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RIEMANNIAN STRUCTURES OF PRESCRIBED GAUSSIAN
CURVATURE FOR COMPACT 2-MANIFOLDS

MELVYN S. BERGER

Let (M, g) denote a smooth (say C® compact two-dimensional manifold,
equipped with some Riemannian metric g. Then, as is well-known, M admits
a metric g, of constant Gaussian curvature c¢; in fact the metrics g and g, can
be chosen to be conformally equivalent. Here, we determine sufficient conditions
for a given non-simply connected manifold M to admit a Riemannian structure
g (conformally equivalent to g) with arbitrarily prescribed (Holder continuous)
Gaussian curvature K(x). If the Euler-Poincaré characteristic y(M) of M is
negative, the sufficient condition we obtain is that K(x) < 0 over M. Note
that this condition is independent of g, and this result is obtained by solving
an isoperimetric variational problem for g. If K(x) is of variable sign for
(M) <0, or if y(M) >0, then the desired critical point may not be an
absolute minimum and our methods do not succeed. If (M) = 0, our methods
apply when K(x) satisfies an integral condition with respect to the given metric
g (see §3); this result is perhaps not unreasonable since, for y(M) < 0,
distinct Riemannian structures on M need not be conformally equivalent.

1. Preliminaries

By passing (if necessary) to the orientable two-sheeted covering space of M,
we may suppose M is orientable and admits a Riemannian structure with
metric tensor g, Gaussian curvature k(x), and volume element dV. If K(x) is
a given (Holder continuous) function defined on M, we shall attempt to
determine a metric tensor g, conformal with g, whose Gaussian curvature
k(x) = K(x) at each point of M, i.e., we shall seek a smooth function ¢ defined
on M such that g = e¥g and k(x) = K(x). To find the equation which will
determine ¢ in terms of the given data K(x), k(x) and g, we recall that in
terms of isothermal parameters (4, v) on M an element of arc length can be
written ds® = y{du® 4+ dv?}, and the Gaussian curvature can be written

(1) k= —3r7{(0og Puu + (108 7o} -
Setting 7" = y exp 20, in place of 7 in (1), we obtain the desired equation
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(2) do — k(x) + K(x)e* = 0,

where 4 is the Laplace-Beltrami operator relative to g on M. Clearly a smooth
solution ¢ of (2) defined on M corresponds to a metric § = e*g with Gaussian
curvature K(x).

A few words concerning the solvability of (2) are in order at this stage.
From the point of view of quasilinear elliptic partial differential equations, (2)
is somewhat extraordinary in that its solutions do not admit any obvious
pointwise a priori bounds (when either k(x) or K(x) is of variable sign).
Consequently the methods of fixed point theory do not readily apply to the
problem of the existence of a solution for (2). On the other hand, if the Euler-
Poincaré characteristic y(M) of M is not zero, it is easy and natural to
formulate an isoperimetric variational problem whose solution (if such exists)
yields a solution of (2). Indeed consider the totality S of functions u (belonging
to some admissible class C) whose associated “integra curvatura” (with respect

to g) fK(x)eZ“ dV = 2zy(M). Then the following result holds:

M
Lemma 1. If y(M) = 0, any smooth (C? critical point of the ;functzonal
F(u) = f(z |Vul? + k(x)u) dV subject to the constraint S is a solution of (2).

Proof A smooth critical point u of the isoperimetric problem satisfies the
Euler equation

(3) du — k(x) + BK(x)e* =0,

where B is some constant. To determine 8, we integrate (3) over M to find

fk(x) v = ﬁfK(x)eZ“ dV. Thus since y(M) # 0, 8 = 1 and so any solution

M M
of (3) satisfies (2).

If y(M) =0, an analogous but somewhat more involved 1soper1metr1c
problem can be used to solve (2); see § 3 below.

In order to demonstrate the existence of critical points for the isoperimetric
variational problem described above, it is convenient to restrict the admissible
class C to an appropriate Hilbert space. To this end, we denote by W, (M, g)
the set of functions u(x) defined on M such that (relative to the Riemannian
structure g) u and Fu = grad u are square integrable over M. Then W, ,(M, g)
is a Hilbert space relative to the inner product

(4) (W, v),,, = fuvdV + fVu-VvdV.
M

M

We denote by W, ,(M,g) the closed subspace of W, ,(M,g) consisting of
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functions ueW,,(M,g) of mean value zero. A well-known inequality of
Friedrichs states that for u e W, ,(M, g),

(5) fudegc{f[Vu|2dV+1fudVlz},

where c is a constant independent of u. Thus the inner product in W, (M, g)
may be defined by

(6) [, v], , = fVu.de.
M

The inequalities of Sobolev imply that if ue W, ,(M, g), then ue L,(M, g) for
all p < . A sharper result [2] is that for u e W, ,(M, g), the integral fe“‘ av
M

for any positive number s is bounded and, in fact, as a functional of u, is con-
tinuous with respect to weak convergence in W, (M, g). Furthermore, if
ueW,, M, g, then there are finite positive constants ¢, and c, independent of

u such that if ||u||w, , ey = 1, then fexp cutdV < c,.

M

2. Manifolds with negative Euler-Poincaré characteristic

Here we prove the following:

Theorem 1. Suppose the Euler-Poincaré characteristic y(M) is negative.
Then a sufficient condition for the existence of a Riemannian structure (M, g)
on M with given (Holder continuous) Gaussian curvature K(x) is that K(x) <0
on M. Furthermore, if g denotes any given Riemannian metric defined on M,
then g and g can be chosen to be conformally equivalent.

Proof. To demonstrate the sufficiency condition stated in the theorem, we
employ Lemma 1, i.e., we show that the functional

FG) = [TI7uf + kwulav
M
subject to the constraint

S = {u|u W, (M, 39), f K@em dv = 2nX(M)}

has a smooth critical point; more precisely we show that a = inf F(u) is a
. S

critical value for the isoperimetric problem. To this end, for ue S, set u = y,
+ u, where u,e W,,(M,g) and u, is the mean value of u over M. Then
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etim f K(x)e*odV = 2zy(M). Thus solving for u,, in terms of u, and substitut-
M
ing into (7) we find

o
S =g e | [ 17wp + kCouay
M

(7)
+ rcx(M)[log 2ey(M) — log‘ f K(x)e dV”} .

To show that inf F(u) is finite, we must estimate — y(M) log‘ fK(x)eZ“" dVI
S
M

from below. For convenience we denote the norm || ||, ,cx.e bY || 4]
Since y(M) < 0 and M is compact, we use the fact that max K(x) < —d <

0 for some constant §. Then J’K(Jc)ezuo av < —o f e dy. Since e*>1 + x,
M M

we have

— (M) logl f K(x)ewuo dV‘ > |7(M) | log {5 f ¢uo dV} > [x(M)|(log 5 + logc)

where ¢, is the volume of M. Thus

(8) Fu) > f (Tu,f + k@u)dV — c,,

where c, is a positive constant independent of u, ¢ W, ,(M, g). Hence by virtue
of (5) and the Schwarz inequality,

(9) fk(x)uodV < cee||w|]? + et
M

where ¢, and ¢, are positive constants independent of u, and ¢, so that choosing
ce=1, we find a = inf F(u) > —c,c; — c,.
N
We are now in a position to complete our proof. First note that by hypo-

thesis the set S mentioned in Lemma 1 is nonvacuous. Indeed, since K(x) is
continuous and strictly negative everywhere on M, we can easily find a C~

function w such that f K(x)e* dV = 2ny(M). Now let u™ be a sequence of
M
functions belonging to S such that F(u”) — a and F(u”) < a + 1. Then by

(8) and (9) choosing c,e = § we find a + 1 > L||uf™|? — c¢; where ¢; is some
constant independent of n. Consequently ||u™ ||, , u,g are uniformly bounded
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and so possess a weakly convergent subsequence with weak limit #. Now the

functional f(| Vul? + k(x)u)dV is lower semi-continuous with respect to weak

M
convergence in W, ,(M, g). Thus F(i) < a. On the other hand, by the remarks
made at the end of § 1, the functional f K(x)e*dV is continuous with respect
M

to weak convergence in W, ,(M, g), so @i ¢ S, and then F(@Z) = a, so that # is
the desired critical point.
It remains to show that # is smooth enough to satisfy equation (2). Since

the functionals F(x) and f K(x)e* dV are differentiable in W, ,(M,g) and
M

min F(u) = F(@1),
S
f Vo + k(x)¢ — K(x)eig)dV = 0
M

for all ge W, ,(M,g) and some constant 8, so that # can be regarded as a
weak solution of the equation du = f where fe L,(M) for all p < co. Thus
eW,,M,g) for all p < « by the L, regularity theory for linear elliptic
partial differential equations, and # e C, ,(M,g) by the Sobolev imbedding
theorem after a possible redefinition on a set of measure zero (on M). Hence
#1e C,(M, g) by the Schauder regularity theory provided K(x) is Holder con-
tinuous over M.

3. Manifolds with vanishing Euler-Poincaré characteristic

Theorem 2. Suppose y(M) =0, and let g denote a given Riemannian
metric on M with volume element dV. Then a necessary condition for the
existence of a Riemannian metric § on M with given (Holder continuous)
Gaussian curvature +K(x) is that on M either K(x) vanishes identically or
K(x) changes sign, and a sufficient condition that g can be chosen conformally

equivalent to g is that in addition either J‘K(x)e“0 dV + 0 where u, is any

solution of the Poisson equation Adu = k(x) on M, or K(x) = 0 on M.

Before proving this theorem we prove an analogue of Lemma 1, using the
notation of Theorem 2.

Lemma 1’. Suppose y(M) = 0 and K(x) is a given function defined on M

such that relative to some Riemannian metric g defined on M, J‘K(x)e“‘o av
M

+ 0. Then the (smooth) critical points of the functional F(u) subject to the
constraint
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= {u[ue WM, g), f udv =0, f K@e®dV = 0
M oM -

are (apart from a constant) solutions of the equation
(10) du — k(x) £ K(x)e® =0,

where k(x) is the Gaussian curvature of (M, g).
Proof. A smooth critical point u of the isoperimetric variational problem
satisfies the Euler equation

11 du — k(x) + B,K(x)e™ = B,,
where g, and g, are constants. Since fK(x)e“"’dV # 0, both 8, and B, cannot

M
be zero. To show B, = 0 we integrate (11) over M to find

f kx)dv + B, f K@endV = gyu(M) .
M M

Since fk(x)dV =0 and ues, B,=0. Since g, + 0, there is a constant ¢

M
such that e = B,. Hence @ = u + c satisfies 47 — k(x) + K(x)e®* = 0.
Proof of Theorem 2. Again the necessity of the condition stated in the
theorem is a consequence of the Gauss-Bonnet formula. To demonstrate the
sufficiency condition, we consider the following two cases:
Case I. Suppose relative to a given Riemannian structure on M,

f K(x)e**dV + 0. Then we can employ Lemma 1’ as in the proof of

M
Theorem 1. In this case it is quite easy to show that a’ = inf F(x) is bounded
S(

below. Indeed, since ueS’, ue W, (M, g) and therefore, by (5) and (9),

Fw) > (1 — co)|ulf — ce™ !

So choosing ¢ = ¢;!, we have @’ = inf F(u) > —c,c,. Again, suppose for the
SI

moment that the set S’ is nonvacuous and any minimizing sequence u™ ¢S’
with F(u™) < @’ + 1 has a weakly convergent subsequence with weak limit #
such that # e S’ and F(i#) = &’. Furthermore the proof given of Theorem 1
shows that, after a possible redefinition on a set of measure zero on M, i is
C? and satisfies equation (10) on M as required.

To show §’ is nonvacuous, suppose fK(x)dV =A.1If A =0, then u(x) =

M
0eS'. If A # 0, since K(x) changes sign on M we can find a point x, ¢ M and
a small neighborhood N(x,) of x, such that K(x)) = —dsgn A4 where § > 0.
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Hence, if v is a C= function vanishiné outside N(x,) and such that v(x) =1,

then f(¢) = fK(x)ede is a smooth function of ¢ with f(0) = 4. On the other
M

hand, if N(x,) is sufficiently small as ¢t — o, then f(f) ~ A — 5 sgn 4 €* and

hence f(z,) = O for some #, € (0, o). Finally, set u = t,v and let u,, denote the
mean value of u over M. Then w = u — u, has mean value zero and

fK(x)ezde = 0. Hence w is an element of 5.
M

Case'Il. K(x) = 0. In this case equation (2) reduces to do — k(x) = 0.
Since fk(x)dV = 0, this equation is easily solved as in Case I by minimizing

M
F(u), defined above, among all functions u e W, ,(M, g).

4. Remarks on the simply connected case

If M is simply connected, we have been unable to solve the isoperimetric
problem defined in Lemma 1, since, in this case it is not clear that the infi-
mum of F(u) is attained on the set S. Indeed, for simplicity suppose k(x) = 1;
then by virtue of (7), there is an absolute constant C, such that

Wi,2(M,8)

inf F(u) >  inf {% f \Pu,fdV — C, — 2z 1ong(x)e2uodV} .
S
M M

Since K(x) is bounded, it suffices to bound logfe“"dV in terms of f|l7 uy*dv
M

= ||u,|P. To this end, setting u, = ||4,||v and using the remarks made at the
end of §1, we obtain fexp 2u,dV < fexp (|ul?/c, + cvHdV, so that
log fexp 2u,dV < ||uy|/c, + log c,. Hence

inf FG) > inf it — 2 uf — o,
s W1,200,8) o)
where c, is another absolute constant. In order for F(u) to be bounded below
we must have ¢, > 4z. However we have only been able to show that in this
case ¢; > 4rw/e — ¢ for any ¢ > 0.

Lemma. If (M,g) = (S%g,), then c, > 4rn/e — ¢ for any ¢ > 0.

Proof. Let x,y be two points on §?, and G(x,y) denote the Green’s func-

tion for the Laplacian on $%. If fudV = 0, then

uw = [ Gy = — 7,667y .
82 S2
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Since G(x,y) = —-21— log (2 sin r(x2_,y)) , [1, p. 182], where r(x, y) is the geo-
T

desic distance along S? from x to y, we have

lue| < L 1 M 1 f(|VuIZ/Nr—llN)(lVull—Z/N)(r—Hl/N)dV ,
2r P r(x,y) 2r P

and therefore
Ju(x)| < — (f [Pul? dV) VN (fqulde) (N-2)/2N) (f r‘“””dV) he
S2
by Holder’s inequality. Hence

f[ulNdV < O )N(HVuH - zyzf(f [Pul dV) (fr‘“zde)m

S2 S2

< HVu“N/Z N/ZNN/Z

(27r)N

where ¢ is a constant independent of N and u. Thus, if ||Ful,,= 1 and
f u = 0, then

2 — 1 N 2N NN Cl v
expcludV_.Z]W oV |u| dVSCZTTn:_ .

This last series converges provided ¢, < 4r/e.

The Gauss-Bonnet theorem implies that a necessary condition for (M, g) to
admit a metric g (conformal to g) with Gaussian curvature K(x) is that K(x)
> 0 for some x,e M. Frank Warner and the author conjecture that this con-
dition is also sufficient.

Added in proof. In a paper soon to appear in the Indiana Univ. Math.
J., Jiirgen Moser has proven that the constant ¢, = 4z, so that F(u) is bounded
below on S. Nevertheless the question of the attainment of inf F(u) on S is still
open.
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