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KAHLER SURFACES OF NONNEGATIVE CURVATURE

ALAN HOWARD & BRIAN SMYTH

1. A well-known theorem of Andreotti and Frankel [4] asserts that any
compact Kahler surface of positive sectional curvature is biholomorphically
equivalent to the complex projective plane. In this paper we investigate com-
pact complex analytic surfaces which carry a Kahler metric of nonnegative
curvature. Our basic assumption is ostensibly weaker than that of nonnegative
sectional curvature, and invokes the notion of holomorphic bisectional curva-
ture recently introduced by Goldberg and Kobayashi [5]. If p and p' are
planes in the tangent space of a Kahler manifold each invariant with respect
to the almost-complex structure tensor J, then the (holomorphic) bisectional
curvature H(p,p') is defined by

( 1 ) fl(p,pθ = R(X,JX,Y,JY) ,

where R is the Riemann curvature tensor, and X and Y are unit vectors in the
planes p and pr. From Bianchi's identity,

( 2 ) H(p, pθ = R(X, Y, X, Y) + R(X, JY, X, JY) ,

so that H(p,p') is the sum of two sectional curvatures. It follows that non-
negative sectional curvature at a point implies nonnegative bisectional curva-
ture at that point. (For complex dimension 2, it follows from the results of
this paper that everywhere nonnegative bisectional curvature is equivalent to
everywhere nonnegative sectional curvature.) With this definition, we may
state our main result.

Theorem. Let M be a compact Kahler surface whose holomorphic bisec-
tional curvature is everywhere nonnegative. Then one of the following holds:

( i ) M is biholomorphically equivalent to the complex projective plane P2.
(ii) M is biholomorphically equivalent to P1 x P\ and the metric is a

product of metrics of nonnegative curvature.
(iii) M is flat.
(iv) M is a ruled surface (i.e., Pι-bundle) over an elliptic curve. In this

case, the universal covering space of M is C X P 1 endowed with the product
of the flat metric on C and a metric of nonnegative curvature on P1.

In § 3 we show that if the Ricci tensor is nondegenerate at any point, then
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(i) or (ii) holds, and we obtain the Andreotti-Frankel theorem as a corollary.
In § 4 we show that if the Ricci tensor is everywhere degenerate but is non-
zero at some point, then (iv) holds. For this case we describe those surfaces
which occur by explicit construction as quotient spaces of C X P1 and also
in terms of Atiyah's classification of ruled surfaces over a torus [2].

2. We begin by fixing some notation and pointing out some obvious but
useful facts. First, by taking X — Y in (1), it is apparent that nonnegative
(resp. positive) bisectional curvature at a point implies nonnegative (resp.
positive) holomorphic curvature at that point. Secondly, let S denote the Ricci
tensor on M, suppose X, JX, Y, JY are orthonormal unit vectors at a point
of M, and write K(X, Y) = R(X, Y, X, Y). Then

( 3 ) S(X, X) = K(X, JX) + K(X, Y) + K(X, JY) ,

and our assumption on the curvature implies that S is positive semi-definite, and

( 4 ) S(X,X) >K(X,JX)

for any unit vector X.
Since S(JX, JX) = S(X, X), the eigenvalues of S occur in pairs, and the

proof of the theorem separates naturally into three cases corresponding to the
maximum rank of S on M. The first case is easily disposed of by the following:

Proposition 1. Let M be a Kάhler surface of nonnegative bisectional curva-
ture. If the Ricci tensor of M is identically zero, then M is flat.

Proof. It is easily seen that all holomorphic curvatures of M are zero. A
simple algebraic argument then shows that M is flat (see, for example, [7,
Vol. I, p. 167]).

From now on, we assume that the Ricci tensor is not identically zero.
Lemma 1. ( i ) // the Ricci tensor is nondegenerate at any point of M,

there are no holomorphic 1-forms.
(ii) // the Ricci tensor is nonzero at any point of M, there are no holomor-

phic 2-forms.
Proof. The real and imaginary points β, γ of a holomorphic form a of degree

p are harmonic, and so β (and γ) satisfies the Bochner-Myers formula [3]

β) + g(Fβ, Vβ)}dV = 0

(and Fp we introduce below). What we show is that if p = 1 (resp. p — Ί) then
Fχ(β) > 0 (resp. F2(β) > 0) and not identically zero unless β is zero whenever
r a n k c 5 = 2 (resp. r a n k c 5 > 1). But then, by (5), β is parallel and so must be
identically zero. Let {JC1, X1, X2, X2} be normal coordinates in a neighbourhood of
p € M associated with an orthonormal basis {eί9 eτ, e29 e%} at p where ej = Jet.
In the summands which follow /, /, k, I e {1, T, 2, 2} and whenever the suffix I
occurs we interpret this as i with a sign change in that term.
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(i) In this case we have clearly

F,(β) = ΣSvβφj > 0 ,

and Fλ(β) > 0 wherever S is nondegenerate unless β is zero.
(ii) The condition that a be of type (2, 0) may be written in terms of its

components

( 6 ) βkl + βΓι = O

with the same equation for γ. Now at p we have

F2(β) = ΣSijβijcβji — ^ΣRijkiβijβu ,

and the curvature terms may be collected in groups of four as follows:

Rίjkiβijβki + Rϊjkiβi'jβki + RijΊciβijβkΊ + R-ϊWiβϊjβkϊ

= Rijkllβijβkl + βίjβkl + βίjβίΰ + βΐjβkii

= Rijuilβij + βijMβki + βu\ = 0 by (6) .

Thus F2(β) = ΣSijβikβji, and since the original frame at p might have been
chosen to diagonalize S this expression for F2(β) may be simplified to

F2(β) = sψ12 + βli) ,

by using (6) several times, where s denotes the scalar curvature of M. Hence
F2(β) > 0 and F2(β) > 0 wherever s > 0 unless β is zero there. This concludes
the proof of Lemma 1.

Lemma 2. Let M be a compact Kάhler surface of nonnegative bisectional
curvature, whose Ricci tensor is not identically zero. Then M is algebraic.

Proof. Let hp>q denote the dimension of the space of harmonic (p, q)-ίoτms.
Since M is Kahlerian, it follows from Lemma 1 that /ι0'2 = /ι2'0 = 0. Moreover,
the first Betti number of M is even. It now follows from [10, Theorem 10]
that M is algebraic.

Next let k be the canonical bundle of M, let km be the m-fold tensor product,
and let Θ{km) denote the sheaf of germs of holomorphic sections of km. We
recall that the plurigenera of M are defined to be the integers

Pm = dim #°(M, ®(km)) , for m = 1,2, .

We also need the following facts about the Chern classes c(km), for which we
refer to [7, Vol. II], [8]. First, c{k) = — c19 where cλ is the first Chern class of
M. Secondly, cx is represented by the exterior 2-form σ/(2π), where σ(X, Y) =
S(JX, Y) (see, for example, [8]). It follows that c(km) is represented by the
form —mσ/(2π).
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Lemma 3. Let M be a compact Kάhler surface of nonnegative bisectional
curvature, whose Ricci tensor is not identically zero. Then Pm = 0 for m> 1.

Proof. We first show that σ is not exact. Suppose σ — dμ for some 1-form
μ. Let φ denote the fundamental form of M, defined by φ(X, Y) — \g(JX, Y)
where g is the metric tensor. Then

0 = Cd(μ A φ) = fσ A φ .

On the other hand, σ A ψ = csdV, where c is a positive constant, s the scalar
curvature, and dV the volume element of M. Since s is nonnegative and not
identically zero, we have

J<7 Λ φ Φ 0 ,

which contradicts the assumption that a — dμ.
Now suppose Pm > 0 for some m. Since cλ Φ 0, the bundle km is nontrivial

and is therefore represented by a divisor ΣraCa, where each ra is a positive in-
teger and each Ca is an irreducible curve. Let C be any irreducible curve in M
such that C Φ Ca for any a but CCa > 0 for some a. (Since M is algebraic
we may, for example, choose C to be a suitable hyperplane section.) Then, on
the one hand,

C-k™ = ΣraCaC > 0 ,

but, on the other hand,

= - — Γ < x < 0 .
2π J

Therefore Pm = 0 as asserted.
If C is a nonsingular complex analytic curve lying in M, we denote by Kc

its Gaussian curvature, and by K the sectional curvature in M of planes
tangent to C. At any point of C these are related by the Gauss equation [12,
Corollary 1],

( 7 ) K = Kc + 2{g(AX, XY + g(JAX, X)2} ,

where X is a unit vector tangent to C, g is the metric, and A is the second
fundamental form of C; the second fundamental form is defined by

—AX = tangential component of Vxξ ,

where ξ is a field of unit vectors normal to C, and V denotes covariant differen-
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tiation in M. We remark that A = 0 on C if and only if C is totally geodesic
in M.

Combining (4) and (7) we obtain
Lemma 4. For any nonsingular complex analytic curve C in M and any unit

vector X tangent to C,

S(X,X)>K>KC .

Moreover, K = Kc on C if and only if C is totally geodesic.
It is convenient at this point to recall some notions concerning complex

analytic surfaces. If Cό is either a line bundle or a divisor on M for / = 1,2,
then the intersection number may be defined either as the intersection of the
cycles determined by Cx and C2 or as the cup product of the corresponding
Chern classes. Since M is oriented by its complex structure, we obtain a well-
determined integer denoted by Cλ C2. If Cλ and C2 are distinct irreducible
divisors, their intersection number is greater than or equal to the number of
points at which they intersect, with equality holding in the case when every
intersection is transversal and occurs at a point of regularity for both curves.

Next let C be any nonsingular connected complex analytic curve in M, and
let k denote the canonical bundle of M. Then the genus p of C is determined
by the formula

( 8 ) Jfc C + C2 = 2p- 2 ,

[9, p. 119]. Using this formula, we prove
Lemma 5. // C is a nonsingular connected complex analytic curve in M,

then O > 0. Moreover, C2 = 0 // and only if C is totally geodesic.
Proof. The Chern class c(k) of the canonical bundle k is represented by

the exterior 2-form —σ/(2π), where σ is given by σ(X, Y) = S(JX, Y). Let
dA be the area element of C. From the Gauss-Bonnet formula, Lemma 4, and
formula (8), it follows that

2 - 2p = -L CκcdA < J - (KdA < -L Cσ

2πJ 2πJ 2π J
= -k-C = 2 - 2p + C2 .

Consequently C2 > 0, with equality holding if and only if Kc = K on C, that
is, if and only if C is totally geodesic.

By an exceptional curve (of the first kind) on a surface is meant a non-
singular connected curve C of genus 0 such that C2 = — 1 it is known that
a curve is exceptional if and only if it arises as the result of blowing up a
point via a quadric transform. From Lemma 5, we obtain at once

Lemma 6. M does not contain any exceptional curve.
3. We now prove
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Proposition 2. Let M be a compact Kdhler surface of nonnegative bisec-
tional curvature. If the Ricci tensor is nondegenerate at some point, then M is
biholomorphically equivalent to either P2 or P 1 X P 1 . In the latter case the
metric is a product of metrics of nonnegative curvature.

Proof. It follows from Lemmas 1 through 6 that M is an algebraic surface
without exceptional curves, whose first Betti number is zero, and whose pluri-
genera Pm vanish for m > 1. A theorem of Castelnuovo [11, p. 46] asserts
that an algebraic surface with bγ — 0 and Pm = 0 for m > 1 is rational, and
Andreotti proved in [1] that any rational surface free of exceptional curves is
biholomorphically equivalent either to P2 or to one of the so-called Hirzebruch
surfaces Σm, m > 0. These surfaces may be described as follows: Consider P2

and P 1 with homogeneous coordinates (xo,xι,x2) and (j1 ?^2) respectively, and
let Σm be the surface in P2 x Pι denned by the equation xjγ

m = x$2

m. Clearly
ΣQ = P1 x P1 furthermore, it is easy to see that for m > 0, Σm contains a
nonsingular curve C with C2 = — m. (For example, take the curve denned by
the equations xx = x2 — 0.) It follows from Lemma 5 that M Φ Σm for m > 0
hence M is biholomorphically equivalent to P 2 or P1 x Pι.

It remains to show that the metric is a product in the case M = Pι x P 1 .
For any point (p, q) e P 1 X P 1 we write Cp = {p} X P 1 and Dq = P 1 x {q}.
Letting zx and z2 be (nonhomogeneous) coordinates in each factor, we write the
fundamental form as ψ = Σgijdzi Λ dzj9 and let \g\ denote the determinant.
For any (p, q) the function (\g\/g22)(P^2) is well-defined on all of Cp, i.e., is
invariant under a change of coordinate from z2 to w2 in Cp. Similarly,
(|£l/£u)CZi> 0) is well-defined on all of Dq. In addition, each of these functions
is bounded away from zero. From the proof of Lemma 5 we see that

on Dq. Thus log (\g\/gu) is harmonic on Dq so that \g\/gn is constant on Dq.
Similarly, \g\/g22 is constant on Cp. We write |^|/g22 = f(zi) and \g\/gn = h(z2).
For convenience let C'p = Cp-{oo}, D'q = Dq - {oo}, and W = M-iC^ U DJ,
so that (z1? z2) is a set of global coordinates on M', and the functions /, h, \g\,
etc., are defined throughout.

For a fixed (p,q),Cp and DQ generate H2(M,R), and C p

2 = Dβ

2 = 0,
Cp'Dq = 1. In terms of cohomology, the fundamental form may be repre-
sented as ψ — flCp + fcDg, where a,bε R, and — denotes Poincare duality.
We thus obtain

( 9 ) 2ab = Cφ Λφ = f2\g\dzι Λ dlγ A dz2 A dz2 ,
M M'

(10) a = Jφ = §gudzx A
Dq
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(11) b = Jφ= jg22dz2Adz2

cp cp

and since \g\ = f(zι)g22, (9) and (11) yield

and hence

ab = j f{z^g22dzλ A dzx A dz2 A dz2 = b SKz^dz, A dzι

a = j f(zι)dzι A dzx .

Similarly,

b = jh(z2)dz2 A dz2 .

Finally, we note that

KzMz2) = -^- < \g\ ,

so that

ab = I j(z^h(z2)dzι A dzλ A dz2 A dz2 .
M'

= Γ ^ dzi A dzx A dz2 A dz2 < \\g\ dzx A dzγ A dz2 A dz2

M' δ l l δ 2 2 M

= ab .

It follows that |g| = gug229 i.e., g12 = g2l = 0, and gn = fizj, g22 = h(z2), which
completes the proof.

Corollary 1. // the bisectional curvature of M is everywhere nonnegative
and positive at some point, then M is biholomorphically equivalent to P2.

Proof. Since the Ricci tensor is positive definite at some point, it follows
that M is biholomorphically equivalent to either P2 or P1 X Pι. In the latter
case, however, there is at every point a pair of vectors X, Y such that K(X, Y)
+ K(X, JY) = 0. In the notation of the proof of Proposition 2, it suffices to
take X tangent to Cp and Y tangent to Dq.

In particular, Corollary 1 contains the theorem of Andreotti and Frankel,
as well as a theorem of Goldberg and Kobayashi [5] to the effect that any
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Kahler surface of positive bisectional curvature is biholomorphically equiva-
lent to P 2 .

4. We next consider the case when the Ricci tensor is everywhere de-
generate but is nonzero at some point.

Proposition 3. Suppose that M is a compact Kahler surface of nonnegative
bisectional curvature whose Ricci tensor is everywhere degenerate but not identi-
cally zero. Then M is a ruled surface (i.e., Pι-bundle) over an elliptic curve.

Proof. Again using Lemmas 1 through 6, we may apply a theorem of
Enriques [11, Chap. IV, Theorem 13] to the effect that an algebraic surface
with P12 = 0 is birationally equivalent to B X P 1 , where B is an algebraic curve
whose genus equals the irregularity q of the surface. (We recall that the irregu-
larity q — \bλ of an algebraic surface is equal to the number of linearly inde-
pendent holomorphic 1-forms.)

The assumption on the Ricci tensor implies that c2 = 0. By Lemma 1, more-
over, q < 1. Since, by Lemma 6, M has no exceptional curve, it follows that
M must be either P 2 , one of the surfaces Σm, or a /^-bundle over an elliptic
curve. The first two possibilities are not compatible with the requirement c2 —
0; hence M is as asserted.

Examples of surfaces satisfying the hypotheses of Proposition 3 may be con-
structed as follows. Choose a complex number a with I m α > 0 , and let T be
the torus with periods 1 and a, i.e., T = C/Γ where Γ = {m + na: m9nε Z).
Now consider the space C X P 1 endowed with the product of the flat metric
on C and the standard metric of curvature 1 on P 1 . For any pair of numbers
θ19 θ2 with 0 < θj < 2π, let G — {gmn: m, n e Z} be the group of holomorphic
isometries defined as follows:

gmn' fc w) • (z + m + na, e^^^w) ,

where w is a nonhomogeneous coordinate on P 1 . It is clear that the surface
S(a, ^,^ 2 ) = C X f / G i s a ruled surface over T and satisfies the hypotheses
of Proposition 3.

Another class of examples is the following. Considering P 1 as the unit sphere
S2 C R3 = {(x\ x2, t3)}, we let σό denote rotation through angle π around the
xJ-axis. Each σj is a holomorphic isometry of P 1 , so that G = {gmn} acts on
C X P 1 as a group of holomorphic isometries by

gmn'. (z, w) —> (z + m + na, σ2

mσ,n{w)) .

The surface S(ά) = C X P1/G is a compact Kahler surface of nonnegative
curvature and is ruled over T.

In the other direction we prove
Proposition 4. Suppose that M is a compact Kahler surface of nonnegative

curvature whose Ricci tensor is everywhere degenerate but not identically zero.
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Then M is biholomorphically equivalent to one of the surfaces S(a, θ19 θ2) or
S(a).

Proof. By Proposition 3, M is a ruled surface over a torus T. We have a
projection p: C—• T = C/Γ, where Γ = {m + n α : : m ) n e Z } , α ζ C , I m α > 0 .
Now let M be the P1-bundle over C induced by M under the map p, so that
we have the commutative diagram:

M >M

C • T
p

It is clear that M is the universal covering space of M, and that under the in-
duced metric M satisfies the same curvature assumptions, and M = M/G
where G is a group of holomorphic isometries of M.

Lemma 7. M = C X P1 metrized by the product of the flat metric on C
and a metric of nonnegative curvature on Pι.

Proof. M has at least two linearly independent harmonic 1-forms φγ and ψ2

to which we may apply the Bochner-Myers formula [3], so that

0 = = Js(φf,φf)dV
M

where Δ is the Laplacian, V is covariant differentiation, 0* is the vector field
dual to φ, and ( , ) denotes the global inner product on M. Since the Ricci
tensor S is positive semi-definite, it follows that S(φf, φj) = 0 and Vφό = 0.
Thus the distribution spanned by the vector fields ψ*,φ*, on M is parallel and
therefore invariant under the action of the restricted holonomy group of M.
It follows at once that M is reducible, and the de Rham decomposition theorem
for Kahler manifolds [7, Vol. II] asserts that M is a product of Kahler
manifolds. It is easily seen that the decomposition is the one indicated above.

For the group G we have
Lemma 8. There exist holomorphic isometries σ and τ of Pι (in the metric

induced from M) such that στ — τσ and G = {γmn' m,ne Z}, where

Tmn (z, w) • (z + m + na, σmτnw) .

Proof. Let γ be any element of G. We may choose coodinates such that

r (zl9zύ • (w19 w2) = (z, + m + na9f(z19zj) .

Here zx and wι are coodinates in C, and z2 and w2 are local coordinates in P\
We claim that / is, in fact, a function of z2 alone. For, if we write the funda-
mental form in coodinates as ψ — φndw1 Λ dwx + φ22dw2 Λ dw2, then
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ϊ*φ = (911 + Ψ22\dw2/dz1\
2)dzι A dzι + φ22(dw2/dzι)(dw2/dz2)dzι A dz2

+ φ22(dw2/dz2)(dw2/dz1)dz2 A dzx + φ22\dw2/dz2\
2dz2 A dz2 .

Since γ is an isometry, the middle terms vanish and since <p22 Φ 0 and

3(w19W2) _

3(z19 z2)

0

3w2/dz2

it follows that 3w2/dzλ = 0. Hence w2 = /(z2). Thus we may write

Γmn fe^2) • fe + rn + najmn{z2))

and if we write o = /10 and r = /01, then it is clear that σ and τ are holomor-
phic isometries of P 1 , στ = τc7, and /TOn = σmτn.

Since σ and τ are holomorphic isometries of P 1 (in the induced metric), each
has a pair of fixed points. For, if σ has only one fixed point, we way choose a
nonhomogeneous coodinate z2 on P1 so that 00 is the fixed point. But then σ
is an automorphism of C — Pι — {00}, and so is given by σ(z2) = az2 + b
(0 Φ a,b eC). The fundamental form of the metric on Pι is ih{z2)dz2 A dz2,
where h(z2) is positive real function on C with l i m ^ ^ h{z2) = 0. Since σ is a
holomorphic isometry, h(z2) = \a\2n h(σn(z2)), and consequently we have the
contradiction h(z2) = 0 if |<z| < 1. If |α| > 1, the same argument applied to
σ~ι again provides a contradiction. However, if \a\ = 1 then, since b Φ 0,
l i m ^ σn(0) = 00, and therefore /ι(0) = 0.

We assume for the moment that σ and τ have the same pair of fixed points
p and q, and show that M is biholomorphically equivalent to one of the surfaces
S(a,θλ,θ2). Let p be a holomorphic transformation of Pι such that ρ(p) = 0
and p(q) = 00. Then σ7 = loσ ̂ " 1 and r/ = ρτp~ι are holomorphic transforma-
tions of P 1 fixing 0 and 00. Hence σ'(z2) — μz2 and τ\z2) = vz2. Since af and τf

are isometries with respect to the metric induced by p~\ we conclude as in the
previous paragraph that \μ\ = \v\ = 1, that is, μ = eiθχ and v = eiH. Define
i&: C X P 1 -^ C X P1 by j&fe, z2) = (z19 p(z2)). Then C X Pι/G = M is biholo-
morphically equivalent to C X Pι/pGp~ι — S(a, θί9 θ2).

When the fixed points /? and ^ of σ do not coincide with the fixed points p
and q of τ, we note that τ(p) and τ(<?) are also fixed points of σ as follows
from the commutativity of σ and τ. Consequently τ(p) = ^ and r(g) = /?, and
in particular τ2 fixes p, r̂, p, q. Therefore τ2 = σ2 — identity. Let p be a holo-
morphic transformation of P 1 such that p{p) = 0 and p(q) = 00. Then </ =
pσp~ι fixes 0 and 00, so σ'(z) = μz. Since σ2 = identity, it follows that μ =
— 1. For the automorphism τr — ρτρ~ι we have τ'(0) = 00 and τ^oo) = 0,
so that τ'(z) = v/z. Define p'(z) = ηp(z) where ^ = 1, and we see at once
that σ" = ^ V / ) - 1 and τ " = //rC^O"1 are given by o"(z) = -z, τ"(z) = 1/z.
Then C X Pι/G = M is biholomorphically equivalent to the surface
C X P'/pGp-1 = S(ά)9 where £ is given by p(z19 z2) = fe, ^(z2)).
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Remark. As the proof of Proposition 4 shows, if we add the assumption
that M has constant scalar curvature, then M is, in fact, isometric to one of the
surfaces S(a, θl9 θ2) or S(a).

If M is any ruled surface over an elliptic curve, and there is a holomorphic
reduction of the structure group from the projective linear group to the group
of nonzero complex numbers, then we say that M comes from a line bundle.
The following proposition places the above examples within the context of
Atiyah's classification of ruled surfaces over an elliptic curve [2].

Proposition 5. For any given a the class of surfaces S(a, θl9 θ2) consists of
those ruled surfaces over the torus determined by a, which come from a line
bundle with Chern class zero.

Proof. As a P^bundle, M = S(a, θl9 θ2) has two disjoint holomorphic
sections, i.e., the curves C X {0}/G and C X {°°}/G (in the notation of the
proof of Proposition 4). It follows that M comes from a line bundle, so that
we may identify M with an element of Hι(T, 0*), where Θ* denotes the sheaf
of germs of nonvanishing holomorphic functions, and T is the base curve.

Now consider the sequence

H\T, Γ) -> H\T, C*) -* H\T, 0*)

induced by inclusion, where C* (resp. JΓ) is the constant sheaf of nonzero com-
plex numbers (resp. complex numbers of absolute value 1). In the canonical
metric on M all fibers are isometric, and therefore the corresponding line bundle
is in the image of H\T, Γ). Conversely, for any line bundle in the image of
Γ, we can metrize the corresponding /^-bundle so as to have nonnegative
curvature, thus obtaining one of the surfaces S(a,θ19θ2). In other words, the
class of surfaces S(a9 θ19 θ2) consists of all surfaces coming from line bundles in
the image of H\T9Γ). It is well known (see, for example, [6, p. 134]) that
any element in the image of H\T, Γ)—in fact, any element in the image of
H\T9 C*)—has Chern class zero. For the converse, we consider the commuta-
tive diagram:

0 -+ H\T, dΦ) -^-> H\T, C) -^U H\T, Θ) -^-> H\T, dΦ) -^-» H\T, C) -» 0

i
Hι(T, C*) > 1

τj2( T
 r7\

Here the top row comes from the exact sequence of sheaves 0 —• C —> Θ —• dΘ
—> 0, and ε comes from the map / —> exp (2πif). Obviously those elements of
H\T, 0*) with zero Chern class are in the image of ε. Futhermore, H\T, dΘ)
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and H\T, C) are both isomorphic to C; hence dx — 0, and ]x is surjective. An

examination of the map Δx shows that any element of H\T, C) is represented,

modulo the image of J 1 ? by a cocycle {raβ\ where raβ are real constants. Thus

any element of H\T, Θ*) with zero Chern class is represented by a cocycle

of the form {exp 2πiraβ}, i.e., is an element of H\T, Γ) as asserted.

5. It should be remarked that we have recently found a partial generaliza-

tion of this result to higher dimensions:

Theorem. Let M be an n-dimensional compact Kdhler manifold of non-

negative bisectional curvature, and r the maximal rank of the Ricci tensor.

Then there exist a fiat manifold N of dimension (n — r) and a holomorphic

fibering π: M —• N, such that the metric on M is locally a product compatible

with the fibering. Moreover, the Ricci tensor of the fiber F has maximal rank

r, and under the de Rham decomposition, F = Fλ X X Fq, each Fj is

simply connected and has second Betti number equal to one.

References

[ 1 ] A. Andreotti, On the complex structures of a class of simply-connected manifolds,
Algebraic Geometry and Topology, A Symposium in Honor of S. Lefschetz,
Princeton University Press, Princeton, 1957, 53-77.

[ 2 ] M. F. Atiyah, Complex fibre bundles and ruled surfaces, Proc. London Math. Soc.
(3) 5 (1955) 407-434.

[ 3 ] S. Bochner, Curvature and Betti numbers, Ann. of Math. 49 (1948) 379-390.
[ 4 ] T. T. Frankel, Manifolds with positive curvature, Pacific J. Math. 11 (1961) 165-

174.
[ 5 ] S. I. Goldberg & S. Kobayashi, On holomorphic bisectional curvature, J. Differ-

ential Geometry 1 (1967) 225-233.
[ 6 ] R. C. Gunning, Lectures on Riemann surfaces, Princeton Math. Notes, Princeton

University Press, Princeton, 1966.
[ 7 ] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Interscience,

New York, Vols. I & II, 1963, 1969.
[ 8 ] K. Kcdaira, On a differential-geometric method in the theory of analytic stacks,

Proc. Nat. Acad. Sci. U.S.A. 39 (1953) 1268-1273.
[ 9 ] , On compact complex analytic surfaces. I, Ann. of Math. 71 (1960) 111-152.
[10] , On the structure of compact complex analytic surfaces. I, Amer. J. Math.

86 (1964) 751-798.
[11] I. R. Safarevic et al., Algebraic surfaces, Trudy Mat. Inst. Steklov 75 (1965) 1-215,

(Russian).
[12] B. Smyth, Differential geometry of complex hyper surf aces, Ann. of Math. 85

(1967) 246-266.

UNIVERSITY OF NOTRE D A M E

UNIVERSITY OF DURHAM




