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COMPLEX LAPLACIANS ON ALMOST-HERMITIAN
MANIFOLDS

CHUAN-CHIH HSIUNG & JOHN J. LEVKO III

Introduction

In [2] Hsiung (i) defined a new complex Laplacian [J, for an almost-
Hermitian structure, which is different from the one, denoted by [1,, given by
Kodaira and Spencer [3], (i) verified for [, the well-known conjecture that if
O, = 4/2 for all 0- and 1-forms, where 4 is the real Laplacian, then the
structure is Kidhlerian, (iii) studied the conditions for [J, to be real for all 0-
and 1-forms. Very recently, Ogawa [5] continued Hsiung’s work to show that
if either [, or [, is real for all 0- and 1-forms, then the structure is Kéhlerian.

The purpose of this paper is to introduce three more complex Laplacians [1,,
., O, for an almost-Hermitian structure and to study the conditions for these
Laplacians to be real, together with some relationships among all []’s. We
shall continue to use Hsiung’s method [2] which is somewhat different from
Ogawa’s, and also for completeness we shall reprove Ogawa’s result here.

§ 1 contains fundamental notation and real operators on a Riemannian
manifold. In §2 we define various almost-Hermitian structures first and then
some complex operators for an almost Hermitian structure leading to the com-
plex Laplacians [1;,i = 1, - - -, 5. Some conditions for the tensor of an almost-
Hermitian structure to be Kdhlerian are also given for use in the proofs of our
main theorems. § 3 is devoted to the computation of O, and O yp,i =1, - - -,
5, for any O-form £ and 1-form » on an almost-Hermitian manifold. In § 4 we
show that for an almost-Hermitian structure if the complex Laplacian [,
i=1,2 or 4 is real with respect to all 0- and 1-forms, then the structure is
Kihlerian. In § 5 we obtain the following relationships among the [J’s: If for
an almost-Hermitian structure the relation Im [, = Im [J; (( = 2 or 4) or
Im O, =Im O, (=4 or5) holds for all 0- and 1-forms, where Im denotes
the imaginary part, then the structure is Kahlerian.

Throughout this paper, the dimension of a manifold M™ is understood to be
n > 2, and all forms and structures are of class at least C2.

Communicated July 29, 1970. Research partially supported by the National Science
Foundation grant GP-11965.
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1. Notation and real operators

Let M™ be a Riemannian manifold of dimension n(>2), || g;; || with g;; = g;;
be the matrix of the positive definite metric of M", and || g%/ || be the inverse
matrix of ||g;;||. Throughout this paper all Latin indices take the values 1, - - -, n
unless stated otherwise. We shall follow the usual tensor convention that indices
can be raised and lowered by using g¢/ and g,; respectively, and also that when a
Latin letter appears in any term as a subscript and superscript, it is understood
that this letter is summed over its range. Moreover, if we multiply, for example,
the components a;; of a tensor of type (0, 2) by the components b7* of a tensor
of type (2, 0), it will always be understood that j is to be summed.

Let A" be the set {1, - - -, n} of positive integers less than or equal to n, and let
I(p) denote an ordered subset {i;, - - -, i,} of the set 4" for p < n. If the elements
iy, - - -, I, are in the natural order, that is, if i, < ... <i,, then the ordered set
I(p) is denoted by I(p). Furthermore, denote the nondecreasingly ordered p-
tuple having the same elements as I(p) by <I(p)>, and let I(p;5|j) be the order-
ed set I(p) with the s-th element i, replaced by another element j of .4, which
may or may not belong to I(p). We shall use these notations for indices through-
out this paper. When more than one set of indices is needed at one time, we
may use other capital letters such as J,K, L, - - - in addition to 1.

At first we define

0, if J(p)) + <KD,
A1) e — 0, if J(p) or K(p) contains repeated integers,
’ K® ~ ) 41 or —1, if the permutation taking J(p) into K(p) is
even or odd.

By counting the number of terms it is easy to verify that

I(p)J(n—p) l+m - J(n—p)
1.2) P e ok n-p = Pl exGh) s
I @ L) — L)@
(1.3) exbierd = p! g B

On the manifold M~", let I/ denote the covariant derivation with respect to
the affine connection /", with components /™, in local coordinates x', - - -, x™,
of the Riemannian metric g, and let ¢ be a differential form of degree p given

by
(1.4) b= L prpdaT® = gy, pdrte®
p!
where ¢, ,, is a skew-symmetric tensor of type (0, p), and we have placed

(1.5 dxI® — dxtr A\ ... A dxir .

Then we have
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(1.6) do = (dP)ryp.nydx"P*V
where
1
1.7) @APrpen = Fé?i’é’l’nﬂ%m .
Denote
(1.8 €rmy = iy (det (g5))"% .
Then by using orthonormal local coordinates x', - - -, x* and relation (1.2) we

can easily obtain

I(p)J(n-p) — J(n—
(1.9) el(p)K(n_p)e pJm=p) — p! EK((?L—%)) .

The dual operator x is defined by (see, for instance, [6])

(1.10) $¢ = (% @) 1yin_pydx o™ P
where
(1.11) G Pronopy = %emm_mﬂp) .

From (1.10), (1.11) it follows that for the scalar 1

(1.12) * 1 = (det (g;))%dx* N\ «-+ N dx™,

which is just the element of area of the manifold M". By using orthonormal
local coordinates x', - - -, x™ we can easily verify that

(113) *%k ¢ — (_l)p(n-p)¢ .

Denote the inverse operator of by *~!. Then from (1.13) it is seen that on
forms of degree p

(1.14) 7 = (= 1)P-p y
The codifferential operator § is defined by
(1.15) 0 = (=P 14 d x g .
Making use of (1.6),(1.7),(1.10), (1.11) we obtain immediately

(1.16) 06 = (6@ 14p_pndxTo?~?

where
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1.17) (5¢)I<p-1> = V' rp-0 -
For a form ¢ of degree p defined by (1.4) we can obtain

. ?
P! Y1y = —VW b1y + 2 SroiaR%,
(1.18) P2
1eee,p
+ sZ<£ ¢I(p;§(a,?[h)Rabisit ’

where 4 is the Laplace-Beltrami operator defined by

(1.19) 4d=0od+ do,
and

(1.20) Vi =gi*p, ,

(121)  Ri, = aI%/oxt — 0% /0" + ThI, — ThT,
(1.22) R;. = Rfyy, .

2. Complex structures and operators

On a Riemannian manifold M" with metric tensor g;;, if there exists a tensor
F; of type (1,1) satisfying

2.1 FJF* = —¢f

then F;/ is said to define an almost-complex structure on the manifold M", and
the manifold M" is called an almost-complex manifold. From (2.1) it follows
that the almost-complex structure F ;7 induces an automorphism J of the tangent
space of the manifold M™ at each point with J2 = —1I, 1 being the identity op-
erator, such that, for any tangent vector v*,

2.2) J: vF — F*ot
If an almost-complex structure F;/ further satisfies
2.3 giijiij = 8hnk >

then F,/ is said to define an almost-Hermitian structure on the manifold M~,
and the manifold M? is called an almost-Hermitian manifold. From (2.1), (2.3)
it follows that the tensor F; of type (0,2) defined by

2.4 Fi;= gjlcF’Lk

is skew-symmetric. Thus on an almost-Hermitian manifold we have the associ-
ated differential form
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By using the multiplication of matrices, from (2.1) we readily see that a neces-
sary condition for the existence of an almost-complex structure on a Riemannian
manifold M™ is that the dimension 7 of the manifold M" be even. It should also
be remarked that an almost-complex manifold is always orientable, and the
orientation depends only on the tensor F.

An almost-Hermitian structure F,’ defined on a manifold M” is called an
almost-Kihlerian structure and the manifold M" an almost-K#hlerian manifold,
if the associated form w is closed, that is,

(2.6) do=0.
From (2.5), (2.6) it follows that an almost-Kidhlerian structure F,’ satisfies
(2.7) FhijEVhFij+Vith+Viji:0‘

The tensor F,;; is obviously skew-symmetric in all indices.
An almost-Hermitian structure F;/ (respectively manifold) satisfying

(28) FZE —‘VjFr,;]:O

is called an almost-semi-K#hlerian structure (respectively manifold). In partic-
ular, the structure F,;/ is Kdhlerian if V/,F;* = 0. In this case, by means of (2.1)
it is easily seen that the torsion tensor

1, = F*0F}*|ox™ — F,*|ox?) — FF,*|ox" — 3F,*|ax)

vanishes, so that the integrability condition of the almost-complex structure F,/
is satisfied. But in general when ¢;;* = 0, the almost-Hermitian structure F,7 is
defined to be Hermitian

Multiplying (2.4) by F** we obtain

(2.9) F Frt = —¢t |

By taking covariant differentiation of both sides of (2.9), noticing that
(2.10) Fip,F,; =0,

and making use of (2.7), (2.8) it is easily seen that

(2.11) FF = 2F,'F; .

Thus an almost-semi-Ki#hlerian structure F,;’ satisfies

(2.12) Fo,Fii =0.
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Multiplication of (2.11) by F,* and use of (2.9) give
(2.13) Fk = '—%thjFlijh .

From (2.7), (2.8), (2.13) we hence conclude that an almost-Kdhlerian structure
or manifold is also almost-semi-Kihlerian.

In the proofs of our theorems we shall need the following lemmas.

Lemma 2.1. An almost-Hermitian structure F satisfying

is Kahlerian.
Proof. From the skew-symmetry of F;; we have

(2.15) Viij+Viij:0'

Taking the sum of (2.15) and the two similar equations obtained from it by
cyclic permutation of the indices i, j, k, and making use of (2.14) we obtain
ViFj + ViFyy + V;Fy; = 0, which together with (2.15) implies immediately
V jF ki — 0.

Lemma 2.2. An almost-Hermitian structure F satisfying

(2.16) FU*pF;; =0

is Kdhlerian.
Proof. From (2.9) we have

0 = V'V (FyFi?) = 2(F9*VoFyy + ViFyV*FY)

which together with (2.16) gives V,F;;/*F/ = 0 and therefore V', F;; = 0.
Lemma 2.3 (S. Kotd [4]). An almost-Hermitian structure F satisfying

(2'17) Viij+VjFik:O,
(2-18) Ry = —%ankLF“Fij

is Kihlerian.
Proof. (2.17) can be written as

(2.19) Viij = VkF” .

Multiplying (2.19) by F#/, using (2.10) and taking the covariant derivative V,
of the resulting equation, we obtain, in consequence of (2.19),

(2.20) FileViij + VkFileFij = 0 .



COMPLEX LAPLACIANS 389

On the other hand, using (2.19) and the relation — F¥/V;,V,F,, = FV W ;Fy,,
from the Ricci identity it follows respectively that

(2.21) VWiFje =ViViFo 4+ RejulFi® — Repuf ;% ,
(2.22) Fi W Fyy = —3F9(R%;iF o + R*;iF ko)
Similarly, the Bianchi identity leads to

2RhijlcFij = Rniij“ - thikFij
= (Rnjix + Rasxy)F7 — 2Ry i;FY

and therefore to

(2.23) Ry iyiF = — LRy FY .

Substituting (2.21) in (2.20) and using (2.22), (2.23), (2.1) we can obtain
(2.24) ViF 7 Fi! = Ry + FY(3Rgpi;F,* — RauiiFi) -

Interchanging k,! in (2.24) and subtracting the resulting equation from (2.24)
we have

(2.25) Roui;FoFi = Ry FioFi |
and therefore (2.24) is reduced to

(2.26) ViF iV ,F9 = Ry — §Rg14;F°FY
which together with (2.18) implies

2.27 ViF V Fi1=0.

Multiplying (2.27) by g** we hence obtain V.F,;; = 0.
Lemma 2.4. For an almost-Hermitian structure F, condition

(2.28) FR;, = F'R*;;,

implies condition (2.18).
Proof. Since

F“Rkjnz == %‘F“(Rkjnz - lehk)
= $F*(Ryjn + Riniy) = $F¥ Ry n,
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by the Bianchi identity, from (2.28) we obtain

(2.29) ijth = %thlekl .
Multiplying (2.29) by F;/ and using (2.1) lead immediately to (2.18).
We now consider an almost-Hermitian manifold M” with an almost-Hermitian

structure F, and shall follow Spencer (compare [7, Chapter IX]) to introduce
complex operators on the manifold M. At first we define

(2.30) MM = ¥ef — v —1F))

1,0

and its conjugate' tensor
23D Md=T¢ =3/ +vV-1F) .
0,1

A simple calculation gives the following identities:

Hijnjk: Hoik’

1,0 1,0
(2.32) A1:5=0,
1,0 0,1
k_ k
JIA=114"-
0,1 0,1 0,1
Letp+o0=p,0>0,06>0, set
J(D) — M(p)N() r
[[ 1”@ = efH" ﬂmln"'nmpp
(2.33) pyo 1,0 1,0
Sgad (D)
: r[l nxsl e 10_11 Ng ”ERn(p)So(v) ’

and define ﬂ 1’ P to be the identity for p = ¢ = 0 and to be zero for either

p<Ooro < 0. Then for a form ¢ given by (1.4) we have

(2.34) [1¢ = (I Prypmdx™?,
PO e,o

where

(2.35) (H Drp = ﬂ 10 P rem -

We next define a complex covariant differentiator

1 Throughout this paper a bar over a letter or symbol denotes the conjugate of the
complex number or operator defined by the letter or symbol.
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1,0
and the corresponding contravariant differentiator
2.37) Pt = g9, =[], W = I'_'[ KN
0,1 1,0
The conjugate operators of 9; and 9* are
(2.38) g’l = l_[ ijVj s
0,1
(2.39) Dt =] 77 .
1,0

Now we define the complex analogues of the real operators d and § defined by
(1.7), (1.15) respectively:

(2.40) d= Y aq ,
pt+o=p p+le p,0
(2.41) b= » I 4II,
p+o=p p+2,0—-1 0,0
(2.42) o= 2 Il oIl
pto=p p,o-—-1 p,0
(2.43) =Y I oIl .

p+o=p p+1l,0-2 p,0

The conjugate operators of d,, d, and §,, §, have the forms:

(2.44) d= % I 41T,
pte=p p,o+1 p,0
(2.45) d, = afl,
pte=p p—1,6+2 P,
(2.46) o= 2 II oIl
pte=p p-1l,0 py0
(2.47) = X 1 oIl-

pto=p p—2,0+1 p,0

Furthermore, for a p-form ¢ given by (1.4) we define

(2.48) @1, = Qdy + di — d)1pay »
(2.49) (3P rp-ry = 20, + 8, — 0151y »
(2-50) (az¢)1<p+1) = Z ) 1_1[ 1(p+1)“°(p)91¢h<p) ’
ptao=p p+l,0
(2-51) ("92¢)1(p-1) = - Z ﬂ z‘l(p—l)JD(m@i?sJo(p) ’
p+o=p p,o

together with their conjugate operators:
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(2.52) @Prpiny = Qd, + di — )1y
(2.53) ('91¢)I<p-1) = (252 + 31 - 52)I(p~l> ’
(254) (52¢)I(p+1) = Z n I(p+1)”°(p)gj¢Jo(m ’
pto=p p,a+1
(2-55) (’9_2¢)I(p—1) = - Z ﬂ iI(p—l)JJ(p)‘_gZiﬁbJo!m .
p+o=p p,o

It is known that (see [3], [5])
(2.56) 9= — %0, %, 9= — %3, %,
and that (see [3]) if the structure F of the manifold M" is Kihlerian, then

dyp = dyp = 0 for any form ¢, and therefore 3, = d,.
Now we introduce the following complex Laplace-Beltrami operators:

(2-57) O, = ’giai + 3i§i > (i = 1,2) ’
(2.58) O, = glaz + a2’§1 5
(5.59) 0= 94 + 8.9,
(2.60) O, = 6,d, + d,5, .

It should be noted that [, was first defined by Kodaira-Spencer [3], and 7,

by Hsiung [2].
From [3] we know that d = 3, + d,. In order to apply 3, + d,, let & be any
0-form. The we have, in consequence of (2.50), (2.36), (2.32), (2.30),

(2-61) (325)11 = ]I—LilejE = %(Vz'lf - 1/_—1F2'1'7Vj$) ’
which together with (1.6), (1.7) gives

(2.62) dé = (0, + 3§ .

Similarly, for any 1-form 7, using (2.50), (2.36),(2.33),(2.34), (2.35), (2.32)
we can obtain

(3277)112‘2 = 14’ 1" — Vg + (I1 &7 IT4" — T4 [T W e
1,0 1,0 1,0 0,1 1,0 0,1

2.63 S— .
( ) = %'[Vllv’l/g - Vig’?il + 1/_ I(Figjyjyiil - Filjijiz)] ’

which together with (1.6), (1.7) gives

(2.64) dyp = 3@, + 9)y .
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The almost-complex structure F of the manifold M™ is said [3] to be
(completely) integrable if and only if 82 = 0. Now by means of (2.61), (2.50),
(2.30), - - -, (2.36) and the relation

(2.65) ViVjs == Vszf
for any O-form &, an elementary but lengthy calculation gives

4(335)1'”', = (Fi,jVjFi,k - FilejFi,k)Vk‘f

(2.66) -
+ /= 1 Fif — Vi Fi, Wik .

If @2 is real for any O-form &, then by taking & = x¢ for any arbitary i with
respect to any local coordinates x', - - -, x*, from (2.66) we obtain (2.14), and
therefore by Lemma 2.1 the structure F is Kdhlerian.

3. Expressions for []’s

In this section we shall give expressions for [1,£ and [, wherei=1, - .., 4,
and £ and 7 are respectively any O- and 1-forms on an almost-Hermitian mani-
fold M™ with an almost-Hermitian structure F.

3.1. Laplacian [J,. In [2,pp. 146-147] we obtained

3.1) AD1E = 248 + PF(—F T8 + V=178 ,
AWy, = —FIVFVin; — FPVIFIV yys, + F 0 F, 0,
= Wi, + Wi Vily + FFHIV .V,

(3.2) -
+ V=UP'F Vg, — WF* + Vo F Wy
+ 2F *VV i, — Fo KV 3, Vielp?! — FIIP Viln} s
where
(3.3) W, Vil=VJy,—Vy,.

3.2. Laplacian [],. At first we notice that as a result of (2.65) we have
(3.4) FIriwe=0.

By using (2.57),(2.53), (2.45), - - -,(2.48),(2.33),((2.40),(2.41),(2.43),(2.1),
(2.30), (2.32),(2.34),(2.35),(3.4),(1.17), (1.18) we can obtain

3.9 206 =20 1]"0[ dg = A& + v —1PF V£ .

In order to compute 1,7, from (2.48), (2.52), (2.40), (2.41), (2.43), (2.45),
(2.46), (2.47) we first see that

B6) o, =2[1dTT+MNAa[l+T1dll =141, for 1-forms ,
2,0 0,1 2,0 1,0

L1 0,1 0,2 1,0
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3.7 9 =206+ +T6MM—T]6[, for2-forms .
0,1 2,0 1,0 2,0 0,1 1,1

1,0 0,2

Next, by means of (1.6),(1.7), (2.33), (2.34), (2.35),(1.2),(1.3),(2.30), (2.31),
we obtain

l_[dl_[71=[ﬂil’° izl(anzj—Vz”kj)ﬂj-i'nilk”inglJ]j
0,1 1,0 0,1 0,1 1,0

1,1 1,0 0,1
— 1" [T aVans + [1 " T ' [T 47 — Vi [T ps)axm®
1,0 0,1 1,0 0,1 0,1 0,1
(3.9 = Vi — Vi, + Fo*FJSWin; — Vi)

+ V=1l Fy,! — ViFi + Fo,*F 'V F — V. F)
+ Fo/Win; + Vi) — Fi Wiy + Vi) Bpdxlo®

d 77=[nilknizl(VkHLj—VLij)ﬂj

20 1,0 1,0 10
+ n ilj l—[ igk(Vjﬂlc - Vkvj)]dx"’(z)
1,0 1,0
(3.9) = HpAF * W7 ,F ) — ViF.7) + F 2V F,7 — V,F.)]

+ 2735, — 2V i, + 2FF 3 Wan; — V i)
+ =1y, ,F? — ViFi) + F*F 'V FJ — ViF)
+2F i;j(V Wi —V i) + 2F W Wi, —V z‘ﬁj)]}dth >

l_[ ilk n ’lzl(Vk n lj - Vl H kj)vjdxln(z)
1,0 0,1 0,1

0

dll 7

0 0,1 1,
10 = s [Fi* (P oFy) — ViFi)) + F 7 F — ViF 0]
+ x/jiﬂj[V'llFfzj - ViaFinj

+ F *F {7 F — ViF9)]}dxl®

Il

o

~TdTl 7= [1s* [0 14 = 7o [] s
s 0,1 0,1 1,0 1,0
(3.11) = Y lF )W F! — ViFy) + F *(V F.7 — Vi Fi)]
+ x/—_lﬂj[VilFizj - V‘izF’ilj

+ F *F )V ,F — V.F,)]}dx"® ,
4[] a8 I s, = 9 F VW F! + F'VEFV iy
1,0 1,0
(3.12) + FillVleijﬂj _— V’ileﬂk + FilleleVkvi
+ V=10V o J*F + VFV oy + ViFiV oy,
+ ijVileﬂj + FillVle%) .
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Substitution of (3.8), - - -, (3.11) in (3.6) thus gives

.13 1= = Vug + V=1, FoFy) = ViFy))
i + Fizijvfl — Filejviz]}dxlﬂ(Z) .

Now put

A‘ilig = ‘711771'2 + '\/—‘—1(77j[7i1Figj + FizjVjUil) s
(3.14) Bl = ¢hiefr — eltelr + F,F *2 — FF; "2 |

Cilr = fiFf» — eFy 2 — elFfr + efoF, Fr .
Then
(3.15) o = (A, — Ay )dxo® .

By means of (3.13),(2.33),(2.34),(2.35),(2.30),(2.31),(1.16),(1.17), ele-
mentary but rather lengthy calculations give

—S(H 0 H 6177)1‘1
=2 ‘n Velebhel: — eltelr + FF; % — F,""F *) A, ..]
= ﬂj[Vstk(VkFilj — Vz'lej) + F'L'ITFsszFrl(VLij - Vszj)
+ F, WV, FJ —VVF.J9) + FEWVVFi) — V¥, F9]
+ QF WF* — FWF, W, + F /7,7, Fi — 27 F,9)
(3.16) — F0,F 0%y, — F"V5F 37 iy + 207 e,

+ 2F *F WV iy + & — 1y, [FV°F, 'V ,F — V,F,9)
+ F*°F!W . FJ —V.FJ) + V7V F, 7 — V¥V, FJ
+ Fi*FVV Fy) — VeV F )l + QVF, 7 — V, FHPy;
— 20°F IV s, + V°F 3V g — F *F SV F iV y; + VF IV )
+ 2F, WV p; — 2F V0 ..} s

—8(T 6 [T 8,
1,0 2,0
=[] PUBEE + = 1CH) A

= 9 [3V°F,*V Fy! — VFJ) + 3F,"F*F\V F,J — V.FJ)
+ VFfWF,) — Vi F) + F )WV F — VVFF)
+ Fsk(VstFilj - VsVilej)] + 2Fi1szFsl(Vk7h - Vﬂ?k)
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+ F, ViV, FJ + V. F,9) + FVF Ve — 2V m)
— F*V, FVsy; + 2PV g, — 200 ;. 3,
3.17) + 2F }*F S VV o — VeV i)
+ v =10 [§F, VF, 57 F — V,Fi) + F,*I°F (7 ,F/
— V\F) + §F*VF ')V, F — Vi F))) + VP F,}
— VWV, FJ + F,}*F} VWV F — VWV, F )] + VFV
— Vi FVy; + F *FWF,Vy; — F;"FW*F .V,
+ 20°F (V5 — Vi) — 2F FF, W F iV,
+ 2Fsk(VsVi1”k - Vst’?il) + 2Fi1j(Vst773 - 7373771)} >

—8(I] o [1 &),
0,1 2,0
= n;[3V°F, * W Fy? — Vi F) + LF,"FMF 'V F! — 7, F9]
+ FsszFi,l(VLﬂk — Vkm) + FiersF'rk(Vs”k — V}J]x)
+ o =1 [3F T F /(7 Fof — ViFy)
+ $FVF*VF — VF)]
+ Fil'FsszF,l(mG - Vkm) + VsFilj(Vﬂ]s — Vﬁj)} 5

(3.18)

—16([1 3 [T 0, = 2 [ PIUBYE — ¥ —1CHE) A0
= 9P F W F — VF) + Fi'F7F O F — VF)]
3.19) + & =1, [F F, \F Fy — VF0)
+ F,/VFH P F — V]

Substituting (3.6), (3.7), (3.12), (3.16), - - -, (3.19) in (2.57) and using (2.32)
and

(3.20) 2F * 79V ypy, = FIEV 5,V 14,
we can obtain, after some elementary simplification,
MOy, =4I + [T + 1611 — [161Dam + [1da ] 7l
0,1 2,0 1,0 2,0 0,1 1,1 1,0 0,2 1,0 1,0
= p,WF*WV  Fy' — ViFy?) + VF WV FS — VFyY)
+ F*WV F) — V'V F7) + F, WV F,’]

+ F Vo,V F' — 20 Fy) + FHVF Ve — Vine)

(3.21) + FillVleijﬂj + FilleFlkavj — 278737]1;1

+ Ve, Vi Jg* + Fi'FH7,, Vily,
+ \/—_l{ﬂj(VsVilst —_ VsVsFilj + Vilest) + 2V8st‘7j77il
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- 2(VsFilj + Vilst)Vjﬂs + st[Vss Vj]’}i;
— FIW Vg, — Fo 5V, V51p°) .
3.3. Laplacian [J,. Inthe same way as above we can compute [],£ and

O, i = 3,4,5, but we shall omit the details in this section and §§ 3.4, 3.5.
We find that

(3.22) 0.6 = O£,

(3.23) 29,9 = —Vey, + ¥ —1(FV¥y; + 9, V*F,9)
48,99, = n,Fi, WV*F? + F W Wy, + F WEF IV i,

(3.24) — VWep, + F\F GV ey, + &/ — 1,V F*F,’

+ Vi FVen; + VEF IV m; + FiVo Vo + Fo Vi gl
290, = 2[R T8I + T8 + 1611 — 16 Daxgl,,
. 0,1 2,0 1,0 0,1 1,1 1,0 0,2

2,0
= stVsFilk(ank —_ Vk77‘7) + Filr(VsF,«jVjvs _— Vsterﬂj)
(3.25) — 27.3737]‘51 + VsVilﬂs — FilszleVkvl

+ ¥ —1WF, Wy — 2V ) + VFJI Q2P s, — Vi)
- Filest‘?ys‘ + st(ZVstm‘ - VsVilﬂj)] P

40Oy, = ijillVIVkaj + 2F VF  *(V e — Vimy)

+ F, WV, F/VEp; — VEFV m;) + 2F,VSF 7

— A7V, + 20V s — Vi Ve,

+ F F WV ey, — 2P0 ;)

+ '\/—Al[ﬂjVileij + Vstj(4Vj77i, - Viﬂ?j)
+ 20°F, Vg — 20 55)
+ V FyiVep; 4 2FJ Q0 iy, — ViV 30)
+ Fo /U Vi — 20"V i) + FuV o *y,)..

(3.26)

3.4. Laplacian O,. For [1,£, O we obtain the following equations:

(3.27) 20,8, = V& — v —1F, V¢,
(3.28) 048 = 0.4,
(3.29) 29y = Vi + V—1F W%y,

4(61’9-20)1:1 = FillVLijanj —_ Vileﬁlc + FillejVIVkﬁj

(3.30) S )
+ '\/_I(Vileijﬂj + ijVileﬂj + FhJVJVk%) >
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—4(923177)1’1 = 0ijl(VszFilj - VkV‘ilFlj) + (VlFilj - Vi,FLj)Flekﬂj
+ FJ(W'F*V vn; — V'F Vi) + 2V s, — VIV 1,
(3.31) + FJIF, "W, + & — 1PV ,F* — VIV F )y
+ VeFy? — Vi FiWey; + VIF W n; — VIF V4,
+ F 7V i — 2F VIV s, + F*VV ;0]

— 4Oy, = 9 F T F, — PV F) + FF,) — V FOF ey,

+ FIW'F "V vy — VIF*Vins) — Fi'VFV

+ 70, V3l + 2797 s, + FJF 77

— F'F 7 Py,

+ V—_l{(VjVjFilk — VjVile")rik
+ (7, Fy) — 20 F )WV,
+ VPV iy — VIF MV s, + FW 4V,
+ PR3, Vilns, + Fi'V5 V5l

(3.32)

3.5. Laplacian [1,. Finally, for the remaining Laplacian [, we first have

(3.33) O = O

(3.34) o = —n;Vt H; J— H Wip; .

Adding (3.8) to (3.9) gives
S(dlﬂ)ixia = 4Vi177iz - 4171'277751 + 77.7'[Fixk(VizFlcj - VkFizj)
+ F })(VoFy — Vi Fi)]
(3.35) + x/j{vj[3FilkFizl(VkFLj — V\FY)
+ VilFigj _ V‘igFilj] + 4F’ingk77i1
—_ 4F’L'1k7kviz} .
Now put
8Gii, = Vi, + i(Fi*V Fy? + Fi )}V F;9)

3.36 —

e + v = 1@, F*F Vo + Vo Fe + 4FV ) -
Then

(3.37) 849 = (G4, — Gy )dxTo® .

As in the derivation of (3.16), (3.17) we can obtain

(3.38) —2(T[ 0 [1 dip)s, = [ V°l(elrelr — ebreks + F2oF, k2 — F, ©'F *)G, 4,1 ,
0,1 1,1 0,1
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(3.39) —4([—[) 0 ]—[0 dmn);, = !—L Vs[(BE%: + & —1CH)G, 4,1
1, 2, N

where B¥% and C¥#¥* are defined in (3.14). After some calculations we can
thus have

16(0dsm):, = 16[(H d Q) + Oﬂl Bl[ll)dm + H ddl;,
= WF *WF — ViFJ) + F,"F*VF,'(V,FJ
— V\F9) + 4F f* WV F,) —VV.FJ + V V'F,9)]
+ 8F "V FiVy; — 8V Vs, + 4LV, Vi 1n*
(3.40) + AF P, Ty + & — 1 [4F ,7°F {7 F

— V\F) + FVF P F/ —V.F)
+ 3FVSF 'V F,) — P F9) + 4V, V¥F,7
+ 4F, *F WV . FJ — V F9)] + 8VF0 o,
+ 4FiITFSk(VrFsL + VsFrl)Vﬂ?k - 4(Vi1ij + Vsz‘lk)Vkﬂj
+ 4F*W,, Vi ln; + 4F, MV, Vgt + AF* [V, Viln.} -

4. Realization of [1’s

Theorem 4.1. The complex Laplacian ;,i=1,-..,5, for an almost-
Hermitian structure is real with respect to every O-form if and only if the struc-
ture is almost-semi-Kihlerian. Moreover, with respect to every 0-form, if [,
i=1,---,5, for an almost-Hermitian structure is real, then [, = 4/2 for
i=1,.-.-,5.

Proof. The theorem follows immediately from (3.1), (3.5), (3.22), (3.28),
(3.33) and (2.8) by choosing the 0-form & to be x* for an arbitary k& with re-
spect to any local coordinates x!, - - -, x™.

Theorem 4.2. For an almost-Hermitian structure, if the Laplacian [,
i = 1,2 or 4, is real with respect to all 0- and 1-forms, then the structure is
Kdhlerian.

Kodaira and Spencer [3] have shown that if the relation

4.1 O, =4/2

holds for an almost-Hermitian structure, then the structure is integrable. The
particular case of Theorem 4.2 in which

(4.2) O, =4/2 i=1,20r4)

holds was a conjecture for some time; it was proved by Hsiung [2] for i = 2
and by A. W. Adler [1] for i = 1 by a different method under a stronger as-
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sumption that (4.1) holds for a Hermitian structure and all 0-, 1- and 2-forms.
Theorem 4.2 was proved by Hsiung [2] and Ogawa [5] for i = 2, and by
Ogawa [5] for i = 1 by a somewhat different method.

Proof. (1) i=2.In[2,p.148] Hsiung proved that under the assumption
of the theorem the structure F satisfies’ (2.17) and (2.28). Then the theorem
follows immediately from Lemmas 2.4 and 2.3; this was pointed out to one of
the authors by H. Wakakuwa.

(i) i=1. Using the Ricci and Bianchi identities and (2.23) we can easily
obtain

“4.3) F. k0, Vi ly? = F,*Ry7y; ,
4.9 Fri[y,, Vil]ﬂj - ij[ij ‘7k]77i1 = —‘%‘F“Rjilkﬂ]j ,
(4-5) VsVilst - V’thst == FGjRi1a - %FsaRjilsﬂ .

By assumption, for any 1-form », Im 7,7 = 0 which is reduced to, in conse-
quence of Theorem 4.1, (2.8), (3.21), (4.3), (4.4), (4.5),

4.6) 207,Fy! + Vo FOV i + FVF, + F 'R — R *Fy)y, = 0.

By choosing

4.7 p = dx", for an arbitary A
with respect to any local coordinates x', - - -, x*, from (4.6) it thus follows that
(4.8) VsVsFilh + FilkRkh - Rilkah = 0 .

Multiplying (4.8) by F,* and using (2.1) we obtain (2.16), and therefore the

structure F is Kidhlerian by Lemma 2.2.
(iliy i=4. At a general point P of the manifold M" we choose orthogonal

geodesic local coordinates x!, - - -, x® so that
4.9 8:;(P) = 045 , rip)=0,

where §;; are Kronecker deltas. By using Theorem 4.1, and choosing 7 to satisfy
(4.7) first and then

(4.10) y = x*dxt,  for any fixed distinct 4 and !

with respect to the geodesic local coordinates x', - - -, x*, from (3.32) the con-
dition Im (3,7) = O for any 1-form 7 is reduced to

4.11) Vip ,F bt — VW, Fr =0,

? By mistake, (2.28) was printed as F;*R?;;; = F;R%;,; in [2, p. 148].0
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(4.12) V*Fiy + 20 F* +V,F* =0.

Interchanging /, i, in (4.12) and adding the resulting equation to (4.12) we ob-
tain

4.13) ViF*» + V. F,»=0.
From (4.11), (4.13) it thus follows that
(4.14) Viv,F,*» =0,

and hence by Lemma 2.2 the structure is Kahlerian.

5. Relationships among [7°s

Theorem 5.1. If for an almost-Hermitian structure the relation
5.1 ImO,=ImO; (i=2o0r4)

holds for all 0- and 1-forms, then the structure is Kahlerian.
Proof. (1) i=2. From (3.5),(3.1) and condition (5.1) for any O-form
&, we have

(5.2) PhF,V 6 =0.

By choosing & = x* for an arbitary i with respect to any local coordinates x!,
-+ -, x", from (5.2) follows immediately (2.8), which together with (3.2), (3.21),
(3.20) reduces condition (5.1) for any 1-form 7 to

(5.3) WV.Fy + Vo F W — WV Fd —VVFi i)y =0

Choosing 7 to satisfy (4.7) first and then (4.10) with respect to the local co-
ordinates x', . - -, x* defined by (4.9) we therefore obtain (4.11), (4.13), and
hence the structure is Kéhlerian for the same reasoning given in the proof (iii)
of Theorem 4.2.

(i) i=4. Asinpart (i), from (3.5),(3.28), (3.1) and condition (5.1) for
any O-form &, we obtain (2.8), which together with (3.21), (3.32) reduces con-
dition (5.1) for any 1-form 5 to

(5'4) (VjFilk —_— VkFilj)Vkvj =0.

By choosing 7 to satisfy (4.10) with respect to the local coordinates x!, - - -, x*
defined by (4.9), we have

(5-5) VLFhil - VnFnl =0.

Thus by Lemma 2.1 the structure is Kdhlerian.
Theorem 5.2. If for an almost-Hermitian structure either the relation
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(5.6) Im O, =Im 7,
or
(5.7 Re[J,=Re[],

holds for all 1-forms, wheré Re denotes the real part, then the structure is

Kiihlerian.
Proof. From (3.1), (3.32), by the same argument as in the proof of Theo-

rem 5.1 for i = 4 it is easily seen that conditions (5.6), (5.7) imply

(5.8) VhFill = ViIFhl - O Py

(5.9 F,V,F* — F,W,F,' =0,

respectively. By multiplying (5.9) by F.*, we can reduce (5.9) to (5.8). Hence

by Lemma 2.1, the structure is Kdhlerian under either (5.6) or (5.7).
Theorem 5.3. If for an almost-Hermitian structure the relation

(5.10) Im O, = Im 7,

holds for all O- and 1-forms, then the structure is Kihlerian.

Proof. From (3.33), (3.5), (3.1) and condition (5.10) for any O-form & we
obtain (2.8). Then by the same argument as in the proof of Therem 5.1 for
i=2,(2.8),(3.2),(3.40) reduce condition (5.10) for any 1-form 7 to
FV'F*VF — V,F*) + 3FVF, !V, F.* — VF.")

+ 4F FFW W F — P F) =0,
(5.12) F,FF'WV,F* + V. F,*) =0 .

(5.11)

Multiplying (5.12) by F;#F;* and use of (2.1) give

(5.13) V,F," + PV, F* =0.

Substituting (5.13) in (5.11) we can easily obtain

(5.14) 2F, *FWV . F* — F}F, W, F,» =0 .

Multiplying (5.14) by F,* and using (2.1), (2.8), (5.13) we therefore have
(5.15) VF, V' Fat =0,

which implies that V' ,F; , = 0. Hence the structure is Kédhlerian. q.e.d.

Finally, it should be remarked that there are no theorems involving the
Laplacian [], similar to Theorems 4.2, 5.1,5.2,5.3. However, we have the
following two theorems, the proofs of which are omitted.
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Theorem 5.4. If for an almost-Hermitian structure the relation

(5.16) Im [0, = Im 00, + 1 Im (3,5,

holds for all 1-forms, then the structure is Kdahlerian.
Theorem 5.5. If for an almost-semi-Kihlerian structure the relation

(5.17) ImO,=Im0, + :Im(93) (=2or4)

holds for all 1-forms, then the structure is Kdhlerian.
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