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INTEGRAL FORMULAS FOR SUBMANIFOLDS
AND THEIR APPLICATIONS

BANG-YEN CHEN & KENTARO YANO

Various integral formulas for hypersurfaces have been established and applied
to the study of closed hypersurfaces with constant mean curvature. For the
literature, see [12]. Integral formulas for submanifolds of arbitrary codimensions
have been obtained by Chen [4], [5], [13], Katsurada [7], [8], [9], K&jyo [8],
Nagai [9], Okumura [15], Tani [16] and Yano [5], [10], [11], [13], [15], [16].
In the present paper, we first obtain the most general integral formulas for
closed submanifolds in an m-dimensional euclidean space, and then apply those
formulas to obtain some characterizations of spherical submanifolds.

1. Preliminaries!

Let M™ be an n-dimensional manifold with an immersion x: M®» — E™ of M*
into a euclidean space E™ of dimension m. Let F(M™) and F(E™) be respec-
tively the bundles of orthonormal frames of M™ and E™. Let B be the set of
elements b = (p,e,, ---,€,,€,,1, - +,€,) such that (p,e,---,e,) e F(M™)
and (x(p), e,, - - -, e,) € F(E™) whose orientation is coherent with that of E™,
by identifying e; with dx(e;),i = 1, - -.,n. Define X: B — F(E™) by %(b) =
(x(P), €y 00y em)‘

Throughout this paper, we shall agree, unless otherwise stated, on the indices
of the following ranges:

1£i9j,"'Sn;]-SA’Ba"‘_<_m;n+1érasa"'£m'
The structure equations of E™ are given by
dx = Jole, , de, = 2o)jpep ,
(1) doy = Zwp N\ &gy s  dolp = 2l N\ wpp
Wyp + 0ps =0,

where o/, 5 are differential 1-forms on F(E™). Let w,, w,5 be the induced
1-forms on B from o, o)z by the mapping %. Then we have
Communicated November 18, 1970.

1 Manifolds, mappings, functions, . . . are assumed to be differentiable and of class C=,
and we shall restrict ourselves only to connected submanifolds of dimension n>>1.
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(2) o, =0, 0;, = 24,0, Ay = Ayjs -
From (2) we can define the mean curvature vector H by

(3) H=({1/nXA,e, .

H is a well-defined normal vector, and its length is called the mean curvature.
For each unit normal vector e = X cos 6,¢,, the second fundamental form
A, = (4;;(e)) at e is a linear transformation and is given by

A(e) = X cosb,4,,e; , i=1,--,n.

If N is a nonzero normal vector, then the second fundamental form at N is
defined as the second fundamental form at the unit direction of N. The princi-
pal curvatures at e are defined as the eigenvalues of the second fundamental
form A, at e. Furthermore, the pth mean curvature M ,(e) at e is given by the
pth elementary symmetric function, i.e.,

(4) () Mse) = Sk - ky
where k,, - - -, k, are the principal curvatures at e, and (Z) =n!/[pl(n—p)!'l.
If all the principal curvatures at e are the same, i.e., k, = --- = k,, every-

where, then M™ is said to be umbilical with respect to e. If the mean curvature
vector H + 0 everywhere and M™ is umbilical with respect to H, then M™" is
called a pseudo-umbilical submanifold.

2. Some integral formulas

Let [ - - - ] denote the combined operation of exterior product and
_—
m—1 terms
vector product, and ( , ) the combined operation of exterior product and scalar
product in E™. For simple cases we have

[eb c ‘,éA’ T '>em] = (_1)m+AeA ’
(v’ [’Ul, ot '9vm_1]) = ('— 1)m—1 det (’U, Vi o0y vm_l) s
(5) [dX,"':dX,den+1)"'9den+1aen+29"’9em]
—_— —

n—i i

= n(‘ 1)m+n+len+1Mi(en+1)dV s

where » denotes the omitted term, dV = w, A - - - A w, the volume element of
M~, and X the position vector field of M™ in E™ with respect to the origin of
E™.
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The position vector field X can be decomposed into two parts:
(6) X=X, +X,,
where X, is tangent to x(M”), and X, normal to x(M"). Let e be a unit normal
vector field over M, and € a unit normal vector field perpendicular to e and
in the direction of X, — (X,-e)e, i.c.,
(7) Xn:(Xn'e)e'i'(Xn'é)é-
Throughout this paper, we always choose e, - - -, e, in the principal direc-
tions with respect to e. Thus, if we denote the principal curvatures at e by &,
-+, k,, then we have

wi,n+1=kiwi, l:l,--~,n.

Define » functions Fe), i =1, ---,n, by
(n —i)! _ _
(8) Fye) = n—'(X'e)Zkh' kg A8

where the summation is taken over all distinct j,, - -+, j; = 1, .-+, n.

Suppose that the unit normal vector field e is parallel in the normal bundle,
i.e., by the definition, de is tangent to x(M") everywhere. Then, by using (5),
(6) and choosing e,,,, = e and e,,, = € everywhere, we have

d(X’ [dX3 ° e ':dX’dea M ‘5de5en+1a . 'sem])
\—ﬂ~/

—_——
n—i i—1
= (dX,[dX,--.,dX,de, ---,de,e, ., - +,enl)
— T
n—i i—1
+(_l)n_l(X,[de"'9dX,des"’,deaen+27""em])
Y ~
n—1 14
(9) + (=D 5 (X, [dX, ---,dX,de, - - -, de,
s=n+2 ——
n—i i—1
en+1’ M) es-u des’ es+1; tt em])

= (=D™"nl(M,;_(e) + (X-e)M(e)dV
+ (_l)n—l(X, [dX’ R} dX’ de’ MR dea €nit> dé, €nyizy * ‘3em]) .

N ———
n—i i—1

and
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[dX,...,dX,de, ---,de,e,,,de, e, s, -, €]

~—_——

n—i i—1
= Z Wi, VANERRIVAN WDj_s VAN Onil,ipn—is1 VASEREIVAN WDy y1,ip—1 A WDpi2,5,
. [eh’ SRR 2 Y 2 TPY SRS PR em]
(10) = (=D Tk K@, N s Ny, N Ny,
N Onig g l€s -5 €n s €ni1 €505 €nis - o5l

= (D" Tk, e kg Ay @y N A o,
'[eh> c €59 €n115€pnu3s 0y em]
= (n — i)!(___l)m+n+i+1(2 kj1 R kji_lAjih(é))édV .

By (8), (9) and (10) we thus get

dX,[dX, ---,dX,de, ---,de,e,,,, -+, enl)
nli i~1

= (=D™"n!(M,;_(e) + (X-e)M(e) + Fe))dV , i=1,---,n.

Hence we know that F,(¢) are well-defined functions defined on the whole
manifold M. By integrating both sides of the above equation and applying
Stokes’ theorem, we have

Proposition 2.1. Let x: M™ — E™ be an immersion of an oriented closed
manifold M™ into E™. If e is a unit normal vector field over M™ and is parallel
in the normal bundle, then

(11) f (M; (0) + (X-OM(e)dV = — f F(odv, i=1,---,n,

where M (e) dentoe the ith mean curvature at e.

In particular, we have

Theorem 2.2. Let x: M® — E™ be an immersion of an oriented closed
manifold M™ into E™. If e is a unit normal vector field parallel in the normal
bundle, and F,(e) = O for some i, 1 < i < n, then

12) f M,_(e)dV + f (X.eMe)dV = 0 .

Remark 2.1. If the codimension m — n = 1, then the assumption F;(e) = 0
in Theorem 2.2 are automatically satisfied. In this case, the integral formulas
(12) are called the Minkowski formulas [6].

Remark 2.2. If the codimension is greater than 1, then in order to get some
generalized Minkowski’s formulas, various authors have set various assump-
tions. For examples:
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1. In [7], 18], [9], Katsurada, K6jyd and Nagai assumed that the position
vector field X is parallel to the mean curvature vector field H everywhere, and
H is parallel in the normal bundle. In this case, we can choose e in the direc-
tion of H so that X-& = 0 by (7). Thus from (8) it follows that Fi(e) = - - -
= F,(e) = 0 automatically.

2. In [10],[11], Yano assumed that the mean curvature vector field H
is parallel in the normal bundle and the second fundamental form at
X, — (X,-H)H/(H-H) vanishes. In this case, if we choose e in the direction
of H, then A;,(¢) = Ofor alli,j =1, ...,n. Thus by (8) we know that F,(e)
= ... = F,(e) = 0 automatically.

Remark 2.3. Let e be a unit normal vector field. If the second mean cur-
vature M,(e) is equal to an ath scalar curvature [3], then e is called a Frenet
direction [3], [5]. From the definition of F,(e) it follows that F,(¢) = O if e is
a Frenet direction. For the integral formulas in the Frent directions see Chen-
Yano [5]. If e is parallel to X, then F,(e) = ... = F,(e) = 0 automatically.

Remark 2.4. In Proposition 2.1, the condition of the parallelism of e in the
normal bundle can be replaced by the condition that M™ is immersed in a
hypersphere of E™ centered at the origin of E™.

Theorem 2.3. Let x: M* — E™ be an immersion of an oriented closed
manifold M* into E™. If e is a unit normal vector field and is parallel in the
normal bundle, and (X -8)A ;, = 0, then we have F\(e) = - .. = F,(e) = 0 and

(13) f M,_(@dV + f X-oMf&dV =0, i=1,.--,n,
Mn §783

where A ;, denotes the second fundamental form at e.

Since (X -&)A; = 0, we have either X-& = 0 or 4;;(&) = 0, for all i,j =
1,.--,n. Thus Fi(e) = --- = F,(e) = 0 by (8), and hence we get (13) by
Theorem 2.2.

Remark 2.5. If e is in the direction of the mean curvature vector field H,
then Theorem 2.3 was proved by Yano [10], [11] for i = 2.

Let f be a function on M™. By grad f or V'f we mean I'f = 3f,e;, where f,
are given by df = Xf,0,.

Theorem 2.4. Let x: M® — E™ be an immersion of an oriented closed
manifold M™ into E™. If e is a unit normal vector field over M", then we have

(14) f(X'VMi(e))dV +n f(Mi(e) + (X-H)Mye)dV =0,
M un

fori=1, ..., n, where H denotes the mean curvature vector field.
Proof. Let

(15) 0=3(=)"UX-e)o, A -+ Nboyj A - A awy.
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Then

(16) d(M(e)o) = (dM (&) N o + nM(e)(1 + (X-H))dV ,
which together with df A\ ¢ = (X-Vf)dV implies

amn d(M(e)o) = (X-TM(e))dV + nM(e)(1 + (X-H))dV .

Hence by integrating both sides of (17) and applying Stokes’ theorem, we get
(14).

Remark 2.6. For the integral formulas for hypersurfaces consisting of
VM (e), see Amur [1] and Chen [2].

3. Some characterizations of spherical submanifolds

The purpose of this section is to use the integral formulas in § 2 to get some
characterizations of spherical submanifolds. The following lemmas are well-
known.

Lemma 3.1. Let My(e),i =1, --.,n, be given by (4), and let M(e) = 1.
Then

(18) M(e)* — M;_,(e)M;,,(e) >0,
fori=1,.-.,n— 1. Moreover, if M,(e), - - -, M(e) are positive, then
19 M > M) > -+ = (Mye)",

where the equality at any stage of (18) and (19) implies that M™ is umbilical
with respect to e, i.e., k, = --. = k,.
Lemma 3.2. If M,_,(e), M,_,_,(e), - - -, M(e) are positive, then

(200 M, (/M) > M, ()| M,_\(€) > --- = M,_;_\(e)/M,_i(e),

where the equality at any stage implies that M™ is umbilical with respect to e,
ie,ki=--- =k,

If x: M* — E™ is an immersion of M” into E™ such that M" is immersed
into a hypersphere of E™ centered at ¢, then M™ is called a spherical sub-
manifold of E™, or simply M™ is spherical. The radius vector field R is defined
by X —c.

Theorem 3.3. Let x: M® — E™ be an immersion of M™ into E™. Then
there exists a normal vector field e #+ 0 over M™ such that (1) e is parallel in
the normal bundle, and (2) M" is umbilical with respect to e, when and only
when M is spherical and e is parallel to the radius vector field R.

Proof. Suppose that there exists a normal vector field e = 0 over M™ such
that e is parallel in the normal bundle and M™ is umbilical with respect to e.
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Then we can easily verify that e has constant length |e|, and therefore we can
choose the first unit normal e,,, = e/|e| so that

(21) wi,nH:hwi, I = 1,...,’1,
(22) wn+1,r—_—09 r=n+1,---,m.

By taking the exterior derivative of (21) and applying (22), we get
dh N w; =0, i=1,.--,n,

which imply that 4 is constant. Now consider the mapping Q: M™ — E™ defined
by Q(p) = x(p) + e,.,/h. Then use of (21) and (22) yields dQ(p) = 0, which
shows that

x(p) + e,,,/h = c = constant .

Hence M™ is immersed into a hypersphere of E™ centered at ¢, and e is par-
allel to the radius vector field X — c.

Corollary 3.1. Let x: M" — E™** be an immersion of M™ into E"**. Then
there exists a unit normal vector field e such that M™ is umbilical with respect
to e and the first mean curvature M,(e) at e is constant when and only when
M™ is spherical and e is parallel to the radius vector field R.

Proof. Suppose that e is a unit normal vector field such that M is um-
bilical with respect to e, and the first mean curvature M,(e) at e is constant.
Then by choosing e, ., = e we have

Wi = M(Q)o; , i=1,---,n.
By taking the exterior derivative of the above equations we get
dM (&) N\ 0; = @iniy N\ Opignyy =0
Thus
Opnyz =0, I=1,---,n,

on the set U = {pe M": w,,,,,,, + O at p}. On the open set U, by taking ex-
terior derivative of the above equations, we have

wi/\wn+1,n+2:0a i=1,---,n,

which imply that @, ,,, = 0 on U. Therefore U is an empty set. This shows
that e is parallel in the normal bundle. Hence, by using Theorem 3.3, we know
that M" is spherical and e is parallel to the radius vector field R.

Throughout the remainder of this paper, we always assume that x: M* — E™
is an immersion of an oriented closed manifold M" into E™.
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Theorem 3.4. If there exist a unit normal vector field e parallel in the

normal bundle and an integer i, 2 < i < n, such that
D My >0,

() X-.e < —M, (e)/Me), (or X-e > —M,;_,(e)/M(e)),

(lii) Fye) =F;_(e) =0,
then M™ is spherical and the radius vector field R is parallel to e.

Proof.  Suppose that there exist a unit normal vector field e parallel in the
normal bundle and an integer i, 1 < i < n, such that (i), (ii) and (iii) hold. Then
by (ii) and Theorem 2.2 we get

X-e= _Mi—l(e)/Mi(e) ,
f (M@ + (X-eM,_(€)dV =0,

Mn

and threfore

f (1/M{e)M,_(ef — M;_My(e)dV =0 .

mun

Thus by Lemma 3.1 we have M,_,(e)* — M,_Je)M,(e) = 0, and M" is um-
bilical with respect to e. Hence Theorem 3.4 follows immediately from Theo-
rem 3.3.

Theorem 3.5. If there exist a unit normal vector field e parallel in the
normal bundle and an integer i, 1 < i < n, such that

H M, (e) >0,

(i) X-e> —M,;_(e)/Me),

(i) F;..(e) =0,
then M™ is spherial and e is parallel to the radius vector field.

Proof. By (ii) and Lemma 3.2 we have

X-e> —M,;_(e)/Me) > —Mye)/M,(e) ,

which, together with

f (Mye) + (X-e)M,, (e))dV = 0
Mn

by Theorem 2.2, implies
X-e> —M; (e)/Mfe) > —Me)/M;,\(e) = X-e.

Therefore M,(e)* = M,_,(e)M,, (e), and hence by Theorem 3.3, M" is spherical
and e is parallel to the radius vector field.
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Theorem 3.6. If there exist a unit normal vector field e parallel in the
normal bundle and two integers s and i, 1 < i < s < n, such that
D Mye),---,Mfe) >0,

(i) Me) = sf c;M(e), for some constants c;, i < j < s — 1,
j=i
(lii) Fj(e):O’jzi""5s—‘13
then M™ is spherical and e is parallel to the radius vector field.
Proof. By Lemma 3.2 we have

M) M, (o) _ ( M,(e) )(Mx_l(e) _ Mj_l(e)) >0,
Mye) M, () M, _(e) ]\ Me) M(e)

fori <j<s—1,so that
1= 3 c;Me)/Mye) > 3 c;M;_\(e)/M,_,(e) ,
or
M, (&) — 2 c;M; () >0,

where equality holds only if M* is umbilical with respect to e. Thus by using
(ii) and Theorem 2.2 we have

f (Ms_l(e) — Jz‘ ch,-_l(e))dV
(23) o
- f X-e) <Ms(e) — ]zl chj(e))dV -0,

and therefore M,_, = } ¢;M;_,(e), which implies that M™ is umbilical with
respect to e. Hence by Theorem 3.3, M™" is spherical and e is parallel to the
radius vector field.

Similarly, by using (23), we have

Theorem 3.7. If there exist a unit vector field e parallel in the normal
bundle and two integers s and i, 0 < i < s < n, such that

D M. (@, -, M (e) >0,

(i Mye) = SZI c;M(e) for some constants ¢;, i < j < s — 1,

j=i

(iii) X.-e>0o0rX.e<O,

(iv) F,_(e)= ... =Fue) =0,
then M™ is spherical and e is parallel to the radius vector field.

Theorem 3.8. If there exist a unit normal vector field e parallel in the
normal bundle and an integer i, 1 < i < n, such that
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i Mye) >0,
(i) M,e) = cM,_(e), for a constant c,
(iii) F;_,(e) = Fye) =0,
then M" is spherical and e is parallel to the radius vector field.
Proof. Since M,(e) > 0,c cannot be zero and M;_,(e) must be of fixed sign.
By (ii) and Lemma 3.1, we have

M;_(e)(M;_,(e) — cM;_(€)) = M,_(e) — M(e)M,;_,(e) >0,

from which, together with (ii) again and Theorem 2.2, it follows

f (M,_(e) — cM,_(e))dV = f (€M,_(e) — My&)(X -e)dV = 0,
MT Mn

so that M,_,(e) = cM,_,(e). Thus by Theorem 3.6, M" is umbilical with respect
to e, and hence M" is spherical and e is parallel to the radius vector field.
Theorem 3.9. If there exists a unit normal vector field e parallel in the
normal bundle such that
@ M,>0,
(i) the sum of the principal radii of curvature is constant at e, i.e.,

i (1/k;) = constant,
i=1

(i) Fy(e) = F,_,(e) =0,
then M™ is spherical and e is parallel to the radius vector field.
Proof. Since

4 3 (1/k) = nM,_()/My(e) = constant ,

by Theorem 3.8 we know that M" is spherical and e is parallel to the radius
vector field.

Remark 3.1. If we replace e by a unit vector field parallel to the mean
curvature vector field H, then the conclusion in Theorems 3.3 to 3.9 and
Corollary 3.1 should be read as “M™ is a minimal submanifold of a hypersphere
of E™”, since the only closed submanifolds of a euclidean space such that the
position vector field parallel to the mean curvature vector field H everywhere
are the minimal submanifolds of a hypersphere.

Remark 3.2. If M~ is spherical and e is a unit vector field parallel to the
radius vector field R, then we have (i) e is parallel in the normal bundle, (ii)
M (e) = constant, foralli=1, - - -, n, (iii) R-e = +M,(e)/M;_,(e) = constant,
foralli=1,...,n, and (iv) F(e) = --. = F,(e) = 0.

Remark 3.3. If the ambient space is replaced by an m-dimensional
Riemannian space of constant sectional curvature and the position vector field
X replaced by a concurrent vector field over M", then we can get the same
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results for all theorems in §§2 and 3 except the statement “M™ is spherical
and e is parallel to the radius vector field” should be replaced by the existence
of a concurrent normal vector field (see Yano-Chen [14]).

Remark 3.4. Let N be a vector field in E™ over M™. If there exist a func-
tion f and a 1-form A such that d(x + fN) = AN, then the vector field N is
called a torse-forming, because if we develop the vector field N along a curve
in the manifold M", we obtain a field of vectors along the curve whose pro-
longations are tangent to another curve. From Theorem 3.3 it follows that a
normal vector field N in E™ over M™ is a concurrent vector field if it is a torse-
forming.
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