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INTEGRAL FORMULAS FOR SUBMAN1FOLDS
AND THEIR APPLICATIONS

BANG-YEN CHEN & KENTARO YANO

Various integral formulas for hypersurf aces have been established and applied
to the study of closed hypersurf aces with constant mean curvature. For the
literature, see [12]. Integral formulas for submanifolds of arbitrary codimensions
have been obtained by Chen [4], [5], [13], Katsurada [7], [8], [9], Kδjyό [8],
Nagai [9], Okumura [15], Tani [16] and Yano [5], [10], [11], [13], [15], [16].
In the present paper, we first obtain the most general integral formulas for
closed submanifolds in an m-dimensional euclidean space, and then apply those
formulas to obtain some characterizations of spherical submanifolds.

1. Preliminaries1

Let Mn be an n-dimensional manifold with an immersion x: Mn —> Em of Mn

into a euclidean space Em of dimension m. Let F(Mn) and F{Em) be respec-
tively the bundles of orthonormal frames of Mn and Em. Let B be the set of
elements b = (p, eλ, , en, en+1, , em) such that (p, e19 , en) e F(Mn)
and (x(p), e19 , em) e F{Em) whose orientation is coherent with that of Em,
by identifying et with dx(e^, i = 1, - ,n. Define jc: B —> F(Em) by x(b) =
(x(p),e19 , O

Throughout this paper, we shall agree, unless otherwise stated, on the indices
of the following ranges:

1 < *',/, <n; 1 <A,B, ••> < m\ n + 1 < r,s, < m .

The structure equations of Em are given by

dx = Σω'AeA , deA = Σa/ABeB ,

( 1 ) dωA = ΣωB Λ ωBA , dωAB — ΣωAC Λ a/CB ,

<^AB + ωBA = 0 ,

where ωA, ωAB are differential 1-forms on F(Em). Let ωA9 ωAB be the induced
1-forms on B from ωA, ωAB by the mapping x. Then we have

Communicated November 18, 1970.
1 Manifolds, mappings, functions,... are assumed to be differentiable and of class C°°,

and we shall restrict ourselves only to connected submanifolds of dimension
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( 2 ) ωr = 0 , ωir = ΣArijωj , AHj = Atjί .

From (2) we can define the mean curvature vector H by

( 3 ) H = a/n)ΣAriier .

// is a well-defined normal vector, and its length is called the mean curvature.
For each unit normal vector e = 21 cos θrer, the second fundamental form

Aie) = (Aijie)) at e is a linear transformation and is given by

Λ(β)(έ?i) = Σ cos θrArίjej , / = 1, , n .

If N is a nonzero normal vector, then the second fundamental form at N is
defined as the second fundamental form at the unit direction of N. The princi-
pal curvatures at e are defined as the eigenvalues of the second fundamental
form A(e) at e. Furthermore, the pth mean curvature Mp(e) at e is given by the
pth elementary symmetric function, i.e.,

<4) (?
) = n\/[pl(n — p)!].

If all the principal curvatures at e are the same, i.e., kx = = kn, every-
where, then Mn is said to be umbilical with respect to e. If the mean curvature
vector H Φ 0 everywhere and Mn is umbilical with respect to H, then Mn is
called a pseudo-umbilical submanifold.

2. Some integral formulas

Let [ ] denote the combined operation of exterior product and

m — 1 terms

vector product, and ( , ) the combined operation of exterior product and scalar
product in Em. For simple cases we have

(v,[v
19
 - - -,v

m
_J) = (-l)

m
-
1
det(t;,v

1
, -

( 5 ) [dX, , dX, de
n+ι
, - , de

n+1
, e

n+2
, , e

m
]

where Λ denotes the omitted term, dV = ωx A Λ ωn the volume element of
M n , and X the position vector field of Mn in Em with respect to the origin of
E
m
.
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The position vector field X can be decomposed into two parts:

( 6 ) X = Xt + Xn,

where Xt is tangent to x(Mn), and Xn normal to x(Mn). Let e be a unit normal
vector field over Mn, and e a unit normal vector field perpendicular to e and
in the direction of Xn — (Xn-e)e, i.e.,

( 7 ) Xn = (Xn.e)e + (Xn.e)e.

Throughout this paper, we always choose e19 , en in the principal direc-
tions with respect to e. Thus, if we denote the principal curvatures at e by kλ,
• , kn, then we have

ω < f n + i = kiωi 9 i = 1 , , n .

Define n functions Ft(e), i = 1, , n, by

( 8 ) Ft(e) = ( A ί ~ 0 ! ( Z g)ίΛ i t kh_xΛhh{β) ,

where the summation is taken over all distinct /1? , \i — 1, , n.
Suppose that the unit normal vector field e is parallel in the normal bundle,

i.e., by the definition, de is tangent to x{Mn) everywhere. Then, by using (5),
(6) and choosing en+ι — e and en+2 = e everywhere, we have

d(X, ίdX^^dX, de,...,de, e
n+1
, ..., ej)

n — i

= (dX, [dX, • •

n —

+ (-I)""1

i -

,dX,

i

r, [dx

m

Σ (X

- 1

de, •

i -

> * ' * ?

,[dX.

• , ae, en+ι,

- 1

dX, de,

, , dX,

5

i

de

de,

• de(9)
s = n + 2 ^ v, ^ — v

n — i i — 1

+ (- \Y-\X, [dX, -..,dX, de, --^de, e
n+1
, de, e

n+3
, •••, ej) .

n — i i — 1

and
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[dX, , dX, de, - , de, en+19 de, en+3, , em]

= Σ % Λ Λ ωjn_. A ωn+1Jn_i+1 Λ Λ ω 7 l + 1,^_ 1 Λ ωn+2

(10) = ( - I ) " Σ ^ n _ i + 1 A/,.^, Λ Λ ^ _ 4 Λ Λ «,,„_,

= („ _ 0!(-l)™ + n + < + 1 (Σ Ay, ku_xAiihmUV .

By (8), (9) and (10) we thus get

, [dX,-..,dX, ώ ^ ^ d e , en+ι, ••-, e J )

/ — 1

^ ^ ) + (X.e)Mi(e)

Hence we know that Ff(e) are well-defined functions defined on the whole
manifold Mn. By integrating both sides of the above equation and applying
Stokes' theorem, we have

Proposition 2.1. Let x: Mn -^ Em be an immersion of an oriented closed
manifold Mn into Em. If e is a unit normal vector field over Mn and is parallel
in the normal bundle, then

(11) JiM^ie) + (X.e)Mi(e))dV = - JF^dV , i = 1, . ,n ,

where Mt{e) dentoe the ith mean curvature at e.
In particular, we have
Theorem 2.2. Let x: Mn —* Em be an immersion of an oriented closed

manifold Mn into Em. If e is a unit normal vector field parallel in the normal
bundle, and Ft(e) = 0 for some i, 1 < / < n, then

(12) jM^^dV + J(X^e)Mi(e)dV = 0 .
Mn Mn

Remark 2.1. If the codimension m — n = 1, then the assumption Fi(e) — 0
in Theorem 2.2 are automatically satisfied. In this case, the integral formulas
(12) are called the Minkowski formulas [6].

Remark 2.2. If the codimension is greater than 1, then in order to get some
generalized Minkowski's formulas, various authors have set various assump-
tions. For examples:
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1. In [7], [8], [9], Katsurada, Kόjyό and Nagai assumed that the position
vector field X is parallel to the mean curvature vector field H everywhere, and
H is parallel in the normal bundle. In this case, we can choose e in the direc-
tion of H so that X-e = 0 by (7). Thus from (8) it follows that Fx(e) = . .
= Fn(e) = 0 automatically.

2. In [10], [11], Yano assumed that the mean curvature vector field H
is parallel in the normal bundle and the second fundamental form at
Xn — (XnH)H/(HH) vanishes. In this case, if we choose e in the direction
of H, then Aiό{e) = 0 for all z, / = 1, , n. Thus by (8) we know that Fλ(e)
— = Fn{e) = 0 automatically.

Remark 2.3. Let e be a unit normal vector field. If the second mean cur-
vature M2(e) is equal to an aih scalar curvature [3], then e is called a Frenet
direction [3], [5]. From the definition of Ft(e) it follows that F2(e) = 0 if e is
a Frenet direction. For the integral formulas in the Frent directions see Chen-
Yano [5]. If e is parallel to Xn, then Fλ(e) = = Fn(e) = 0 automatically.

Remark 2.4. In Proposition 2.1, the condition of the parallelism of e in the
normal bundle can be replaced by the condition that Mn is immersed in a
hypersphere of Em centered at the origin of E m .

Theorem 2.3. Let x: Mn —> Em be an immersion of an oriented closed
manifold Mn into Em. If e is a unit normal vector field and is parallel in the
normal bundle, and {X-e)ACe) = 0, then we have Fλ{e) = = Fn(e) = 0 and

(13) [hί^^dV + C(X-e)Mi(e)dV = 0 , / = 1, , n ,

where Λa) denotes the second fundamental form at e.
Since (X-e)A{l) = 0, we have either X e = 0 or Aii{e) = 0, for all /,/ =

1, , n. Thus Fλ(e) = . . . = Fn(e) = 0 by (8), and hence we get (13) by
Theorem 2.2.

Remark 2.5. If e is in the direction of the mean curvature vector field H,
then Theorem 2.3 was proved by Yano [10], [11] for / = 2.

Let / be a function on Mn. By grad / or Ff we mean Ff — Σfφ^ where ft

are given by df = ΣfiWi.
Theorem 2.4. Let x: Mn —> Em be an immersion of an oriented closed

manifold Mn into Em. If e is a unit normal vector field over Mn, then we have

(14) JiX.FMtWdV + n jiM^e) + (X H)MAe))dV = 0 ,
Mn Mn

for i — 1, ,n, where H denotes the mean curvature vector field.
Proof. Let

(15) σ = Σi-y-'iX-eM A Λ coj Λ Λ ωn .
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Then

(16) d(Mt(e)σ) = (dΛf,(e)) A σ + nM^il + (X H))dV ,

which together with df Λ σ = (X>Ff)dV implies

(17) d(Mi(e)σ) = {X-FM^dV + /ιΛf4(e)(l + {XΉ))dV .

Hence by integrating both sides of (17) and applying Stokes' theorem, we get
(14).

Remark 2.6. For the integral formulas for hypersurfaces consisting of
FMt(e), see Amur [1] and Chen [2].

3. Some characterizations of spherical submanifolds

The purpose of this section is to use the integral formulas in § 2 to get some
characterizations of spherical submanifolds. The following lemmas are well-
known.

Lemma 3.1. Let M^e), ί = 1, , n, be given by (4), and let M0(e) — 1.
Then

(18) Mlef - M^eWtUe) > 0 ,

for i = 1, - - - ,n — 1. Moreover, if Mλ(e), ,Mj(e) are positive, then

(19) Mλ(e) > (M2(e))1/2 > > (M

where the equality at any stage of (18) and (19) implies that Mn is umbilical
with respect to e, i.e., kx = = kn.

Lemma 3.2. // Ms_i(e), Ms_i^ι{e), , Ms(e) are positive, then

(20) MsM)IMs{e) > M^ω/M.Λe) > > M^.^/M,.^) ,

where the equality at any stage implies that Mn is umbilical with respect to e,
i.e., kλ= " = kn.

If x: Mn —> Em is an immersion of Mn into Em such that Mn is immersed
into a hypersphere of Em centered at c, then Mn is called a spherical sub-
manifold of Em, or simply Mn is spherical. The radius vector field R is defined
by X - c.

Theorem 3.3. Let x: Mn -• Em be an immersion of Mn into Em. Then
there exists a normal vector field e Φ 0 over Mn such that (1) e is parallel in
the normal bundle, and (2) Mn is umbilical with respect to e, when and only
when Mn is spherical and e is parallel to the radius vector field R.

Proof. Suppose that there exists a normal vector field e Φ 0 over Mn such
that e is parallel in the normal bundle and Mn is umbilical with respect to e.
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can easily verify that e
choose the first unit normal en+1

(21)

(22)

ωi,n + l = Λα>ϊ ,

has constant length |e |
= e/\e\ so that

i = 1 , -,n ,

r = n + 1, , m .

473

, and therefore we can

By taking the exterior derivative of (21) and applying (22), we get

dh Λ ωt = 0 , / = 1, , n ,

which imply that h is constant. Now consider the mapping Q: Mn-^Em defined
by Q(p) = x(p) + en+1/h. Then use of (21) and (22) yields dQ(p) = 0, which
shows that

x(p) + en+1/h = c = constant .

Hence Mn is immersed into a hypersphere of Em centered at c, and e is par-
allel to the radius vector field X — c.

Corollary 3.1. Let x: Mn -> En+2 be an immersion of Mn into En+2. Then
there exists a unit normal vector field e such that Mn is umbilical with respect
to e and the first mean curvature Mλ{e) at e is constant when and only when
Mn is spherical and e is parallel to the radius vector field R.

Proof. Suppose that e is a unit normal vector field such that Mn is um-
bilical with respect to e, and the first mean curvature Mγ(e) at e is constant.
Then by choosing en+ί = e we have

o*i,n+i = Mi(e)a>t , Ϊ = 1, , n .

By taking the exterior derivative of the above equations we get

dMx(e) Λ a)i = ωi>n+2 Λ ωn+2>n+ι = 0 .

Thus

<Dί,n+2 = 0 , i = 1 , - , n ,

on the set U = {p e Mn\ ωn+hn+2 Φ 0 at p). On the open set U, by taking ex-
terior derivative of the above equations, we have

<*>i Λ ωn+hn+2 = 0 , i = 1, , n ,

which imply that ωn+un+2 = 0onU. Therefore U is an empty set. This shows
that e is parallel in the normal bundle. Hence, by using Theorem 3.3, we know
that Mn is spherical and e is parallel to the radius vector field R.

Throughout the remainder of this paper, we always assume that x: Mn -+ Em

is an immersion of an oriented closed manifold Mn into Em.
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Theorem 3.4. // there exist a unit normal vector field e parallel in the
normal bundle and an integer i, 2 < i < n, such that

(i) Mt(e) > 0,
(ii) X e < -M^/Mtie), (or X e > -M^/M^e)),

(Hi) Ft(e) = F^e) = 0,
then Mn is spherical and the radius vector field R is parallel to e.

Proof. Suppose that there exist a unit normal vector field e parallel in the
normal bundle and an integer /, 1 < / < n, such that (i), (ii) and (iii) hold. Then
by (ii) and Theorem 2.2 we get

Mt_2(e) + (X e)Mi_1(e))dV = 0 ,

and threfore

r
= 0 .

Thus by Lemma 3.1 we have Mi^ief — M^^M^e) = 0, and Mn is um-
bilical with respect to e. Hence Theorem 3.4 follows immediately from Theo-
rem 3.3.

Theorem 3.5. // there exist a unit normal vector field e parallel in the
normal bundle and an integer i, 1 < / < n, such that

(i) MUl(e)>0,
(ii) Xe> -M^IMle),

(iii) Fi+1(e) = 0,
then Mn is spherial and e is parallel to the radius vector field.

Proof. By (ii) and Lemma 3.2 we have

X e > -M^

which, together with

die) + (X.e)Mi+1(e))dV = 0

Mn

by Theorem 2.2, implies

X-e > —MiAe)/Mi(e) > —MΛe)IMί+ι(e) = X-e .

Therefore Mt(e)2 = M^^Mi^e), and hence by Theorem 3.3, Mn is spherical
and e is parallel to the radius vector field.
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Theorem 3.6. // there exist a unit normal vector field e parallel in the
normal bundle and two integers s and i, 1 < i < s < n, such that

( i ) M s ( e ) , . . . ,
S - l

(ii) Ms(e) = Σ CjMj(e), for some constants Cj, i < j < s — 1,
j = i

(iii) Fj(e) = 0, / = i, , s — 1,
then Mn is spherical and e is parallel to the radius vector field.

Proof. By Lemma 3.2 we have

Mj(e)

~=

Ms(e) Ms_λ{e) XM^IX Ms(e) Mό{e)

for i < j < s — 1, so that

1 = Σ CjMj(e)IMs(e) > Σ CjMj.^/MUe) ,

or

Λf,-i(e) - Σ CjMj.^e) > 0 ,

where equality holds only if Mn is umbilical with respect to e. Thus by using
(ii) and Theorem 2.2 we have

(23)

Ms_x{e) -ΣfjMj

= - f(X.e)(Ms(e) - ΣcjMjieήdV = 0 ,
Mn

and therefore Ms_λ = Σ CjMj^e), which implies that Mn is umbilical with
respect to e. Hence by Theorem 3.3, Mn is spherical and e is parallel to the
radius vector field.

Similarly, by using (23), we have
Theorem 3.7. // there exist a unit vector field e parallel in the normal

bundle and two integers s and i, 0 < / < s < n, such that
(i) Mi+ι(e), . . ,MU l(e) > 0,

S - l

(ii) Ms(e) — Σ cjMj{e) for some constants cj9 i < j < s — 1,
j=ί

(iii) X e > Oor X-e < 0,
(iv) Fs_λ{e) = . . . = F,{e) = 0,

then Mn is spherical and e is parallel to the radius vector field.
Theorem 3.8. // there exist a unit normal vector field e parallel in the

normal bundle and an integer i, 1 < i < n, such that
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(i) Λf ,(*)>(>,
(ii) Mi(e) =• cMi^ie), for a constant c,

(iii) F^e) = Fie) = 0,
then Mn is spherical and e is parallel to the radius vector field.

Proof. Since M^e) > 0,c cannot be zero and Mi_x(e) must be of fixed sign.
By (ii) and Lemma 3.1, we have

cMt_2(e)) = M^e)2 - Λf,(*)Af «_,(*) > 0 ,

from which, together with (ii) again and Theorem 2.2, it follows

e) - Mi(e))(X e)dV = 0 ,

so that Ms-1(e) = cMs_2(e). Thus by Theorem 3.6, Mn is umbilical with respect
to e, and hence Mn is spherical and e is parallel to the radius vector field.

Theorem 3.9. // there exists a unit normal vector field e parallel in the
normal bundle such that

0) Mn>0,
(ii) the sum of the principal radii of curvature is constant at e, i.e.,

n

2 (l/ki) = constant,
% '(iii) Fn(e) - Fn_λ(e) = 0,
then Mn is spherical and e is parallel to the radius vector field.

Proof. Since

(24) Σ (l/*<) = nMn_λ(e)\Mn{e) = constant ,
i = l

by Theorem 3.8 we know that Mn is spherical and e is parallel to the radius
vector field.

Remark 3.1. If we replace e by a unit vector field parallel to the mean
curvature vector field H, then the conclusion in Theorems 3.3 to 3.9 and
Corollary 3.1 should be read as "Mn is a minimal submanifold of a hypersphere
of Em", since the only closed submanifolds of a euclidean space such that the
position vector field parallel to the mean curvature vector field H everywhere
are the minimal submanifolds of a hypersphere.

Remark 3.2. If Mn is spherical and e is a unit vector field parallel to the
radius vector field R, then we have (i) e is parallel in the normal bundle, (ii)
Mi(e) = constant, for all / = 1, , n, (iii) R - e = ± M^/Mf^e) = constant,
for all i = 1, , n, and (iv) FJie) = = Fn(e) = 0.

Remark 3.3. If the ambient space is replaced by an m-dimensional
Riemannian space of constant sectional curvature and the position vector field
X replaced by a concurrent vector field over Mn, then we can get the same
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results for all theorems in §§ 2 and 3 except the statement " M n is spherical

and e is parallel to the radius vector field" should be replaced by the existence

of a concurrent normal vector field (see Yano-Chen [14]).

Remark 3.4. Let TV be a vector field in Em over Mn. If there exist a func-

tion / and a 1-form λ such that d(x + fN) = λN, then the vector field N is

called a torse-forming, because if we develop the vector field N along a curve

in the manifold Mn, we obtain a field of vectors along the curve whose pro-

longations are tangent to another curve. From Theorem 3.3 it follows that a

normal vector field N in Em over Mn is a concurrent vector field if it is a torse-

forming.
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