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RIEMANNIAN STRUCTURES OF PRESCRIBED GAUSSIAN
CURVATURE FOR COMPACT 2-MANIFOLDS

MELVYN S. BERGER

Let (M,g) denote a smooth (say C3) compact two-dimensional manifold,
equipped with some Riemannian metric g. Then, as is well-known, M admits
a metric gc of constant Gaussian curvature c in fact the metrics g and gc can
be chosen to be conformally equivalent. Here, we determine sufficient conditions
for a given non-simply connected manifold M to admit a Riemannian structure
g (conformally equivalent to g) with arbitrarily prescribed (Holder continuous)
Gaussian curvature K(x). If the Euler-Poincare characteristic χ(M) of M is
negative, the sufficient condition we obtain is that K(x) < 0 over M. Note
that this condition is independent of g, and this result is obtained by solving
an isoperimetric variational problem for g. If K(x) is of variable sign for
χ(M) < 0, or if χ(M) > 0, then the desired critical point may not be an
absolute minimum and our methods do not succeed. If χ(M) = 0, our methods
apply when K(x) satisfies an integral condition with respect to the given metric
g (see § 3) this result is perhaps not unreasonable since, for χ(M) < 0,
distinct Riemannian structures on M need not be conformally equivalent.

1. Preliminaries

By passing (if necessary) to the orientable two-sheeted covering space of M,
we may suppose M is orientable and admits a Riemannian structure with
metric tensor g, Gaussian curvature k(x), and volume element dV. If K(x) is
a given (Holder continuous) function defined on M, we shall attempt to
determine a metric tensor g, conformal with g, whose Gaussian curvature
k(x) = K(x) at each point of M, i.e., we shall seek a smooth function a defined
on M such that g = e2σg and k(x) = K(x). To find the equation which will
determine σ in terms of the given data K(x), k(x) and g, we recall that in
terms of isothermal parameters (u, v) on M an element of arc length can be
written ds2 = γ{du2 + dv2}, and the Gaussian curvature can be written

(1) k= -irψogγ)uu + (log r),,}

Setting γ' = γ exp 2σ, in place of γ in (1), we obtain the desired equation
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( 2 ) Δσ- k(x) + K(x)e2* = 0 ,

where Δ is the Laplace-Beltrami operator relative to g on M. Clearly a smooth
solution σ of (2) defined on M corresponds to a metric g = e2σg with Gaussian
curvature K(x).

A few words concerning the solvability of (2) are in order at this stage.
From the point of view of quasilinear elliptic partial differential equations, (2)
is somewhat extraordinary in that its solutions do not admit any obvious
pointwise a priori bounds (when either k(x) or K(x) is of variable sign).
Consequently the methods of fixed point theory do not readily apply to the
problem of the existence of a solution for (2). On the other hand, if the Euler-
Poincare characteristic χ(M) of M is not zero, it is easy and natural to
formulate an isoperimetric variational problem whose solution (if such exists)
yields a solution of (2). Indeed consider the totality 5 of functions u (belonging
to some admissible class C) whose associated "integra curvatura" (with respect

to g) ΐκ(x)e2u dV = 2πχ(M). Then the following result holds:
M

Lemma 1. // χ(M) ψ 0, any smooth (C2) critical point of the functional

F(u) = I (\\Vuf + k(x)ύ)dV subject to the constraint S is a solution of (2).
M

Proof. A smooth critical point u of the isoperimetric problem satisfies the
Euler equation

( 3 ) Δu - k(x) + βK(x)e2u = 0 ,

where β is some constant. To determine β, we integrate (3) over M to find

Ck(x) dV = β {κ{x)e2udV. Thus since χ(M) φ 0, β = 1 and so any solution
M M

of (3) satisfies (2).
If χ(M) = 0, an analogous but somewhat more involved isoperimetric

problem can be used to solve (2) see § 3 below.
In order to demonstrate the existence of critical points for the isoperimetric

variational problem described above, it is convenient to restrict the admissible
class C to an appropriate Hubert space. To this end, we denote by Wlt2(M, g)
the set of functions u(x) defined on M such that (relative to the Riemannian
structure g) u and Vu = grad u are square integrable over M. Then W1>2(M, g)
is a Hubert space relative to the inner product

( 4 ) (u,v\2= [uvdV + CFu FvdV.
M M

We denote by Wh2(M,g) the closed subspace of W1>2(M,g) consisting of
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functions u€Wlt2(M,g) of mean value zero. A well-known inequality of
Friedrichs states that for u e WU2(M, g),

(5) ju2dV<c\j\Fu\2dV

where c is a constant independent of u. Thus the inner product in Wlt2(M, g)
may be defined by

( 6 ) [u,v]1>2 = J Vu-Vv dV .

The inequalities of Sobolev imply that if u e Wίt2(M9 g), then u e Lp(M, g) for

all p < oo. A sharper result [2] is that for u e Wlt2(M, g), the integral j esu dV
M

for any positive number s is bounded and, in fact, as a functional of w, is con-
tinuous with respect to weak convergence in Wlt2(M,g). Furthermore, if
u € Wlt2(M, g), then there are finite positive constants cγ and c2 independent of

u such that if | |u\\W ι M M t g ) = 1, then J exp cλu
2 dV < c2.

M

2. Manifolds with negative Euler-Poincare characteristic

Here we prove the following:
Theorem 1. Suppose the Euler-Poincare characteristic χ(M) is negative.

Then a sufficient condition for the existence of a Riemannian structure (M, g)
on M with given {Holder continuous) Gaussian curvature K(x) is that K(x) < 0
on M. Furthermore, if g denotes any given Riemannian metric defined on M,
then g and g can be chosen to be conformally equivalent.

Proof. To demonstrate the sufficiency condition stated in the theorem, we
employ Lemma 1, i.e., we show that the functional

F(u) =

subject to the constraint

S= lu\ue Wlt2(Af,g), JK(x)e2u dV = 2πχ(M)\
M

has a smooth critical point more precisely we show that a = inf F(ύ) is a
s

critical value for the isoperimetric problem. To this end, for u e S, set u = u0

+ um where u0 e Wlf2(M, g) and um is the mean value of u over M. Then
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e2Um lκ(x)e2UodV = 2πχ(M). Thus solving for um in terms of u0 and substitut-
M

ing into (7) we find

infF(ύ) = inf ί Γ n ι f 7 ,2 , 7ί\ ΊΛT/
s wlMM,g)\J \-i\Puo\2 + Kx)uo]dV

( 7 )

+ 7rχ(M)[log2τrχ(M) - log|JV(;t)e 2^F|][ .

To show that inf F(w) is finite, we must estimate — χ(M)log| fκ(x)e2UodV

M

from below. For convenience we denote the norm \\u\\Wl^Mjg) by ||w||.
Since χ(M) < 0 and M is compact, we use the fact that max K(x) < — δ <

0 for some constant δ. Then ΐκ(x)e2UodV < — δ ΐe2UodV. Since ex > 1 + x,

M M'

we have

-χ(M) log I Jκ(x)e2u° dV > \ χ(M) | log ja je2u* dV^ > \ χ(M) | (log δ + log cγ),
M

where cx is the volume of M. Thus

( 8 ) F(u) > j(\Fuo\
2 + k(x)uo)dV - c2,

M

where c2 is a positive constant independent of u0 e WU2(M, g). Hence by virtue
of (5) and the Schwarz inequality,

jk(x)uo dV < c3ε\\u
3ε\\u0\ \\2

where c3 and c4 are positive constants independent of uQ and ε, so that choosing
c3ε = 1, we find a — inf F(u) > — c4c3 — c2.

s

We are now in a position to complete our proof. First note that by hypo-
thesis the set S mentioned in Lemma 1 is nonvacuous. Indeed, since K(x) is
continuous and strictly negative everywhere on M, we can easily find a C°°

function w such that Cκ(x)e2w dV = 2πχ(M). Now let u{n) be a sequence of

M

functions belonging to S such that F(u(n)) -+ a and F(u(n)) < a + 1. Then by
(8) and (9) choosing c3ε = | we find a + 1 > J| |«ίn > | |2 — c5 where c5 is some
constant independent of n. Consequently \\u{n)\\WlMMtg) are uniformly bounded
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and so possess a weakly convergent subsequence with weak limit ΰ. Now the

functional I (\Fu\2 + k{x)u)dV is lower semi-continuous with respect to weak
M

convergence in Wlt2{M, g). Thus F{ΰ) < a. On the other hand, by the remarks

made at the end of § 1, the functional I K(x)e2udV is continuous with respect
M

to weak convergence in Wlt2{M, g), so ΰ € S, and then F{ΰ) = a, so that ΰ is
the desired critical point.

It remains to show that ΰ is smooth enough to satisfy equation (2). Since

the functionals F{u) and j K{x)e2udV are differentiate in Wlt2{M,g) and

JiFΰ'Fσ + k(x)φ - βK{x)e2"φ)dV = 0
M

for all φ β Wh2(M, g) and some constant β, so that ΰ can be regarded as a
weak solution of the equation Δu = / where / e LP(M) for all p < oo. Thus
" g ^2,p(^>^) f°Γ all p < oo by the L p regularity theory for linear elliptic
partial differential equations, and UeC1>a(M,g) by the Sobolev imbedding
theorem after a possible redefinition on a set of measure zero (on M). Hence
ΰ β C2(Λ/, g) by the Schauder regularity theory provided K(x) is Holder con-
tinuous over M.

3. Manifolds with vanishing Euler-Poincare characteristic

Theorem 2. Suppose χ(M) = 0, and let g denote a given Riemannian
metric on M with volume element dV. Then a necessary condition for the
existence of a Riemannian metric g on M with given {Holder continuous)
Gaussian curvature ±K(x) is that on M either K(x) vanishes identically or
K(x) changes sign, and a sufficient condition that g can be chosen conformally

equivalent to g is that in addition either I K(x)e2uo dV Φ 0 where u0 is any

solution of the Poisson equation Δu = k(x) on M, or K(x) = 0 on M.
Before proving this theorem we prove an analogue of Lemma 1, using the

notation of Theorem 2.
Lemma 1'. Suppose χ(M) = 0 and K(x) is a given function defined on M

such that relative to some Riemannian metric g defined on M, I K(x)e2Uo dV
M

Φ 0. Then the {smooth) critical points of the functional F(u) subject to the
constraint
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5' = {«I u e WU2(M, g), ju dV = 0, CK(x)e2n dV = oj
M M

are {apart from a constant) solutions of the equation

(10) Δu - k(x) ± K(x)e2u = 0 ,

where k(x) is the Gaussian curvature of (M, g).
Proof. A smooth critical point u of the isoperimetric variational problem

satisfies the Euler equation

(11) Δu - k(x) + β1K(x)'^u = β2,

where βλ and β2 are constants. Since \K(x)e2uodV Φ 0, both βx and β2 cannot
M

be zero. To show ft = 0we integrate (11) over M to find

Jk(x)dV + β^K{x)e2udV = β2μ{M) .
M M

Since I k(x)dV = 0 and u € S', β2 = 0. Since βλ Φ 0, there is a constant c
M

such that ±e2c = βlm Hence ΰ = u + c satisfies Δΰ — k{x) ± K(x)e2E = 0.
Proof of Theorem 2. Again the necessity of the condition stated in the

theorem is a consequence of the Gauss-Bonnet formula. To demonstrate the
sufficiency condition, we consider the following two cases:

Case I. Suppose relative to a given Riemannian structure on M,

J K(x)e2Uo dV Φ 0. Then we can employ Lemma V as in the proof of
M

Theorem 1. In this case it is quite easy to show that a! = inf F(ύ) is bounded
S'

below. Indeed, since uεS\ uzWlt2(M, g) and therefore, by (5) and (9),
F(u)>(l -c 3 ε) | |w | | 2 -c 4 ε-. 1

So choosing ε = c^1, we have a' = intF(u) > ~c3cv Again, suppose for the
S'

moment that the set S' is nonvacuous and any minimizing sequence uin) e S'
with F(u(n)) < af + 1 has a weakly convergent subsequence with weak limit ΰ
such that ϋeS' and F{u) = a'. Furthermore the proof given of Theorem 1
shows that, after a possible redefinition on a set of measure zero on M, ΰ is
C2 and satisfies equation (10) on M as required.

To show S' is nonvacuous, suppose \ K(x)dV = A. If A — 0, then u(x) =
M

0 € S'. If A Φ 0, since K(x) changes sign on M we can find a point xQ €M and
a small neighborhood N(*o) of x0 such that K(xQ) = —δsgnA where δ > 0.
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Hence, if v is a C°° function vanishing outside N(xQ) and such that v(xQ) = 1,

then f(t) = fκ(x)e2tυdV is a smooth function of ί with /(0) = ^4. On the other

M

hand, if N(x0) is sufficiently small as t —> oo, then /(0 ~ ,4 — £ sgn ̂ 4 e2ί and
hence /(ί0) = 0 for some t0 e (0, oo). Finally, set w = tov and let wm denote the
mean value of u over M. Then w = u — um has mean value zero and

fκ(x)e2wdV = 0. Hence w is an element of S'.

M

Case II. K(x) = 0. In this case equation (2) reduces to Δσ — k(x) = 0.

Since \k(x)dV = 0, this equation is easily solved as in Case I by minimizing
M

F(u), denned above, among all functions u e Wlf2(M,g).

4. Remarks on the simply connected case

If M is simply connected, we have been unable to solve the isoperimetric
problem defined in Lemma 1, since, in this case it is not clear that the infi-
mum of F(u) is attained on the set S. Indeed, for simplicity suppose k(x) = 1
then by virtue of (7), there is an absolute constant Co such that

inf F(u) > inf L (\Fuo\
2dV - Co - 2ττlog (K(x)e2u°dv\ .

S WuiW,8) I J J
M M

Since K(x) is bounded, it suffices to bound log \e2UodV in terms of \\Fuo\
2dV

M

= | |MO | |2. To this end, setting uQ = \\u0\\v and using the remarks made at the

end of §1, we obtain J e x p 2 w o d F < J e x p (KIΓM + cxv
2)dV, so that

log j txp2uodV < ||κo | |
2/ci + logc2- Hence

inf 1 | | M O | | 2 - ^ | | M O | | 2 - c 3 ,

where c3 is another absolute constant. In order for F(u) to be bounded below
we must have cλ > 4π. However we have only been able to show that in this
case c1 > 4π/e — ε for any ε > 0.

Lemma. // (M, g) = (52, gλ), then cγ > 4π/e — ε for any ε > 0.

Proof. Let x, y be two points on S2, and G(x, y) denote the Green's func-

tion for the Laplacian on S2. If j udV — 0, then

u(x) = JG(x,y)άu(y)dV = - jfyG(x, y)Vu{y)dV .
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Since G(x, y) = - J - log (l ύn^j/Λ , [l, p . 182], where r(x, y) is the geo-

desic distance along S2 from x to y, we have

\u(x)\ < J - Γ l Γ y i J F = J_ ϊ(\Vu

and therefore

£ 2

by Holder's inequality. Hence

J

where c is a constant independent of N and u. Thus, if | |Fw| | 0 ί 2 = 1 and

j u = 0, then

JexpclMW = Σ ^ jc^u

This last series converges provided cx <4π/e.
The Gauss-Bonnet theorem implies that a necessary condition for (M, g) to

admit a metric £ (conformal to g) with Gaussian curvature /£(*) is that K(x)
> 0 for some x0 € M. Frank Warner and the author conjecture that this con-
dition is also sufficient.

Added in proof. In a paper soon to appear in the Indiana Univ. Math.
J., Jϋrgen Moser has proven that the constant cx ~ 4π, so that F(u) is bounded
below on S. Nevertheless the question of the attainment of inf F(u) on 5 is still
open.
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