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EXTENDIBILITY AND TRANSVERSALITY

STEPHEN J. GREENFIELD & MICHAEL MENN

1. Introduction

In [1] Errett Bishop wrote: “It is thought that a manifold M**' C C" has,
in general, the property that holomorphic functions in a neighborhood of M
extend to be holomorphic in some fixed open set.” In this paper we analyze
Bishop’s statement and discover an interpretation for “in general”.

We say a subset K of C™ is extendible to a connected subset K’ of C™* (with
K C K) if every function holomorphic about K extends to a holomorphic func-
tion defined in a neighborhood of K'.

In [5] conditions were obtained for a real (n 4 k)-dimensional submanifold
M of C™ to be extendible to a set containing an open subset of C*. These con-
ditions were stated in terms of holomorphic and antiholomorphic vector fields
on M and their Lie brackets.

But from the point of view of [8] the conditions mentioned above can be
interpreted as restrictions on the (n + k)-jet of the map i: M — C*, where i is
the inclusion of M in C™. Careful examination of the restrictions on the jet of i
reveals that “most” (n + k)-jets satisfy these restrictions; so, therefore, do
“most” maps in C™ topology, for m large enough (verifying Bishop’s remark).
More precise statements of this are made in § 4, where a corollary on function
algebras is also deduced.

In §2 the notation and some of the main ideas of [8] are reviewed with
special attention to the situation considered here. Computations comparing jets
of maps and Lie brackets are done in § 3. '

2. Singularities of maps of real manifolds into complex manifolds

If §: X — Y is a map of topological spaces and x ¢ X, then ¢, will denote
the germ of ¢ at x. Let #(p,q) = {¢: R* — R?|¢ is C and ¢(0) = O} and
J(p,q) = {$|p e F(p,q)}. If pe F(p,q) or ¢ eJ(p,q), then [¢]* will denote
the set of germs at the origin of elements of % (p, g) which agree with ¢ up to
and including order n. Let J*(p, q) = {[4]" |4 € J(p, @)}. J™(p, @) is a real finite
dimensional vector space. [¢]" will occasionally be abbreviated to ¢.

Whenever m is an integer, .#,, will denote the group of invertible germs in
J(m,m). There is a group action of %, X &£, on J™p,q); («, P)([S]* =
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[Bga~]". Similar definitions can be made in the complex case. Let C# (p, q)
={¢: C? — C?| ¢ is holomorphic and ¢(0) = 0}, CJ(p, @) = {4, | ¢ € CF (p, @)},
CI(p, q) = {[$]"|¢ € CI(p, @)}, and CZ,, be the group of invertible germs in
Cl(m,m). C¥, X CZ, acts on CJ(p, q).

By manifold we mean real C* paracompact Hausdorff manifold. All maps
of manifolds are C~. By complex manifold we mean complex analytic para-
compact Hausdorff manifold. Maps of complex manifolds are holomorphic.

Let U C R?(U C C?) be open and let ¢: U — R%¢: U — C?). Define
ty,: U I(p, @)(t,: U— Cl(p, q) by t,(x) to be the germ at the origin of y —
#(x + ¥) — é(x). The projection of ¢, onto J*(p, g)(CI*(p, q)) will also be
written ¢,.

Let Z,(C#Z,,) be a subgroup of #,,(CZ.,,). Suppose M is an m-dimensional
(complex) manifold and Q is an atlas of coordinate functions for M. The pair
(M,0) will be called a (complex) manifold of type Z,(CZ,) if
toga—1(@,(X)) € Z,(CZ,,) for all xe M and coordinate functions «;, a, € Q
whose domain contains x. The atlas Q will be suppressed from the notation.

If X is a (complex) p-manifold and Y is a (complex) g-manifold, then
JM(X,Y)CIMX,Y)) will denote the fiber bundle with base X X Y, fiber
I, 9)(CI*(p, @)) and group ¥, X L(CZL, X C¥,). If X is a (complex)
manifold of type Z,(C%,) and Y is a (complex) manifold of type Z,(CZ,),
then the group of J*(X, Y)(CJ*(X, Y)) is reducible to Z, X Z(CZ, X CZ,).

Let X and Y be manifolds of type Z, and Z,, respectively. If 4 C J"(p, q)
and is invariant under j}, X 5?,1, then A determines a subbundle J*(X, Y ; A)
of JM(X,Y). If A is a submanifold of J*(p, g), then J*(X, Y ; A) is a submani-
fold of J*(X, Y). Furthermore, the codimension of J*(X,Y; A) on J*(X,Y) is
the codimension of 4 in J*(p, q).

J"(X,Y) may be looked at as the set of n-equivalence classes of germs of
maps of X into Y where two germs are n-equivalent if they agree to order n.
If f:X—Y and x € X, let f*(x) be the n-equivalence class containing the germ
of f at x. Thus a map f: X — Y induces a commutative triangle:

(X, Y)
P
X X XY

(i, )

Let A(f), the singular set of f of type A4, be defined by A(f) = (f»)~J(X,
Y; A). If f is such that f is transversal to J*(X,Y ; A), then f will be called
A-transversal. If f is A-transversal, then A(f) is a submanifold of X with
codimension equal to that of 4 in J*(p, q). Similar definitions and statements
may be made in the complex case.

Iff: X —7Y,let Tf: TX — TY be the induced map of tangent bundles.
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If (a,, - - -,a,,) is a tuple of integers with 0 < a,, < - - - < a,, define P(a,, - - -,
a,) to be the dimension of the symmetric product R*"o - .. o R (see [8, § 6]
for a definition of the symmetric product).

Theorem 2.1. Let p and q be positive integers. It is possible to assign to
each tuple (a,, - - -, a,) of nonnegative integers, with a, > p — q and a, > -
> a,, a submanifold Z(a,, - - -, a,) of J™p, q) in such a way that

i) each Z(a,, - - -, a,) is invariant undr &, X &,

i) if f: X - Y is a map of a p-manifold into a g-manifold, then Z(a)(f)
= {x e X |dimension kernel Tf, = a},

i) if f: X—>YisalZa,---,a,)-transversal map of a p-manifold into a
g-manifold (so Z(a,, - - -, a,)(f) is a manifold), then Z(a,, - - -, ay, a4y, ) =
{x e Z(ay, - - -, a,)(f) | dimension (kernel Tf, N TZ(ay, « - -, a,)()z) = A1}

iv) if f: X — Y is Z(a)-transversal, then the codimension of Z(a)(f) in X is
alq—p+a).Ifm>2andfis Z(a,, - - -, a,_,)-transversal and Z(a,, - - -, a,)-
transversal, then the codimension of Z(a,, - - -, a,)(f) in Z(a,, - --,a,_){f) is
P(an R} am)(q —p+ al) - Z;”;Z P(ah R} am)(ai-l - ai)-

For a proof, see [2] or [8].

It is possible to define complex submanifolds CZ(ay, - - -, a,) of CJ*(p, q)
which are invariant under C.¥, X C#, behaving analogously to the Z(a,, - - -,
a,) with respect to holomorphic maps of complex manifolds. The proof is
formally identical to that of Theorem 2.1.

If X and Y are manifolds, let C™(X, Y) denote the set of C> maps of X into
Y, provided with the topology of compact convergence of all partials of order
less than or equal to n.

Let B be a submanifold of J*(X,Y). Then, according to the Thom trans-
versality theorem, {f: X — Y |f* is transversal to B} is dense (in fact, a Baire
set) in C"*(X,Y). If X is compact, this set is open as well as dense in C**'(X,
Y). See [7] for a proof of the transversality theorem.

If f: X — R? (or f: X — C9), then f; will denote the jth coordinate function
of f. If ¢: R*» — R*, define §: C? — C? by ¢;(x} + ix}, - -+, x? + ix?) =
iy e XD, XE e XD) + iy, f(xE oo, xP, X, -+, xP). (Note that é is not
necessarily holomorphic.) If S © CJ(p, q), let S= {$peI2p,29)|d e S}. A real
2g-manifold Y is a complex g-manifold if and only if Y is a manifold of type
cz)".

If P: R? — R* is a polynomial with P;(x;, - -+, x,) = 3 af, ... ;x{*---xf,

define p(P): C? — C? by i is

(PP)j(ZU ttty Zp) = Zjl ----- Jp (a;:l ----- Jp + ia?:iﬂ,fp)z{l' . 'z{?p .

The function p induces a map J*(p, 2q) — CJ*(p, q) also denoted by p. This
map is an isomorphism of real vector spaces. If A4 is a submanifold of CJ/”(p,
q) then, since p is an isomorphism, p~'(4) is a submanifold of J"(p, 2¢). It is
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easy to show that if A is invariant under C.#, X CZ,, then p~'(A) is invariant
under &, X (CZ,)".

Thus if X is a p-manifold, Y is a complex g-manifold, 4, > p — g and
a>--+>a,>0, then JX,Y; p7'CZ(a,, - - -, a,)) is a submanifold of
JMX,Y).

Let X and Y be as above and let f: X — Y be C~ (as a map of real mani-
folds). It is immediate that p~'CZ(a,)(f) = {x € X |the complex span of Tf(TX )
is a (p — a,)-dimensional complex subspace of TY,,,}. Suppose p < 2g so
that it is possible for Z(0)(f) to be nonempty. From the fact that Z(0)(f) is
open in X, it follows that if f is p~'CZ(a,)(f)-transversal, then Z(0)(f) N
0" 'CZ(a))(f) is a submanifold of X with codimension 24,(g — p + 4,). Define a
vector subbundle K of TX over Z(0)(f) N p~'CZ(a)(f) by K = {v|v e TX, for
some x € Z(0)(f) N p'CZ(a)(f) and iTf(v) e Tf(TX,)}. The fiber of K is 2a,-
dimensional. Define «: K — K by Tf(a(v)) = iTf(v).

R** will be identified with C? by associating the tuple (a, + ib,, - - -, a, + ib,)
with the tuple (a,, ---,a, b,, - - -, b,). We will need the following computa-
tional facts about p: Let f ¢ #(p, 2q) be a polynomial and let v, w ¢ TR?. Let
e: JMp,2q) — CJ™p, q) be as above. Then it is simple to show:

) T()(v + iw) = Tf(v) + iTf(w),

i) Tt,,(v + iw) =T,Tt,(v) + iT,Tt,(w).

Proposition 2.2. Let X be a real p-manifold, Y be a complex g-manifold,
and F: X > Y be p7'CZ(ay, - - -, ay)-transversal. If x e Z(0)(f) N p~'CZ(a,,
<o, a,)(), let W, = {v e K, |v and a(v) both are elements of Tp"'CZ(ay, - - -,
a,)(N}. Let V ={x e ZO)) N p~'CZ(ay, - - -, a,)(f) |dimension W, = 2a,,,}.
Then V C Uspsap,, 0 'CZ(ay, « -+, ap, DY)

Proof. This is a local question. Suppose X = R?,Y = C?= R*,f: R* > ("
is a p"'CZ(ay, - - -, a,)-transversal polynomial, and O e V. Let v, - - -, v,,,,, €
TR? be such that W, = span {v,, - - -, V,,,,, @), « - -, a(v,,,,)}. It follows
from i) that for j = 1, - - -, ap,y, T(eH(W; + ia(v,)) = Tf(w,) + iTf(a(v,)) = 0.

We will show that v; + iw(v,) € kernel T(pf), N TCZ(a,, - - -, a,,)(pf), for
each j so that the complex dimension of kernel T(of), N TCZ(a,, - - -, a,,)(of), is
at least a,,,. If we also show that pf is CZ(a,, - - -, a,)-transversal at O, then
the result will follow from the complex analogue of Theorem 2.1.

J™(R?, R*) = R? X R* X J™(p,2q), and t, is the projection of f™ onto
J™(p, 2q). Thus p™'CZ(a,, - - -, a,)(H) = t;'(p'CZ(ay, - - -, a,)), and ¢, is trans-
versal to p"'(CZ(a,, - - -, a,)). If v, we TR}, then Tt,,(v + iw) = T,Tt,(v) +
iT,Tt;(w). That t,; is transversal to CZ(a,, - - -, a,) at O follows from the fact
that ¢, is transversal to p~'CZ(a,, - - -, a,). Thus v + iw e TCZ(a,, - - -, a,)(of)
if and only if Tt,,(v + iw)e TCZ(a, --+,a,). But for j=1,...,m,
Tt,[(v; + ia(vy) = T,Tt,(v;) + iT,Tt;(x(v,)). Since v; and a(v;) both are
elements of Tp~'CZ(ay, - - -, a,)(f), Tt,(v;) and Tty (a(v,;)) are elements of
Tp"'CZ(ay, - - -, ay,). Thus Tt,,(v; + ia(v;) e TCZ(a,, - - -, a,), and v; +
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ia(v;) e TCZ(ay, - - -, a,)(of). Hence the proposition is proved.

Example 2.3. Let f: R* — C? be defined by f(x,y) = (x + iy, i(x* + »?).
f is p~'CZ(1)-transversal. Furthermore, 0 e Z(0)(f) N p~'CZ(1, 1)(f), but
W, N TZ0)(f) = {0} since TZ(0)(f) = {0}. It follows that the inclusion
V C Upsan,, 0 'CZ(ay, - - -, ay, b)(f) of Proposition 2.2 cannot be replaced by
V Cp'CZay, -, an,)-

It is possible, despite Example 2.3, to interpret the sets p~'CZ(ay, - - -, a4y, ) ()
(for suitably transversal f) in a more precise fashion than Proposition 2.2. This
would, however, take space. The point we are trying to make here is that the
singular types constructed in [8] give rise to singular types of maps of real
manifolds into complex manifolds.

3. Lie brackets

If U is an open subset of R?, then ¢: U — R? and x € U define D¢, : R? —
R? by T¢(v,) = (Dp, (V). Dp will abbreviate D¢,. Let 3 C J*(p, q) be
open, and E,, E,, B be vector subbundles of X' X R?. Define F by the exact-
ness of 0 - B— Y X R? - F — 0. Let z: J**'(p, q) — J™(p, q@) be the projec-
tion.

If s and ¢ are nonnegative integers, let M(s, ©) denote the set of linear maps
from R® to R‘. Give M(s, t) the usual structure as a real vector space, so we
may identify M(s, ¢) with R*.

Suppose that the fiber dimension of E; is e(i). Let ¢ € #(p, q) be such that
[#]" € 2, and U be a neighborhood of [¢]* in X such that E;, and E, are both
trivial over U. Then there are bundle equivalences §;: U X R*® — E;/U. Define
C* maps C;: U— M(e(d), p) by o,([¥]",v) = ([¥]*, C:(I¥1M(®). Ci([v]™)
has rank e(i) and its image is {w € R?|([{]*, w) € E;}. Straightforward linear
algebra shows that there are an integer N and smooth functions 4,: U—-M(p, N)
such that ([]*, v) € E; if and only if A,([+]*)(v) = 0.

Let v;: U — E; be sections for i = 1, 2. Recall that since ¢ € #(p, q) there
is a map #;: R? — J*(p, q). The sections v, are pulled back to sections £}v; of
t¥E,; over t;'(U). Note that the bundles 7¥E; and t}B are equivalent to sub-
bundles of TR? over ¢;'(U). Furthermore, there is an exact sequence 0 — tfB

— TR? —> *F — 0 over ;'(U).

Define ?;: t;'(U) — R? by: tfv,(x) = (0,(x),. A;(t,(x))-0,(x) is zero for
each x ¢ £;'(U). Consequently all directional derivatives of 4,(z,(-))7,(-) are 0.
Thus (D(4, - 1,)(2,(0))) - 2,(0) + A,([¢]") - DD,(#,(0)) = 0 and (D(4, 0 £,)(7,(0)))
-0,(0) + A,([¢]") - DD,(9,(0)) = 0. Since D(4;0t,) is determined by [¢]*** and
the kernel of A;([¢]") is {v|v, e (tFE)),}, it follows that the Lie bracket
[t¥v,, t}v,1(0) is determined up to (t}E, + tfE,), by [#]*** and the v,([¢]"™).

If we suppose that E; C B for i = 1, 2, then e([tfv,, £}v,](0)) is determined
by [4]"** and v,(I$]"). Ef ® Ef ® F = {([y1", L) | [y]" € ¥ and L: (B30 X
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(E)ypn — Frypn is bilinear}. Thus, if each E; C B, then Lie bracketing induces
a morphism y: z7'3 — E¥ ® E¥ @ F of fiber bundles over Y. If a is less than
or equal to the fiber dimension of F, define (7, a) to be the set of points 4 in
73 such that the linear map (E,);y30 ® (E;)py30 — Fpy3» corresponding to y(y)
has rank a.

A function f: J*(p, g) — R will be called a polynomial if, given some choice
of vector space basis for J*(p, q), f is a polynomial in the coordinate functions
of J*(p,q). A function g: J*(p, q) — R® will be called a polynomial if each
coordinate projection of g is a polynomial.

Suppose X' is such that there is a polynomial g: J*(p, g) — R" such that
2 = {[¢]"| g([#]®) # 0}. Let U be a vector subbundle of 3 X R?. We will say
that U is polynomially determined if there are an integer K and a polynomial
function G: J*(p, @) — M(p, K) such that for [y]* ¢ 2, then ([¥]*, v) e U if
and only if G([¢»]")-v = 0. It is apparent that if the bundles E,, E, and B are
polynomially determined, each 3(y, a) is determined by polynomial equalities
and inequalities. If a is maximal with respect to the property that 3(y, a) + ¢,
then there is a polynomial 4 on Ji,'}, such that [y]"*' € 3(y, a) if and only if
h([y]"*") # 0. Consequently, 2(y, a) is open.

Now suppose that £, C &, and £, C %, are subgroups, and that 3 is
invariant under the action of Z, X Z,. Define an action of Z, X #, on
2 X R? by (a, ﬁ)([¢]” V) = ([ﬁ;zSoz“]" Doz('v)), and suppose that El, E, and B
are invariant under #, X #,. The actions of #, X £, on 3 X R” and B
determine an action on F The actions on E,, E, and F determme an action on
Ef QEf ®F as follows: an element of E¥f ® Ef ® F is a pair ([¢]", L) where
[p]* e X and L: (E)yy X (Ey)pyn — Fiyp is bilinear. Define (a, H([4]", L) =
([Bpa"1", (@, PL) where («, L is defined by ((«, ﬂ)L)(([B¢a“]" Dav),
([Bpee™1", Daw))(ex, B(L(([$]", v), ([$]", w))). We now show that 7 is equiva-
riant thereby showing that 3(y, a) is invariant under Z, X Z,.

Let U, open in X, be such that E, and E, are trivial over U, and let v;: U—
E; be sections. If (a, f) € Z,X 2, then, for i =1, 2, (a, B)v, is a section of E;
over (a, p)U. Since (t%,,- 1(05, B)(a(x)) = Ta(tfv,)(x)), it follows that

[t;k,,;.,—l(a, ,B)vu t;k;ta—l(a’ ﬁ)vz](o) = Ta[t;kvv t;k'vz](o) .

The equivariance of y is now immediate.

Since 2(y,a) is invariant under Z, X %, and is determined by polynomial
equalities and inequalities, it may (see [3]) be written as a finite union of dis-
joint manifolds each of which is invariant under Z, X Z,.

Let X be a manifold of type .#,, and Y a manifold of type #,. Then
J"" (X, Y ; 2(y,a)) is a finite union of disjoint manifolds. If a is maximal with
respect to the property that 2(y,a) # ¢ then U, ., J""(X,Y; 2(y,b)) is a
finite union of disjoint manifolds, each of which has positive codimension in
J**Y(X,Y). Thus, if f: X — Y is such that f»*! is transversal to each of these
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manifolds, then X ~ X(y, a)(f) is a finite union of manifolds of dimension less
than p.

Let A,(A4,) be a maximal atlas of coordinate functions for X(Y) such that if
a,, a,e A(A,) and x belongs to the domain of both @, and «,, then
toei(a(X) € Z,(2,). Let p,: X X Y —» X and n: J*(X,Y) — X X Y be the
projections. We will define for i = 1, 2 a vector subbundle E;(X,Y) of
n*p*TX over JMX, Y ; 2), which corresponds to E;. An element of n*p *TX
over X is a pair (¢, v) where ¢ e J*X,Y; 2) and v € TXp,,,,. Let n(g) =
(x,¥), @ € A, be such that a(x) = 0, and B € 4, be such that f(y) = 0. Then
Bpate X. Let Ta(v) = w(v,a),, and define E;(X,Y) = {(¢,y) e n*p,*TX|
(Bpa™!, w(v, a)) € E;}. This definition is independent of the choices of « and .
We may, in a similar fashion, define a vector subbundle B(X, Y) and a factor
bundle F(X,Y) of n*p,*TX over J*(X, Y ; 2), which correspond respectively
to B and F.

The equivariance of y ensures that y induces a morphism of fiber bundles,
J"(X,Y; nY) - E(X,Y)* Q EXX, Y)* ® F(X, Y), which will also be de-
noted 7. If f: X — Y, then E,(f) (respectively B(f), F(f)) will denote f*'E,(X,Y)
(respectively f**B(X, Y), f**F(X, Y)) over 2(f). y induces a section a(f): 2(f) —
E.(H* ® E,(H* @ F(f) defined by f**"e(f)(x) = y(f**'(x)). o(f) is induced by
Lie-bracketing vector fields in E,(f) with vector fields in E,(f) and projecting
onto F(f), i.e., if v;: 2(f) — E,(f) are sections, then a()(x)(v,(x) ® v,(x)) is
the projection of [v;, v,](x) on F(f). If x € 2(f), let L,(f) = {[v,, v,](x)|v; is a
section of E;(f)}. Then X(y, b)(f) = {x ¢ 2(f) |dim (L, + B(f),) = b + dim B(f),;}.
If a is maximal with respect to the property that X(y, a) # ¢, then J**'(p, @) ~
(7, a) may be written as {Jj_, M; where each M, is a manifold invariant under
Fp X 2, 1t fis M-transversal for each i, then X ~ 3(y, a)(f) is a finite union
of disjoint manifolds of dimension less than p.

We now summarize.

Theorem 3.1. Let g: J"(p, q) — RY be a polynomial, and let 3 =
{[$1"| 9([¢]") # 0}. Let &, C ¥, and £, C £, be subgroups. Suppose
that 3 is invariant under %, X 2,, and further that E,, E, and B are poly-
nomially determined vector subbundles of 2 X R?, which are invariant under
P, X P, Define F by the exactness of 0—B — 3 X R? - F — 0. Let
x: J*"(p, @) — J*(p, @) be the projection, and assume that E, 4+ E, C B. Then
Lie-bracketing of vector fields in E, with vector fields in E, induces a map
7.7 Y >EfQEFQF, ie., y assigns to each [¢]**' e '3 a linear map
7([#1"): (B, ® Ey)y10 — Fryn- 71 is equivariant. If b is a nonnegative integer,
let 2(r,b) = {[$]"*' € n~' X |image y([#]**") has rank b}. Each 2(y,b) is a
union of a finite number of submanifolds of J**'(p, q) each of which is invari-
ant under ,Q’p X 2,. Define B, a bundle over (7, b), by B = (g, v +
w)|([¢]", v) € B, and the projection of ([¢]",w) on F is an element of the
image of r([¢]**H}. B is polynomially determined and is invariant under
P, X 2,. Let a be maximal with respect to the property that 3(r, a) # §.
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There is a polynomial h on J**(p, q) such that X(y, a) = {[¢]"** | h([¢]"*") # O}.

Let X be a manifold of type % ,, and Y a manifold of type Z,. The bundles
E; and B induce bundles E(X,Y) and B(X,Y) over JMX,Y; X) and hence
induce bundles E,(f) and B(f) over 3(f) forf: X =Y. If x € 2(f), let L (f) =
{[vy, vd(X)|v; is a section of E(f)}. Then X(y, b)(f) = {x € 2(f)|dimension
(L, + B(f),) = b + fiber dimension B}. J**'(X,Y) ~ J"*'(X,Y; 2(y, a)
may be written as a finite union of manifolds of positive codimension in
J""WNX,Y). If f: X — Y is such that f**! is transversal to each of these man-
ifolds, then {x ¢ X|x ¢ 2(f) or dim(L, + B(f),) # a + fiber dimension B} is a
finite union of manifolds of dimension less than p.

The set of functions obeying the above transversality conditions is a Baire
set in C"**(X,Y), and is open and dense if X is compact.

Corollary 3.2. Let p > q, X be a real p-manifold, and Y be a complex g-
manifold. If f: X - Y and x e X, let E(f) = {v e TX,|iTf(v) e TA(TX,)} and
E(f) = U{E.(f)|x e X}. Let L(f) be the Lie algebra of vector fields generated
by vector fields in E(f). If xe X, let L, (f) = {v(x)|v e L({f)}. Let S(f) =
{xe X|L,(f) + TX,}. Then there are an integer m and a Baire set ¥ (open
and dense if X is compact) in C™(X, Y) such that if f e F then S(f) is contain-
ed in a finite union of manifolds of dimension less than p.

Proof. Case 1, p >2q: Let 2 = {[¢]™' ¢ J'(p,29)|T¢, has rank 2g}.
Straightforward linear algebra shows that if f: X — Y and x e 3(f), then
E,(f) = TX,. Let # = {f: X — Y|f is Z(a)-transversal for all a}.

Case 2, p < 2q: Identify R* with C?, and let ' = {[¢]' € J'(p,29) | T,
has rank p and T¢(TR?) + iT#(TRF) = TCg}. There is a polynomial g' on
J'(p, 2q) such that [#]' € 3" if and only if g'([#]") # 0. Let E* = {([¢]", v) | [#]' € 2*
and Té(v,) e iT$(TR?)}. Now suppose that g* is a polynomial on J*(p,2q),
2k = {[¢]*| g*([p]*) # O}, and E* is a polynomially determined vector sub-
bundle of 2* X R?. Define F* by the exactness of 0 — E¥ — 3* X R? - F—0,
let o**t: JEL, — J§, 5 be the projection, and 7*: (z**1)~'3* - E¥* Q E* ® F*
be the map induced by Lie-bracketing. Let a* be maximal with respect to the
property that X*(y%, a*) = ¢. Define 3%+ = 3*(y*¥, a*), and let g**' be a poly-
nomial on J¥}3, such that [¢]**! € Z**! if and only if g**'([¢]**') # 0. Com-
plete the inductive definition by defining E**! = {([¢]**!, v + w) € 3**! X
R?|([¢)%,v) e E* and the projection of ([¢]*,w) on F* is in the image of
r®([p]**")}. The proof will be complete if we can show that there is a k such
that E¥ = XY* x R? (for then we can choose m = k + 1). To show this it suf-
fices to show that if £/ = 37 X RP? then a’ #+ 0.

But suppose E/ = X7/ X R? and ¢: R? — C? is such that [¢}/ ¢ 7. We may
assume that D¢, is given by

i 0
- 0
0

0 | Ly-p
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where I,,_, denotes the (2q — p) X (29 — p) identity matrix, and the matrix
in the upper left hand corner has 1 for each (k, 2k — 1)-entry and i for each
(k, 2k)-entry. Let U be a small open neighborhood of the origin in R?. If
u: U — RP defines a section #: U — TR? by ii(x) = u(x),.

We may find functions v, w: U — R? such that

i) »0) =(@1,0,...,0),

ii) ifxeU, thenv,(x) =1;andif 2 < k < 2p — 2q, then v,(x) = 0,

iii) if x e U, then iD¢,v(x) = D, w(x).

Define functions f and g from U to R? by ¢(x) = f(x) + ig(x). If x e U, let
A(x) be the matrix consisting of the last 2g — p columns of Df,, and B(x) be
the matrix consisting of the last 29 — p columns of Dg,. Let M(x) be the

29) X (2g9) matrix (ﬁ(({)(()) —IB‘; ), and let N(x) be the first column of

vzp-2q+1(x)

(D7) 1t 0w obey -, then M) | 2203 |+ N = 0 for all € U,

wp(X)

Repeated differentiation of this matrix equation enables us to compute the
derivatives of v and w in terms of the derivatives of f and g. In particular, if
n is an integer, the nth order derivatives of v and w at the origin are determined
by the (n + 1)-jets of f and g at the origin. Also if 2p — 29 + 1 < k < p,
there are real numbers R, and S; depending only on [¢]? such that

o'w, 97", gy,
0) = — © 2(0) R, ,
oxi © 0xiox, ) + ax{“( ) + R,

v, 07tg, 07t
0) = — 0 — —E00) + S, .
ox{~'0x, axf“axé( ax{axz( ) "

Define a vector field L, by L, = [?, W], and define L,,, = [?»,L,] if L, is
defined. A direct computation shows that the kth component of L; ,(0) is
@'wy, /0x{)(0) — (87w, /ax{'9x,)(0) + T, where T, depends only on the deriva-
tives of v and w at the origin of order less than j. It follows that if 2p — 2q +
1 < k < p, then the kith component of L; ,(0) is —((@*'g,/ox{*)(0) +
(09119, /0x{~9x2)(0)) + U, where U, depends only on [¢]/. Thus given [¢]7 e X
one can choose [¢]7** € (z/*")~'([¢]’) in such a way that y/([¢]7*") # 0, s04a; # 0
and the result follows.

4. Results on extendibility

We briefly review the terminology and principal result of [5].
If V is a real vector bundle, ¥V @ C has a natural automorphism “~ ” ob-
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tained by extending complex conjugation from C. There is a natural linear map
re: V&® C — V, which is just “taking real parts”.

The holomorphic tangent bundle H(C™) of C™ is the complex subbundle of
T(C™) @ C generated (at p e C") by tangent vectors of the form }; a;(3/0z;),-
Let W be a real differentiable submanifold of C*. H(W), the holomorphic
tangent bundle of W, is just H(C™) N (T(W) ® C) over W. Z (W) (called the
Levi algebra of W in [5]) is the Lie algebra of vector fields generated by sec-
tions of H(W) and H(W).

Then VA3 of [5] gives:

Theorem 4.1. Suppose W is a real (n + k)-dimensional differentiable sub-
manifold of an n-dimensional complex manifold Y, and that fiber dim, H(W) =k
(H(W) can be defined locally as above). Then W is extendible to a subset of Y
containing a real submanifold N with dim N = n + e where e = sup fiber
dim, Z(W).

It is easy to connect the work of § 3 with this theorem. If f: X — Y isasin
Corollary 3.2, then take W = f(X). The bundle E (f) of Corollary 3.2 is just
re(H(W) + H(W)). The integer e of Theorem 4.1 above can be obtained as
sup fiber dimy L(f) (L(f) as in Corollary 3.2). This is true, since (W) = Z(W)
are reZ(W) = L(f).

We say that a subset S of a complex manifold Y is locally extendible to an
open set if and only if every relatively open subset of S is extendible to a set
containing an open subset of Y. Clearly, a set which is locally extendible to an
open set is extendible to a set containing an open subset of Y. Then the re-
marks at the end of Corollary 3.2 translate as:

Theorem 4.2. Let X be an (n 4+ k)-dimensional real differentiable mani-
fold, and Y an n-dimensional complex manifold. Let # be a set of maps from
X to Y, equipped with the C™ topology (m sufficiently large).

a) If X is compact, then there is an open and dense subset O of M, such
that if f € O, then f(X) is locally extendible (and hence extendible) to an open
subset of Y.

b) If X is not compact, then there is a Baire subset of # with the same
properties as 0 in a).

Proof. We prove a). Take for @ the set of functions described in Corollary
3.2, and suppose f € @. Then fiber dim, L(f) = n except possibly on some lower
dimensional manifolds. An open subset of X has, therefore, some point where
fiber dim, Z(f(X)) = n. Applying Theorem 4.1 shows that f(X) is locally
extendible to an open subset of Y. b) is proven similarly.

Remark. The integer m in the statement of Theorem 4.2 above can be more
explicitly obtained by carefully examining the work of § 3. In particular, if
dimp X = dim; Y + 1, then m = dimy X suffices. (In fact, as dimyp X in-
creases, m can be much less than dim, X.)

Precise results will be given in a forthcoming paper by M. Menn,
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We can derive a simple corollary about analyticity in maximal ideal spaces
of function algebras. (See [4] for background on function algebras.) Suppose
K is a compact subset of C”. C(K) will denote the algebra of continuous com-
plex-valued functions on K with the uniform norm; A(K) is the closure in C(K)
of restrictions to K of functions analytic in a neighborhood of K. spec A4(K)
will denote the maximal ideal space of A(K), with the Gelfand topology. We
recall that each function f e A(K) extends to a continuous function f on spec
A(K).

An important question arises: how can one describe the behavior of f on
spec A(K) — K. (See [4, p. 56].) We can contribute the following:

Theorem 4.3. Let % be the collection of compact subsets of C™", topolo-
gized with the Hausdorff metric [6, p. 131]. There is a dense subset D of H#
such that if K e D, then there are an open subset U of C* and an embedding
h: U — spec A(K) — K such that foh: U — C is analytic for every f ¢ A(K).

Remarks. 1) We do not know, but suspect, that D is also open in #.

2) Suppose KeD. Put C = {x e spec A(K) — A(K)|x e image of some
embedding A}. Is C = spec A(K)? (The appropriate corona problem.)

Proof. The subset D of o is the collection of images of all (n + 1)-dimen-
sional compact real manifolds X by maps f: X — C™ which have the properties
of Theorem 4.2a). Thus f(X) is extendible to a set containing an open subset
U of C™. Since every analytic function defined in a neighborhood of f(X) ex-
tends to U (with a sup norm on U dominated by that on f(X)), we can see that
each element of A(f(X)) extends to U hence evaluation at each point of U is a
member of spec A(F(X)). The Gelfand topology is easily seen to agree with the
natural topology on U. So the elements of D have the desired property.

We must show that D is dense in o#. If K ¢ #, consider K(f) = K + S(¢)
(vector sum), where S(¢) is a closed ball of radius ¢ centered at the origin. As
t — 0, K(t) — K in the Hausdorff metric. The sets K(#) have a finite number
of arcwise connected components, and it is fairly clear how to approximate
them by images of (n + 1)-dimensional manifolds; then (since C™ approxima-
tion is finer than Hausdorff metric approximation) by elements of D, using the
density of Theorem 4.2a).
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