —> F [ Ψ ] Λ is bilinear}. Thus, if each Et C B, then Lie bracketing induces
a morphism γ: π~1Σ —*E?®Ef®F of fiber bundles over Σ. If α is less than
or equal to the fiber dimension of F, define Σ(γ, a) to be the set of points ψ in
π~ιΣ such that the linear map (E^^n (8) (E2)mn —• F w n corresponding to γ(ψ)
has rank α.

A function /: Jn(p, q)-*R will be called a polynomial if, given some choice
of vector space basis for Jn(p, q), f is a polynomial in the coordinate functions
of Jn(p, q). A function g: Jn(p, q) —> i?s will be called a polynomial if each
coordinate projection of g is a polynomial.

Suppose 21 is such that there is a polynomial g: Jn(p,q) —> RN such that
21 = {[φ]n I #([0]w) =£ 0}. Let U be a vector subbundle of Σ X i?p. We will say
that U is polynomially determined if there are an integer K and a polynomial
function G: / W O, q) -> M(p,K) such that for [ψ]w e 21, then ([ψ?, v) g 17 if
and only if G([ψ]n)'V = 0. It is apparent that if the bundles E19 E2 and B are
polynomially determined, each Σ(γ, a) is determined by polynomial equalities
and inequalities. If a is maximal with respect to the property that Σ(γ, a) Φ φ,
then there is a polynomial h on J^q) such that [ψ] w + 1 € ^(p, α) if and only if
KWn+1) Φ 0. Consequently, Σ(γ, a) is open.

Now suppose that J?p C &p and ^ Q c f̂? are subgroups, and that I 7 is
invariant under the action of <&p X <&q. Define an action of &v x j ^ g on
21 X Rp by (α, /3)([^]re, v) = (t/3^-1]7 1, Dα(v)), and suppose that £Ί, E2 and B
are invariant under ^ p x <&q. The actions of <£v X ^ on 21 x i?37 and 5
determine an action on F. The actions on E19 E2 and F determine an action on
E* (8) £2* (8) F as follows: an element of Ef (x) E* ® F is a pair ([0]71, L) where
[0]w e £ and L: (£Ί)[ί4]Λ X (E 2)W ] Λ -> F W ] n is bilinear. Define (α, ̂ ( t ^ ] 7 1 , L) =

]", (α, j8)L) where (or, j8)L is defined by ((α, j S ^ ί ί t ^ " 1 ] " , Dαv),
n,£>^>v))(^,i3)(L(([^]7l,'2;),([^]w,>i;))). We now show that γ is equiva-

riant thereby showing that Σ(γ, a) is invariant under Sv X J£q.
Let t/, open in Σ, be such that Ex and E2 are trivial over U, and let ^ : U —>

E t be sections. If (α, j8) 6 &v X «=̂ ^ then, for / = 1, 2, (α, β)vt is a section of E€

over (αr,j8)t/. Since (^α-χ(α, β)Vi)(a(x)) = Γα^^ίXjc)), it follows that

= Ta[tfvl9 tfv2](O) .

The equivariance of γ is now immediate.
Since Σ(γ, a) is invariant under &p X ^ ^ and is determined by polynomial

equalities and inequalities, it may (see [3]) be written as a finite union of dis-
joint manifolds each of which is invariant under &\ X <&q.

Let I b e a manifold of type Sv, and Y a manifold of type J£\. Then
Jn+1(X, Y; Σ(γ, a)) is a finite union of disjoint manifolds. If a is maximal with
respect to the property that Σ(γ,a) φ φ then U δ < α J

n+1(X, Y Σ(γ,b)) is a
finite union of disjoint manifolds, each of which has positive codimension in
Jn+ι(X, Y). Thus, if /: X -> Y is such that fn+1 is transversal to each of these
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manifolds, then X ~ Σ(γ, ά)(f) is a finite union of manifolds of dimension less
than p.

Let A1(A2) be a maximal atlas of coordinate functions for X(Y) such that if
a19 a2 € A1(A2) and x belongs to the domain of both aγ and a29 then
ί.,βl-χ(αi (*)) € J?p(J?β). Let P l : Z X Y -> Z and n: /»(*, 7 ) ^ I χ 7 b e the
projections. We will define for / = 1, 2 a vector subbundle Et(X,Y) of
n*px*TX over / n ( Z , Y; I7), which corresponds to Zv An element of n*pλ*TX
over Σ is a pair (0, v) where ^ 6 /W(Z, Y; 2") and t; 6 TXpιn{φ). Let n(^) =
(JC, y), a e Ax be such that α( t) = 0, and β € A2 be such that β(y) = 0. Then
jS^α"1 € 2 . Let Tα(t ) = w(v,a\, and define £*(Z, Y) = {(φ,y) 6 n W ^ Π
(βφa~\ w(v, a)) e ZsJ. This definition is independent of the choices of a and β.
We may, in a similar fashion, define a vector subbundle B(X, Y) and a factor
bundle F(X, Y) of n*pλ*TX over / n ( Z , Y; 2% which correspond respectively
to B and F.

The equivariance of f ensures that γ induces a morphism of fiber bundles,
Jn+1(X, Y; TT1!7) -* E^X, Y)* ® E2(X, Y)* ® F(X, Y), which will also be de-
noted γ. If /: X-> Y, then £,(/) (respectively B(f), F(f)) will denote / W Έ,(Z, Y)
(respectively /W*5(Z, Y), / W T(Z, Y)) over 2'(f). 7 induces a section σ(/): 2(/) -*
£,(/)* (x) E2(/)* (x) F(f) defined by fn+1*σ(f)(x) = γ(fn+1(x)). σ(f) is induced by
Lie-bracketing vector fields in Eλ(f) with vector fields in E2(f) and projecting
onto F(f), i.e., if vt: Σ(f) -* E^f) are sections, then σiDixXv^x) ® v2(x)) is
the projection of [vλ, v2](x) on F(/). If x e 2(/), let L^ί/) = {[vl9 v2](x) \ vt is a
section of £4(/)}. Then 2 ( r , &)(/) = {x e Σ(f) \ dim (L, + B(f)x) = b + dim5(/),}.
If a is maximal with respect to the property that Σ(γ, a) ψ φ, then Jn+1(p, q) —
Σ(γ, a) may be written as u [=1 Mt where each Mt is a manifold invariant under
<£v x J^q. If / is MΓtransversal for each i, then X — Σ(γ, ά)(f) is a finite union

of disjoint manifolds of dimension less than p.

We now summarize.
Theorem 3.1. Let g: Jn(p, q) —> RN be a polynomial, and let Σ =

{[φ]n I g([φ]n) Φ 0}. Let ££v C Jδfp ύίπd ^ C &q be subgroups. Suppose
that Σ is invariant under 3?v X £frq, and further that E19 E2 and B are poly-
nomially determined vector subbundles of Σ X Rp, which are invariant under
^ X i r Define F by the exactness of 0-+B->ΣχRp->F->0. Let
π: Jn+ι(P, q) —> Jn(p, q) be the projection, and assume that E1 + E2d B. Then
Lie-bracketing of vector fields in E1 with vector fields in E2 induces a map
γ: π~ιΣ -> E* (x) E* ® F, i.e., γ assigns to each [φ]n+1 € π~λΣ a linear map
γ([φ]n+ι): (E1 (x) E2)ίφln —> Fίφln. γ is equivariant. If b is a nonnegative integer,
let Σ(γ,b) = {[φ]n+ι e π~ιΣ\image γ([φ]n+1) has rank b}. Each Σ(γ,b) is a
union of a finite number of submanifolds of Jn+ί(p, q) each of which is invari-
ant under &v x <gq. Define B, a bundle over Σ(γ, b), by B = {([φ]n+\v +
w) I ([φ]n, v) ς. B, and the projection of ([φ]n, w) on F is an element of the
image of γ{\φ\n+ι)}. B is polynomially determined and is invariant under
§?v X ίfrq. Let a be maximal with respect to the property that Σ(γ,a) Φ φ.
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There is a polynomial h on Jn+1(p, Φ such that Σ(γ, a) = {[φ]n+1 \ h([φ]n+1) Φ 0}.
Let X be a manifold of type J&p9 and Y a manifold of type Sq. The bundles

E, and B induce bundles Et(X9 Y) and B(X, Y) over Jn(X,Y; Σ) and hence
induce bundles Et(f) and B(f) over Σ(f) forf:X-+Y.Ifxe Σ(f), let Lx(f) =
{[v19v2](x)\Vi is a section of £*(/)}. Then Σ(γ,b)(f) = {x e Σ(f)\dimension
(Lx + B(f)x) = b + fiber dimension B}. Jn+ί(X, Y) ~ Jn+1(X,Y\ Σ(γ, a))
may be written as a finite union of manifolds of positive codimension in
Jn+1(X, Y). If f: X-*Y is such that fn+1 is transversal to each of these man-
ifolds, then {x e X \ x $ Σ(f) or dimίL^ + B(f)x) Φ a + fiber dimension B) is a
finite union of manifolds of dimension less than p.

The set of functions obeying the above transversality conditions is a Baire
set in Cn+2(X9 Y), and is open and dense if X is compact.

Corollary 3.2. Let p > q, X be a real p-manifold, and Y be a complex q-
manifold. If f: X-+Y and x e X, let Ex(f) = { ^ TXX \ iTf(v) e Tf(TXx)} and
E{f) — U {Ex(f) I x e X}. Let L(f) be the Lie algebra of vector fields generated
by vector fields in E(f). If xeX, let Lx(f) = {v(x)\v <= L(/)}. Let S(f) =
{x € X\Lx(f) Φ TXX}. Then there are an integer m and a Baire set 3F (open
and dense if X is compact) in Cm(X, Y) such that if f e^ then S(f) is contain-
ed in a finite union of manifolds of dimension less than p.

Proof. Case 1, p > 2q: Let Σ = {[φV1 e J\p, 2q)\ Tφ0 has rank 2q}.
Straightforward linear algebra shows that if /: X —• Y and x € Σ(f), then
Ex(f) = TXX. Let 3F = {/: X -> Y \f is Z(α)-transversal for all a}.

Case 2, p <2q: Identify R2q with C \ and let Σι = {[φ]1 e Jι(p, 2q) \ Tφ0

has rank p and Tφ(TRξ) + iTφ(TRg) = TC$}. There is a polynomial gι on
Jι(p, 2q) such that [φ]1 e Σι if and only if gKίφΐ) Φ 0. Let E1 = {([^l1, v) \ [φ]1 e Σ1

and Tφ(v0) e iTφ(TR$)}. Now suppose that gk is a polynomial on P(p, 2q),
Σk = {[φ]k\gk(lφ]k) Φ 0}, and Ek is a polynomially determined vector sub-
bundle of Σk X R*. Define Fk by the exactness of 0 -> Ek -> Σk X R* -> F -+ 0,
let πk+ι: Jk^q)-^Jk

(pM) be the projection, and γk: (πk+ι)~ιΣk -^Ek*<g>Ek*(x)Fk

be the map induced by Lie-bracketing. Let ak be maximal with respect to the
property that Σk(γk, ak) Φ φ. Define Σk+ι = Σk(γk, ak), and let gk+1 be a poly-
nomial on J\;%q) such that [φ]k+ι € Σk+1 if and only if gk+1([φ]k+1) Φ 0. Com-
plete the inductive definition by defining Ek+1 = {([φ]k+\v + w) e Σk+ι X
Rp\([φ]k,v) eEk and the projection of ([φ]k,w) on Fk is in the image of
γk([<p\k+1)}> The proof will be complete if we can show that there is a k such
that Ek = ΣkχRp (for then we can choose m = k + 1). To show this it suf-
fices to show that if Ej Φ Σj X Rp then aj Φ 0.

But suppose Ej Φ Σj X Rp and φ: Rp -> Cq is such that [φ]j e Σj. We may
assume that DφQ is given by

1/

0

0

0

1/

0

hq-p
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where I2q_p denotes the (2q — p) X (2q — p) identity matrix, and the matrix
in the upper left hand corner has 1 for each (k, 2k — l)-entry and / for each
(&, 2&)-entry. Let U be a small open neighborhood of the origin in Rv. If
u: U —• Rp defines a section ύ: U —> TRP by ϋ(x) — u(x)x.

We may find functions v, w: U —• Rp such that

ii) if x € U, then ^(JC) = 1 and if 2 < k < 2p — 2q, then vk(x) = 0,
iii) if JC € t/, then iDφxv(x) — D^wOt).
Define functions / and g from t/ to Rq by 0 0 ) = f(x) + ig(x). ifxεU, let

A(x) be the matrix consisting of the last 2q — p columns of Dfx, and B(x) be
the matrix consisting of the last 2q — p columns of Dgx. Let M(x) be the

(2q) x (2^) matrix [B}?9Λ

 Dlx

n ) , and let N(x) be the first column of
\^κA) ug]

fv9.

If v,w obey i)—iii), then M(x) wx{x)

wJx)

+ N(x) = 0 for all xeU.

Repeated differentiation of this matrix equation enables us to compute the
derivatives of v and w in terms of the derivatives of / and g. In particular, if
n is an integer, the nth order derivatives of v and w at the origin are determined
by the (n + l)-jets of / and g at the origin. Also if 2p — 2q + 1 < k < p,
there are real numbers Rk and Sk depending only on [φ]j such that

(0) =
dx{-ιdx\

(0) -
dx{dx2

Define a vector field L2 by L2 = [£), w], and define L r + 1 = [v,Lr] if L r is
defined. A direct computation shows that the kth component of Lj+1(0) is
(dJwk/dxί)(0) — {djvkldx{"ιdx^{ΰ) + Tk where Γfc depends only on the deriva-
tives of v and w at the origin of order less than /. It follows that if 2p — 2q +
1 < k < p, then the kth component of L, +1(0) is — ((3j+1gk/dxί+1)(0) +
(d^'gjc/dxt'dxDiO)) + Uk where Uk depends only on [φV. Thus given [φV e Σj

one can choose [φ]j+1 e (πj+ι)-\ίφV) in such a way that γj([φ]j+1) Φ 0, so ^ φ 0
and the result follows.

4. Results on extendibility

We briefly review the terminology and principal result of [5].
If V is a real vector bundle, V (x) C has a natural automorphism "~ ob-
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tained by extending complex conjugation from C. There is a natural linear map
re: V ® C —» V, which is just "taking real parts".

The holomorphic tangent bundle H(Cn) of Cn is the complex subbundle of

T(Cn) (x) C generated (at p e Cn) by tangent vectors of the form £ aj(d/dZj)p.

Let W7 be a real diίϊerentiable submanifold of Cn. H(W), the holomorphic

tangent bundle of W, is just H(Cn) ΓΊ (Γ(»0 ® C) over Ψ . Jδf(»O (called the

Lev/ algebra of W in [5]) is the Lie algebra of vector fields generated by sec-

tions of H(W) and//(HO.
Then VA3 of [5] gives:

Theorem 4.1. Suppose W is a real (n + k)-dimensional differentiate sub-
manifold of an n-dimensional complex manifold Y, and that fiber dimc H(W) —k
(H(W) can be defined locally as above). Then W is extendible to a subset of Y
containing a real submanifold N with dim N = n + e where e = sup fiber

It is easy to connect the work of § 3 with this theorem. If /: X -> Y is as in
Corollary 3.2, then take W = f(X). The bundle Ex(f) of Corollary 3.2 is just
re(H(W) + H(W)). The integer e of Theorem 4.1 above can be obtained as
sup fiber dimΛ L(f) (L(f) as in Corollary 3.2). This is true, since &(W) = &(W)
are re&(W) = L(f).

We say that a subset S of a complex manifold Y is locally extendible to an
open set if and only if every relatively open subset of S is extendible to a set
containing an open subset of Y. Clearly, a set which is locally extendible to an
open set is extendible to a set containing an open subset of Y. Then the re-
marks at the end of Corollary 3.2 translate as:

Theorem 4.2. Let X be an (n + k)-dimensional real diβerentiable mani-
fold, and Y an n-dimensional complex manifold. Let Jί be a set of maps from
X to Y, equipped with the Cm topology (m sufficiently large).

a) // X is compact, then there is an open and dense subset Θ of Jί, such
that if f e Θ, then f(X) is locally extendible {and hence extendible) to an open
subset of Y.

b) // X is not compact, then there is a Baire subset of Jί with the same
properties as Θ in a).

Proof. We prove a). Take for Θ the set of functions described in Corollary
3.2, and suppose / β Θ. Then fiber dim^ L(f) = n except possibly on some lower
dimensional manifolds. An open subset of X has, therefore, some point where
fiber dimc £g(f(X)) — n. Applying Theorem 4.1 shows that f(X) is locally
extendible to an open subset of Y. b) is proven similarly.

Remark. The integer m in the statement of Theorem 4.2 above can be more
explicitly obtained by carefully examining the work of § 3. In particular, if
diniβX = dim c Y + 1, then m = d im Λ X suffices. (In fact, as d im Λ X in-
creases, m can be much less than dimΛ X.)

Precise results will be given in a forthcoming paper by M. Menn,



EXTENDIBILITY AND TRANSVERSALITY 471

We can derive a simple corollary about analyticity in maximal ideal spaces
of function algebras. (See [4] for background on function algebras.) Suppose
K is a compact subset of Cn. C(K) will denote the algebra of continuous com-
plex-valued functions on K with the uniform norm A{K) is the closure in C(K)
of restrictions to K of functions analytic in a neighborhood of K. spec A(K)
will denote the maximal ideal space of A(K), with the Gelfand topology. We
recall that each function / e A(K) extends to a continuous function ) on spec
A(K).

An important question arises: how can one describe the behavior of / on
spec A(K) — K. (See [4, p. 56].) We can contribute the following:

Theorem 4.3. Let 2ft? be the collection of compact subsets of Cn, topolo-
gizedwith the Hausdorff metric [6, p. 131]. There is a dense subset D of ^
such that if K e D, then there are an open subset U of Cn and an embedding
h: U —> spec A(K) — K such that f oh: U —> C is analytic for every f e A(K).

Remarks. 1) We do not know, but suspect, that D is also open in Jtif.
2) Suppose K e D. Put C = {x e spec A(K) — A(K) \ x e image of some

embedding hi). Is C — spec A(K)? (The appropriate corona problem.)
Proof. The subset D of 2%* is the collection of images of all (n + ^-dimen-

sional compact real manifolds X by maps f:X-+Cn which have the properties
of Theorem 4.2a). Thus f(X) is extendible to a set containing an open subset
U of Cn. Since every analytic function defined in a neighborhood of f{X) ex-
tends to U (with a sup norm on U dominated by that on f(X)), we can see that
each element of A(f(X)) extends to U hence evaluation at each point of U is a
member of spec A(F(X)). The Gelfand topology is easily seen to agree with the
natural topology on U. So the elements of D have the desired property.

We must show that D is dense in JF. If K e Jf, consider K(t) = K + S(t)
(vector sum), where S(t) is a closed ball of radius / centered at the origin. As
t -> 0, K(t) —> K in the Hausdorff metric. The sets K(t) have a finite number
of arcwise connected components, and it is fairly clear how to approximate
them by images of (n + l)-dίmensional manifolds then (since Cm approxima-
tion is finer than Hausdorff metric approximation) by elements of D, using the
density of Theorem 4.2a).
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