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COERCIVENESS IN THE NEUMANN PROBLEM

W. J. SWEENEY

Let M' be a Riemannian manifold of dimension n, let E, F, and G be
Hermitian vector bundles over M\ and let

( 1 ) E-^F-^->G

be a complex of first order linear partial differential operators. For each com-
plex cotangent vector ζ e T*(M') (g) C let

denote the sequence of symbol maps corresponding to (1). We shall assume
that (2) is exact for all real ζ Φ 0 so that (1) is an elliptic complex.

Now let M be a compact /^-dimensional manifold-with-boundary which is
smoothly imbedded in M\ and let r be a real C°° function on M' such that
M = {x e WI r(x) > 0} and 3M = {x e M' \ r(x) = 0} and such that dr never
vanishes on dM. Our purpose here is to discuss the coercive estimate

( 3 ) l l i i l l^ }

for ueC°°(M,F) satisfying the boundary condition

( 4 ) a{dr)*u = 0 on dM ,

where || || denotes the L2 norm for sections defined over M, and || 1̂  denotes
any of the equivalent norms on the Sobolev space ^ ( Λ ί , F). We prove (Theo-
rem 3) that if the coercive estimate holds for all compact M C M', and (1) is
part of a Spencer complex, then (1) is locally exact; we also show (Theorem 4)
that if (2) is exact for all complex ζ Φ 0, then the coercive estimate (3) holds
for all compact M. Under additional assumptions (Theorem 5) we give explicit
necessary and sufficient conditions for (3).

Some of our results here (Theorems 1 and 5, in particular) were suggested

by recent work of V. W. Guillemin and S. Sternberg [4]. The author is also

indebted to J. J. Kohn for several helpful conversations.
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1. A necessary and sufficient condition

In this section we obtain a condition which is necessary and sufficient for the
estimate

( 3 ) \\u\\, < c{\\A*u\\ + \\Bu\\ + \\u\\}

to hold for all u e C™(M, F) satisfying

( 4 ) a{dr)*u = 0 on dM .

This condition will not depend on the Riemannian structure on M' nor on the
Hermitian structures on E, F, G; it will be used to obtain the local exactness
result in the next section. Some of the methods used here (namely, those used
to prove Propositions 3 and 4) are fairly well known (see [2], for example);
we give proofs for the sake of completeness. In what follows c will denote a
generic constant which is not necessarily the same at each occurrence.

Proposition 1. The estimate (3) holds for all u e C°°(M, F) satisfying (4) //
and only if there exists a constant c such that

( 5 ) Hull, < c{\\A*u\\ + \\Bu\\ + \\u\\ + d\\a(drru\\ι/2}

holds for all ueC°°(M,F), where d\\ ||1/2 denotes a Sobolev norm of order J
on dM.

Proof. Since the sequence (2) is always exact for real ζ Φ 0, it follows that

b(dr)* a(dr)* _.
(rx • F x • tx

is exact for each x e dM. Now the dimension of b(dr)*(Gx) is automtically a
lower semi-continuous function of xedM; and here, since image b(dr)* =
keτa(dr)*, it is also upper semi-continuous. It follows that kerα(Jr)* =
image b(dr)* has constant dimension on dM, and hence a(dr)* has constant
rank. Accordingly, there exists a bundle mapping N: E \ dM —> F \ dM such that
a(dr)*-N is the identity on the image of a(dr)*.

Now let u € C°°(M, F) and let u0 denote the restriction of u to dM. Accord-
ing to Theorem 2.5.7 in [6] there exists v e C°°(M, F) such that v = N a(dr)*uQ

on dM such that

( 6 ) \\v\\λ <cd\\N.a(dr)*u0\\ι/2 < c*\\a{dr)*u\\ι/2

holds with a constant c, not depending on u. Hence, if (3) holds for all sections
satisfying (4), then since a(dr)*(u — v) = a(dr)*u0 — fl(dr)*Nα(ί/r)*w0 = 0 on
dM, we can obtain (5) by estimating:
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< \\u - v\\λ + \\v\\λ < c{\\A*(u - v)\\ + \\B(u -v)\\ + \\u - v\\ + \\v\\,}

£ c{\\A*u\\ + \\Bu\\ + \\u\\ + \\v\\J

< c{\\A*u\\ + ||*w|| + | |u| | + d\\a{dr)*u\\l/2} .

Since the other half of the proposition is trivial, the proof is complete.
Proposition 2. The estimate (5) holds for all u e C°°(M, F) if and only

if each point in M has a neighborhood U such that (5) holds for all
uzCϊ(M ΓΊ U,F).

Proof. Since the symbol sequence (2) is exact for all real ζ Φ 0, the opera-
tor u \-+ (A*u,Bu) is elliptic, and hence (3) holds for all u having compact
support in the interior of M. In particular, every interior point of M has a
neighborhood U such that (5) holds for all u e Q°(£/ ί l M , F ) . If every boundary
point also has such a neighborhood, then we can cover M with a finite number
of these neighborhoods and use a subordinate partition of unity {ψi} to obtain

< cΣ{\\A*(φiU)\\ + \\B(φiu)\\ + \\φiu\\ + d\\a(dr)*(φiu)\\1/2}

< c{\\A*u\\ + \\Bu\\ + | |u| | + 3\\a(drru\\1/2}

+ cΣ{\\[φi9A*M + Wίφ

Since the commutator terms satisfy | | [ ^ , A*]u\\ < c\\u\\ and | |[^,£]w|| < c||w||,
the estimate (5) follows immediately.

In view of Proposition 2 it suffices to work on a neighborhood U of an arbi-
trary boundary point xQ. Since U can be taken as a coordinate neighborhood in
M', we may assume that U C Rn, that x0 = 0, that xn > 0 on U Π M, and
that xn = 0 on U (Ί dM. In addition, we can always arrange that dr — dxn

along U Π dM and that dx\ , dxn~ι span Tf(dM), which is considered as a
subspace of Tf(M) by means of the Riemannian metric. Finally, we may as-
sume that the bundles E, F, and G are trivial over U. Thus in the case of F,
for example, we may choose fl9 ,/fc g C°°(E/, F) such that fλ(x), ,/fc(;c)
form a basis of F^ for each xeU and such that if u, v €C^(U,F) are written
in the form

u = £κ*/i , t; = I 7 ^ ^ ,

with C°° complex-valued functions u% v\ then the L2 inner product is given by

O , v> = J Σ II'(JC)Ϊ?OOΛC .

We shall call such a system {/i,/2? •} a special frame for F over £/, and we
shall also use special frames {eu e2, •} for E and {gl9g2, •} for G over U.
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The local coordinate x determines a local coordinate ( t, ζ) = (x\ , xn, ζ15

• , ζn) on Γ*(M') (x) C by means of

ί / χ C n 3 f c ζ ) - ^ Σ ζidx* e r*(Λf 0 <8> c

if we use this coordinate and the special frames just chosen, then the symbols
of A and B become matrix valued functions a(x, ζ) and b(x, ζ), respectively,
for (x, ζ) € £/ X Cn. Because of the special character of the frames, the symbol
of A* is just the adjoint matrix a(x, ζ)*

Now let R+ = {teR\t > 0} and Dt = - V - l d / d ί . Then for each ζ' =
(ζ1? , ζn_^ € C71"1 we have differential operators

, a{\J, QiVJ.C l / f + , r o j - » G (R+,rQ) ,

We have
Proposition 3. TTzere ejtwte α neighborhood U of 0 5 wc/z ί/zαί (5) /zo/^ /or

β// w € C^°(M Γϊ U,F) if and only if there exists a constant C such that for every
ζ' e Rn~ι of unit length the estimate

f"\w(f)\2 dt + J\Dtw(t)\2dt
0

(8) + '
0 0

+ |α(0,0,

holds for all w € Co°°(/?+, Fo).

PλΌ6>/. For 1 < i < n let £>* denote —j^Ad/dxi. Let {/1? ,/*} be the
special frame for F chosen above, and let Dt operate on sections of F by
D,u = Σ ΦiUj)fj if M = Σ UJfj ε co(U, F). Then, with D = (D1? , Dn),
we obtain differential operators a ( 0 , D ) * and b(0,D) such that

( 9 ) M * « - fl(0,D)*iι|| < βHwllx + c | | κ | | ,

| | B M - b(0,D)u\\ < eHwll! + C | | M | | ,
a||ύi(ύίr)*w — α(0,0 , 1 ) * M | | 1 / 2 < ed\\u\\ι/2

hold for all u e Q ( M (Ί £/, F), and the constant € can be made arbitrarily small
by choosing U small enough. In view of the estimate

3||w||1/2 < c Hwlli ,

(see Theorem 2.5.6 in [6]) we also have
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(11) d\\a(dr)*u - a ( 0 , 0 , l ) * w | | 1 / 2 < e W u ^ ,

where, again, € can be made arbitrarily small by choosing U small enough.
For U sufficiently small it now follows from (9), (10), and (11) that (5) is
equivalent to the estimate

||u||; < c{\\a(0,D)*uf + \\b(0,D)u\\2 + \\u\\2 + 3 | |α(0,0, l)*w| |U ,

which, after taking Fourier transform in the variable x' — (JC1, ,xn~ι), be-
comes

J (J
Rn-1 0

(12) R"-1 °

xn) I2 dxn + Γ°°| u(ξ', xn) |2 dxn

To prove the proposition we must show that (8) holds for all w e Q°(/?+, Fo)
if and only if (12) holds for all u with compact support in U Π M.

First assume that (8) holds, let ξ' Φ 0, and apply (8) to w(t) = w(fr, t/\ξ'\)
with ζ/ = fVlfΊ Then with a new variable of integration xn = t/\ξ'\ we obtain

n + j"\b(O,ξ',Dn)u(ξ',xn)|2dx*

and integration with respect to ξ' produces (12).
Now assume that (12) holds for all u with support in M Π U, let

w e Co°°(/?+,Fo), and |ζ ; | - 1. Choose p e Q ^ ' 1 ) with f\φ(x')\2dx'={2κ)-n-1

and define

M f ( Λ ) = ε1/2w(xn I εWxW"'>*'>'•

for Λ: = (x'9 x
n) € Λ""1 X R+ and ε > 0. If ε is sufficiently small and the support
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of φ is small enough, then uε has support in U and hence (12) holds with u
replaced by uε. The estimate (8) now follows by letting ε —» 0. In fact,

and hence

; / •

\b(O,ξ',DJQAξ'9x*)\*dξ'dx*

ζ'/e) ,

dξ'dt ,

which converges to

§~\b(O,ζ',Dn)w{t)fdt
0

as ε —• 0. T h e other terms in (12) are treated similarly, and the proof is com-
plete.

Proposition 4. There exists a constant C such that (8) holds for all unit
vectors ζ' e Rnl and all w <= CQ(R+,F0) if and only if for each ξ' e Rnl — {0}
the system of equations

t>0,

(13) b(0,ξ',Dt)w(t) = 0

a(0,0, l ) M 0 ) = 0

has no nonzero solution w in L2(R+, Fo).
Proof. F o r ξ' e R n l a n d ζ w e C d e f i n e

4(f',C») = a(0,ξ',ζn)a(!0,ξ'9ζn)* + KO,ξ',ζn)*b(O,ξ'9ζn) ,

d(ξ',Dt) = a((09ξ'9 b(O9ξ',Dt)*b(!O9ξ',Dt) .

Since (2) is exact for all real ζ = (f', ζn) Φ 0, it follows that Δ(ξ'9 ζn) is non-
singular when ζTC is real; and since d(ξ', ζ n )* = d(ξ',ζn), it follows that the
solutions ζ n € C to the equation det J ( f , ζn) = 0 occur in conjugate pairs. This
means that each solution to the differential equation

(14) ί > 0 ,
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can be written as a sum of two solutions w/ and w", where w'(f) decreases ex-
ponentially and w"(t) increases exponentially as t tends to oo and, moreover,
the set of all exponentially decreasing solutions to (14) forms a vector space
of the same dimension as F o .

Now assume that (13) has no nontrivial solution in L2(R+,F0), and note that
the same is true for the system

J ( £ , D > ( 0 0 , * > 0 ,

(α(0,0, l)*(0,0,1)* + 6(0,0, l)*6(0, £', Dt))w(0) = 0 .

In fact, if w is an L2 solution to (15), then w must be C°° and exponentially
decreasing as t tends to oo. Since 6(0,0, l)α(0,0, l) = 0, the mappings α(0,0,1)
and 6(0,0,1)* map into orthogonal subspaces of FQ, and hence the second
line in (15) is equivalent to

α(0,0, l ) M 0 ) = 0 , 6(0,0, l)*6(0, ξ', D > ( 0 ) = 0 .

These boundary conditions allow us to integrate by parts to obtain

,f, Dt)w(t) f dt

so that α(0, ξ'9 Dt)w and 6(0, ξ', Dt)w vanish, and hence w is an L2 solution to
(13). Thus, by our assumption, w must be identically 0.

Since (15) has no nontrivial solution in L2(R+,F0), this system satisfies the
hypotheses of Theorem 10.2.1 in [6], and thus for any w e C^(R+,F0) there
exists v € C°°(R+9FQ) such that

β(0,0, l)M0) = 0 ,

6(0,0,l)*6(0,ζ',D>(0) = 0,

and

do) J°Vωι 2 + \otv(t)\2 + \Div(t)\2)ώ < c J V ω r Λ ,
0 0

where the constant C does not depend on w or on ζ/ 6 R71'1 with | ζ r | = 1. If w
satisfies a(0,0, l)*w(0) = 0, then we may integrate by parts to obtain
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J > ( 0 , ζ', Dt)*w(t), α(0, ζ', Dt)*v{t)}dt

0

and using (16) and Schwarz's inequality we get

J °° ) 1/2 f /»o

|*(0,ζ',Dt)w(0|2Λ| )J
0 0

The inequality

iOl2* < CJJ^^^D^MOI 2 * +

follows immediately, and since

\DM0\2 < qμ(0,0, l)*Dtw(t)\2

',Z)>W|2 + \w(t)\2}

we now have a constant C such that (8) holds for all unit vectors ζ' e Rnl and
all w € C£(R+,FQ) satisfying α(0,0, l)*w(0) = 0. It is now a fairly easy matter
to obtain (8) for all unit vectors ζ' e Rn~ι and all w e CQ(R+,F0); one need
only repeat the argument made in the proof of Proposition 1.

To complete the proof of Proposition 4 assume that the estimate (8) holds
for all |ζ ' | = 1 and all w e C^(R+,F0), and let u be an L2 solution to (13).
Then u is C°° exponentially decreasing. If we choose ψ e C^(R) which is 1 on
a neighborhood of 0, then (8) must hold for ζ' = ζ'/\ζ'\ and for w(t) =

). Letting n —» oo, we obtain

/•
0

so that u is identically 0, as required.
For a vector space V we shall denote the intersection CCO(R+, V) Γ) L2(R+, V)

by C°°L2(R+, V), and in the context

(17) C~L2(tf+,*0) ^ ^ C~L 2(*+,F 0) M i ^ f ) C ~ ( Λ + , G o )
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we shall understand α(0, ζ', Dt) to be the unbounded operator whose domain
consists of all w e C°°L2(R+,EQ) such that a(0, ζ', Dt)w e C°°L2(R+,F0).

Proposition 5. The system (13) has no nonzero solution in L2 if and only
if the sequence (17) is exact.

Proof. If w is a nonzero L2 solution to (13), then b(0,ζ',Dt)w = 0, and
the other two equations in (13) can be used to obtain

J~<w(f)9a(0,ζ',DMt)>dt = f~<a(09ζ',Dt)*w(t),u(t)>dt = 0 ,
0 0

so that w is orthogonal to the range of a(0, ζ', Dt) and hence defines a nonzero
homology class for (17).

On the other hand, if (13) has no nonzero solution in L2, then, as we have
seen, the same is true for the system (15), and by Theorem 10.2.1 in [6] we
can write any w e CCOL2(R+,F0) as

(18) w = fl(0, ζ7, DM0, C, Dt)*v + 6(0, C, Dt)*b{0, ζ', Dt)v ,

where veC°°(R+,F0) satisfies C°°(\Dtv(t)\2 + \v(f)\2)dt < oo and b(0,0,1)*
0

b(0, ζ', Dt)v(0) = 0. This last condition allows us to integrate by parts and to
obtain

J ~ , ζ', Dt)*b(0, ζ', DM0, u(t)>dt

= f\b(O,C,DMt),b(Q,ζ',DMt)>dt ,
0

and it follows that the second term on the right of (18) is always orthogonal
to the kernel of b(0, ζ', Dt). Now the first term on the right of (18) is always
in the kernel of b(0, ζ', Dt), and hence if w is also in this kernel, it follows that

w = a(0,ζ',DM0,ζ',Dt)*v .

In other words, (17) is exact.
From Propositions 3, 4, and 5 it follows that the estimate

( 5 ) ||4<

holds for all u in a neighborhood of 0 e dM if and only if the sequence (17) is
exact for all ζ; eRn~ι — {0}. Although it was obtained using a specially chosen
coordinate, the condition that (17) be exact for all ζ ' e Rnl — {0} makes sense
independently of any such choice. In fact, in (17) we may let 0 be any point
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x on dM, and (0, ζ', 0) may be considered as an arbitrary element ζ' e Γ*(M)
which is orthogonal to dr the operator a(0, ζ', Dt) may then be denoted by

a(ζ' + drDt) = a(ζ') + etfr)/), ,

and this is a well-defined operator from CCO(R+,EX) to C°°(l?+, Fx), independent
of any choice of coordinate or of basis in Ex and Fx. We have now that the
estimate (5) holds for all u in a neighborhood of x e 3M if and only if the se-
quence

(19) C~L2(R+,EX) *±*% C~L2(R+, Fx) ™±*B$ C~L2(R+,GX)

is exact for all ζ' <= Γ*(M) which are orthogonal to Jr. Now if ξ is any element
of T*(M) such that f Λ dr Φ 0, then we can write f = ff + ^Jr where fr is
orthogonal to dr and λ is a real number. Since

a(ξ + drDt) = a{ξ> + dr(Dt + X)) = e~iua(ξ' + drDt)eiu ,

we find that (19) is exact for all ζ' orthogonal to dr if and only if it is exact for
all ζ' with ζ' Λ dr Φ 0. We have now proved the following theorem.

Theorem l The coercive estimate

( 3 ) l l M l l ^

holds for all u e C^QΛ, F) satisfying

( 4 ) a(dr)*u = 0 on dM ,

if and only if the sequence (19) is exact for each xedM and each cotangent vector
ζ' € T*{M) satisfying ζ' Λ dr ψ 0.

Theorem 2. The coercive estimate (3) holds for all u 6 C°°(M, F) satisfying
(4) and for all M C M' if and only if the sequence

(20) C~L2{R,EX)
 a(ξ + vDt\ C~L2(R+,FX)

 Kξ + φt\ C~L2(R+,GX)

is exact for each xeM' and each pair of real cotangent vectors ξ, η <=. Γ*(Λf0
with ξ Λ η Φ 0.

Proof. Theorem 2 follows immediately from Theorem 1 when we note that
if η e Γ*(Λf 0 and 37 ̂  0, then there exists M C W such that x e dM and such
that η is normal to M.

Note that the conditions for the coercive estimate given in these theorems do
not depend on the Riemannian metric on M' nor on the Hermitian structures
on E, F, and G.
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2. Local exactness

In this section we assume that

(1) E-^LF-^G

is a segment of the Spencer sequence corresponding to a formally integrable
differential operator on Mf. (For definitions see Spencer [9], particularly Defini-
tion 1.2.7 and Theorem 1.6.1.) We continue to assume that the symbol se-
quence of (1) is exact for real cotangent vectors. We shall prove:

Theorem 3. Assume that for each M <Z.Mf the coercive estimate (3) holds
for all w<=C°°(M, F) satisfying (4). Then the sequence (1) is locally exact', in
fact, if x is any point in M', then every neighborhood of x contains a manifold-
with-boundary M such that any v e C°°(M, F) satisfying Bv =0 can be expressed
as v = Λu for some u e C°°(M, E).

In view of Theorem 2 both the hypotheses and the conclusion of Theorem 3
are local in character and do not depend on any choice of Riemannian metric
or Hermitian inner product. Hence we may assume that M' is an open subset
of Rn, that E, F, and G are product bundles, and that the differential opera-
tors are given by

A = Σ ^M)D3 + Ao(χ),

(21) A* = Σ AJ(X)*DJ + A0(x)* ,

B = Σ Bj(*)Dj + B0(x) ,

where the coefficients Aj(x) and Bj(x) are C°° matrix-valued functions of x. To
prove the theorem it will suffice to show that (1) is exact for sections over
Ms = {x e Rn 11x\ < s} if s > 0 is sufficiently small.

The proof will proceed in two steps. We first treat the case where A and B
have constant coefficients, using an argument communicated to the author by
JJ.Kohn, and next we use a shrinking argument to reduce the general case to
the case of constant coefficients.

Assume that A and B have constant coefficients. Since the coercive estimate
(3) holds for sections over Ms, the Neumann problem can be solved there, and
it suffices to prove that every harmonic v € C°°(MS, F) can be written as v — Au.
(For details here see Spencer [9, pp. 231-233] or Sweeney [10, pp. 251-254].)
But, by definition, each harmonic v solves the elliptic boundary value problem

(AA* + B*B)v = 0 onMs ,

(a(dr)a(dr)* + b(dr)*B)v = 0 on dMs ,

which in the present case has analytic coefficients. Hence by a theorem of C. B.
Morrey, Jr. and L. Nirenberg (see [8] or Y. Kato [7, Theorem 4]) v extends
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to an analytic function on Ms, for some s' > s, and by the uniqueness of analytic
continuation Bv = 0 on M s,. Since (1) is a segment of a Spencer sequence, it
is formally exact, and according to a theorem of L. Ehrenpreis and B.
Malgrange (see Hormander [5, Theorem 7.6.13]) there exists a C°° u on the
interior of M s, such that Λu = v. The restriction of u to Ms is thus the desired
element of C°°(MS,E), and in the constant coefficient case the proof of Theo-
rem 3 is complete.

Returning to the general case, we define differential operators

As = Σ AJ(SX)DJ + sA0(sx) ,

Bs = Σ BJ(SX)DJ + sB0(sx) ,

for 0 < s < 1, and we note that the change of coordinate x — y/s carries As

and Bs over into sA and sB respectively. Thus in order to prove that (1) is
exact for sections over Ms for small s it suffices to prove that the sequence

(23) C-(MU E) ^L C-(Aflf F) JU C~(Af 19 G)

is exact for small s > 0.
The operators A0 and B° have constant coefficients, and Theorem 2 shows

that the coercive estimate

(24) Hull, < c{\\A<*u\\ + \\B°u\\ + \\u\\ + 9 | | aW*" | | 1 / 2 }

holds. Since A° and B° have no zero order term, it is easy to check that

(25) E^IF-^G

continues to be part of the Spencer sequence associated with a formally inte-
grable differential operator. (See Spencer [9, Theorem 1.6.1].) By the argument
given above it follows that the sequence (25) is exact for sections over Mγ and
also that the harmonic space for the Neumann problem over Mx vanishes. An
application of the closed graph theorem now yields

(26) Hull, < c{\\A°*u\\ + \\BQu\\ +

for all w e C 0 0 ^ , F). But given ε > 0 we can, in view of (22), choose s > 0

so small that

\\A«*u - As*u\\ < ε 11*4 , \\B°u - Bsu\\ <
d\\aXdr)*u - as(dr)*u\\ιn < ε'\\u\\U2 < BC\\U\\X

these inequalities with ε > 0 sufficiently small combine with (26) to yield

II"Hi < c{\\A°*u\\ + \\B'u\\ + %a%dr)*u\\U2}
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for s > 0 sufficiently small. It now follows that the harmonic space for the
Neumann problem for (23) vanishes, and hence (23) is exact for s > 0 suffi-
ciently small. The proof of Theorem 3 is complete.

3. A sufficient condition for coerciveness

We now give an explicitly algebraic condition which implies the coercive
estimate.

Theorem 4. For each x e dM assume that the symbol sequence (2) is exact
for all nonzero ζ e T*(M) <g) C of the form ζ = ξ' + λdr, where ξ' e T*(M) and
λeC. Then the coercive estimate (3) holds for all u e C°°(M, F) satisfying (4).

Proof. Let x0 e dM and choose a local coordinate and special frames near
x0 as in § 1. Then by Proposition 4 the theorem will be proved if we can show
that the system

a φ 9 ξ ' 9 D t ) * w ( t ) = 0, ί > 0 ,

(13) b ( 0 , ξ ' , D t ) w ( i ) = 09 ί > 0 ,

β(0,0, l)*w(0) = 0 ,

has no nonzero solution in L2(R+,F0).
So let w be a nonzero L2 solution to (13), and recall that w must then satisfy

the differential equation (14). It follows that

(27) w(t) = Σ PjίO exp dλjt) , / > 0 ,

where the λ/s are the solutions to det Δ(ξ', X) = 0 having positive imaginary
part. Now

(28) 0 = b(0, ξ', Dt)w(t) = Σ [*(0, ξ', λj)pj(t) + 6(0,0, Dt)Pj(t)] exp (iλμ) ,

and we claim that

(29) KO,r,Dt)(Pj(
= (6(0, f/, λj)pj(t) + 6(0,0, A ) p / 0 ) exp (iλjt) = 0

for each /. In fact, we may assume that the Λ/s are all different and that
\λj\ > \λj+i\ f° r e a c h /. Then there exists a complex number ω such that
Re {λλω} > Re {λόώ\ for each / > 1. Now since the right side of (28) is an
analytic function of t9 (28) must hold for all t € C and, in particular, for t - sω,
where s is real. To obtain (29) for / = 1 substitute sω for /, multiply by
exp (—iλ^s), and let s -+ + oo. Several repetitions of this argument yield (29)
for all /.

Using (29) we shall now show that there exist E0-valued polynomials qj(t)
such that
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(30) a(0, £', Dt)(qj(t) exp (iλjt)) = p,(t) exp (iλjt) .

In fact, if pjkt
k is the highest order term occurring in Pj(t), then by looking at

the coefficient of tk in (29) we obtain

b(O,ξ\λj)Pjk = O.

Since the symbol sequence is exact for ζ = (£', λ3), there exists qjk e Eo such that
a(0, ξ', λj)qjk = pjk, and it follows that

a(0, ξ', Dt)(qjkt
k exp (iλjt)) = Pj(t) exp (iλjt) + r(t) exp (iλjt) ,

where r(ί) is a polynomial of order <&. If & = 0, we have thus found the re-
quired qj(t) and if k > 0, we have reduced the problem to the case where ps(t)
has order <k— 1. The existence of pj(t) is thus established by induction on k.

Now let u(t) = Σ qj(t) exp (iλjt), and notice that u<zL2(R+,EQ) and
a(0, ξ', Dt)u(t) = w(t) for t > 0. Using the boundary condition a(0,0, l)*w(0)
= 0, we may integrate by parts to obtain

j°°\w(t)\2dt = f~<w(t),a(09ξ'9DMt)>dt

In view of the first equation in (13) the last integral vanishes, and hence w(t) = 0
for all t > 0.

4. The Cohen-Macaulay case

Let

(31) o >E°-^-+ E1-^ ί U EN >0

be the Spencer sequence associated with an elliptic, formally integrable differ-
ential operator on M', and let

02) o—£.-?a I?.-ίa...-?B £ * — o

be its symbol sequence. Let Ψ*x denote the complex characteristic variety of
(31) at x. Thus "Tx consists of all ζ € T*(M') (g) C for which a(ζ): E°x -> Έ}x

has a nonzero kernel, and using the properties of Spencer sequences, one can
show that q = codim Ψ*x is a constant function of x.

In this section we shall assume that (32) is exact at E%+1, , E* for every
nonzero ζ e T*(M0 (x) C and every xeM'. A theorem due to D. G. Quillen
(see Spencer [9, Theorem 1.7.2]) asserts that (32) is exact at every position if
ζ $ y x so this amounts to an assumption only on the points in "Γ — U ̂ x . As
noted by V. W. Guillemin and S. Sternberg [4], this assumption is equivalent
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to requiring that each ζ € Ψ*\ be a Cohen-Macaulay point for the symbol module
of (31) at x.

Theorem 5. Assume that every ζei^ is a Cohen-Macaulay point as de-
scribed above. Then (31) is locally exact at the positions Eq, , EN, and the
coercive estimate holds at these positions for any M C M\ If 0 < s < q, then
the coercive estimate holds at Es if and only if the projection dnΓ x of Ψ*' x into
T*(dM) (x) C satisfies 3"TX Π T*(dM) = 0 for each x e dM.

The main ingredient of our proof here is a canonical form theorem due to
W. V. Guillemin and S.Sternberg. (See Theorem 2 in [4].) Namely, under the
assumptions made here Guillemin and Sternberg have proved that every ζ e *Γ
has a conical neighborhood U C Γ*(M') (8) C over which there exist invertible
formal pseudo-differential operators R: Es —> Es (for definitions see § 2 in [3])
such that the complex

(33)

is the direct sum of two pseudo-differential complexes

(34) 0 > E/o -^U En - ^ > E'2 •

D" D" Ώ"
(35) o • E"° • Em • E'n •

where the symbol sequence of (34) is exact at each ζ e U and (35) is a Poincare
complex. To say that (35) is a Poincare complex means that there exist a
product bundle F over U, a vector space W with basis {w1, , wq}, and com-
muting formal pseudo-differential operotors A1: F -^ F, - - >,Aq: F —> F such
that

(36) E"s = A'W ® F , Ό"u = Σ w* Λ ^,w .

In [4] Guillemin and Sternberg use their canonical form theorem to study
certain test complexes associated with a sub-elliptic estimate for (31); we shall
use the theorem here to study the test complexes (20) associated with the
coercive estimate.

To begin the proof of Theorem 5 let M c M', let x € 3Λf, and let ζ£ € Γ*(M)
be orthogonal to dr. Then for each s we can form a test complex

a(ζ'o + έ/rDt) fl(ζό + drDt)
(37) C"L2(Λ+,fii"1) — > C~L2(R+,ES

X) — > C~L2(2?+,£ +1)

analogous to (19). If the symbol sequence (32) is exact for all ζ = ζ'o + λdr,
then Theorem 4 shows that (37) is exact hence we may assume that ζ0 =
ζo + λodr e y for some Λo e C, and the Guillemin-Sternberg canonical form
theorem applies. As Guillemin and Sternberg show, since the complex (31) is
elliptic, the neighborhood U can be chosen with U Z) {ζ|J + λdr \ λ e C}, and R
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can be chosen so that its symbol is constant on {ζo + λdr \ λ e C}. If Ro denotes
the constant value of the principal symbol of R on this set, then the homology
of (37) remains the same when we replace each of the operators a(ζ'o + drDt)
by its conjugate Roa(ζ'o + drDt)Ro\ Now the new complex formed by making
these replacements is the direct sum of two complexes, one arising from the
symbol sequence of (34) and the other arising from the symbol sequence of
(35). Since the symbol sequence of (34) is exact, Theorem 4 shows that the
first of these complexes is exact. Hence the homology of (37) is isomorphic to
the homology of

CL2(R+, ) \ C~L2(R+,E"S

X)
(38)

af\ζ' + drDt)
— ^ C~L2(R+,E'T) ,

where α"(ζ) is the principal symbol of D". In view of (36) we have good infor-
mation about a"(ζ) in fact, it follows from the proof of the canonical form
theorem that

β"(Cί + λdr)u = Σw* ABlu + wq Λ λu ,
i = l

where the Bi9s are commuting linear transformations from F to F which do not
depend on λ e C, and thus

fl"(Cί + drDt) = Σ ^ Λ ^ + # Λ Dtu .

The vector space W can be decomposed into a direct sum of subspaces which
are invariant and indecomposable relative to Bι, , Bq, and the complex (38)
splits correspondingly into direct sum. Thus we may assume that W is already
indecomposable for B\ , Bq so that for each / we have

Bι = b* + N* ,

where bι € C, and N* is nilpotent. If any one of b\ , bq~ι is not 0, then it
follows (see the remark following the proof of Lemma 1, below) that the
mappings a"(ζ'o + λdr) form an exact sequence for every λ e C, and hence by
the proof of Theorem 4 the test complex (38) is exact. Thus the proof of
Theorem 5 reduces to determining the homology of

C"L2(R+, Λs~ιW ®F)-^ C~L2(R+, ΛSW ® F)

where



COERCIVENESS IN THE NEUMANN PROBLEM 391

du = Σ w* Λ Nιu + wq Λ (Pt + bQ)u .
ί = l

In Lemmas 1 and 2 below we shall show that (39) is exact if s = g, but fails
to be exact if 0 < s < q and Im 69 < 0. Before proving these lemmas let us
see that this will complete the proof of Theorem 5. In fact, if (39) is always
exact for s = q, then so is (37), and by Theorem 2 the coercive estimate holds
at Es for all M C M''. Thus by Theorem 3 the complex (31) is locally exact at
Eq, , En. Also if di^x Π T*(dM) = 0 for each x e 3Λί, it follows by Theo-
rem 4 that the coercive estimate holds at each Es. On the other hand, if
0 < s < q and if for some xedM the characteristic variety Ψ* x contains ζ0 =
ζ'o + λodr with λ0φ0 and ζ'o e T*(dM), then (37) can be exact only if (39) is
exact. But by replacing ζ0 by — ζ0 if necessary we can arrange that Im bq < 0
so that (39) is not exact. By Theorem 1 the coercive estimate does not hold
at£*.

Lemma 1. Let N\ ,Nq be commuting nilpotent linear transformations
on the vector space F, let w\ , wq form a basis for the vector space W,

and for each s>0 define δ: ΛSW (x) F -> Λs+ιW <g) F by δu = Σ >v* Λ
i = l

for s = 0, - - -, q the homology of

(40) Λ'-W ® F - ί U yίW (g) F — ^ ^ί s +W (8) F

w nonzero.
Proof (by induction on q). If q = 1, the lemma holds trivially. To prove

the inductive step let g > 1 and assume the lemma is true when q is replaced
by q — 1. From the filtration

Λ'W®F -D {uzΛ'W®F\w« A u = 0} ID 0

arises a spectral sequence {E^s} such that in filtration degree zero

Ej.° = Λ*W ® F , ÔM = 2] w* Λ N̂ w , we£f»° ,
i = l

where W' is the subspace of W spanned by w\ , w9"1. Also the complex
{Eo'\ 0̂} arises from the complex {EQ°, δ0} by multiplication with wq. To com-
pute the homology of (40), therefore, one should compute the homology groups
Hsl and Hs of the complex {E"°, δQ} at the positions E'f1*0 and £^° and then
compute the kernel of the induced map Nq: HS^HS and the cokernel of Nq: //s-1

-^ HS~K The homology of (40) is the direct sum of this kernel and cokernel.
Now by the inductive hypothesis Hs Φ 0 for 0 < s < q — 1, and the induced
map Nq :HS^HS is clearly nilpotent. Hence this map will have nonzero kernel
and cokernel for 0 < s < q — 1, and it follows that the homology of (40) is
nonzero when 0 < s < q.
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Remark. Note that if TV1, , Nq are arbitrary commuting linear transfor-
mations one of which, say Nq

9 is bijective, then the homology of (40) must
vanish. In fact, this is because in the argument above Nq induces an isomor-
phism Nq: Hs -• Hs for each s.

Lemma 2. // N\ -,Nq, F, and W are as in Lemma 1, then (39) is
always exact when s — q, but (39) fails to be exact when 0 < s < q and
Im bq < 0.

Proof. To compute the homology of (39) we use the spectral sequence cor-
responding to the filtration

C~L2(R+,Λ'W(g)F) D {u<εC°°L2(R+,Λ'W ®F)\wq A u = 0} D 0 .

Then in this spectral sequence

El" = Efr1 = C~L2(R+, Λ*Wr <g> F) ,

where W is the subspace of W spanned by w\ , wq~\ and the differential
in degree zero is the mapping <50 occurring in the proof of Lemma 1. It follows
that the homology of {Eo'°, δ0} at the 5ΐh position is C°°L2(R+, Hs), where Hs is
the vector space occurring in the proof of Lemma 1, and hence the homology
of (39) is the direct sum of

(41) ker ((A + bq + Nq): C~L2(R+,HS) - C~L2(R+,HS))

and

(42) coker ( φ t + bq + Nq): C~L2(fl+, H'-1) — C~L2(R+, Hs~1)) .

Now the space (42) is always 0 because if f eC°°L2(R+,Hs~ι), we can define
f(t) = 0 for t < 0, and then

uii) = ilπY1 Γe^iτ + bq + NqYιfiτ)dτ

belongs to CTOL2(/?+, ff'-1) and satisfies (Dί + ft9 + N9)w(/) = /(*) for / > 0.
Since //α = 0, it now follows that (39) is exact when s = q. However, if
0 < s < q, then by Lemma 1 we know that Hs Φ 0 and hence the equation
iDt + bq + NQ)w = 0 has a nonzero solution of the form u(t) = w(0) exp i — ibqt).
Thus (41) will be nonzero if Im bq < 0, and the proof of Lemma 2 is complete.

If the characteristic variety y* = 0, then by Theorem 4 the coercive estimate
holds at all positions and for all manifolds M. There also exist complexes like
(31) for which rΓ Φ 0 and for which the coercive estimate holds at all positions
for some choices of M. For example, let Ω be a compact complex manifold of
complex dimension m, let "Γ(β) denote its holomorphic tangent bundle, and
let M = Ω X /. Define

Θ
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for 0 < s < m + 1, and let Sf\ Es —> Es+1 be the differential operator defined

in terms of local coordinates by

®u = £ dz' A γju^ t) + dt f\ JLM(Z, t) .

Then these operators form a differential complex of length m + 1, and ^ ( 2 ) ί )

= "TZ{Ω)* for all (z, t) e M. Hence q = m + 1, all of the characteristics are

Cohen-Macaulay. Since 3 ^ ( M ) = "TZ(Ω)*, when ί = 0, 1, Theorem 5 shows

that the coercive estimate holds at all positions. In [1] M. E. Ash obtained

this result by direct computation.

In spite of the example just given one should expect the coercive estimate to

fail at the positions E\ , Eq~ι when y Φ 0. In fact, given any x e Mf we

can then choose a nonzero element ζ of f,, and the estimate must fail at these

positions for any manifold M with T(dM) orthogonal to Im ζ. Also, in the case

of a complex of constant-coefficient operators over M c Rn, if ζ is any nonzero

element of f^ and if M C Mf is any compact submanifold, then we must have

Im ζ = dr for at least one point in dM, and hence the coercive estimate fails

for sections of E°, , Eq~ι over M.

Added in proof. Another treatment of some of the work in [4] will appear

in the Princeton Ph. D. thesis of Charles Rockland, who also points out that,

in general, (34) is a complex only modulo terms of order 0. A report by D. C.

Spencer on this work will be contained in the Proceedings of the Amer. Math.

Soc. 1971 Summer Conference.
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