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NEARLY KAHLER MANIFOLDS

ALFRED GRAY

1. Introduction

Let M be a C°° almost Hermitian manifold with metric tensor < , >,
Riemannian connection F, and almost complex structure /. Denote by J^(M)
the real valued C°° functions on M, and by &(M) the C°° vector fields of M.
Then M is said to be a nearly Kdhler manifold provided FX(J)(X) = 0 for all
X e 2£(M). Examples of nearly Kahler manifolds which are not Kahlerian are
Sβ (with the canonical almost complex structure and metric), and more
generally G/K, where G is a compact semisimple Lie group and K is the fixed
point set of an automorphism of G of order 3 (see [20]). If dimM < 4, then
M is Kahlerian [12]. Thus we henceforth assume dim M > 6.

A nearly Kahler manifold has the following property. Let p e M and let γ
be a (piecewise differentiate) loop at p. Denote by τγ the parallel translation
along γ, and let π be the holomorphic section of the tangent space of M at p
which contains γ'(0). Then there exists g e U(n) such that τr \ π — g \ π, where we
regard U(n) as the structure group of the tangent bundle of M. Conversely it
is easy to see that any almost Hermitian manifold with this property is a nearly
Kahler manifold. We say that U(ή) is a weak holonomy group of M. In a
subsequent paper we shall investigate weak holonomy groups G for which G
is transitive on some sphere. The most interesting situation occurs when
G = U(n).

We show in this paper that many well known theorems about the topology
and geometry of Kahler manifolds can be generalized to nearly Kahler
manifolds. The key fact is that the curvature operator RXY(X, Y e <%*(M)) of
a nearly Kahler manifold satisfies certain identities described in §2. These
formulas resemble the corresponding formulas for Kahler manifolds sufficiently
for us to carry over the proofs with a few changes.

In § 3 we generalize some formulas of [6] and [9] about holomorphic
curvature to nearly Kahler manifolds. Furthermore, we define and discuss the
properties of a particularly nice class of nearly Kahler manifolds, namely those
of constant type. Pinching of nearly Kahler manifolds is discussed in §4.

We observe in §5 that a compact nearly Kdhler manifold of positive
holomorphic sectional curvature is simply connected. Furthermore a complete
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nearly Kdhler manifold whose holomorphίc sectional curvature is positive and
bounded away from zero is compact.

In § 6 and § 7 we discuss the cohomology groups Hp>q(M) of a nearly Kahler
manifold and generalize results of [2], [6], [7] and [9]. We prove in § 6 that
for a non-Kahlerian nearly Kahler manifold M whose sectional curvature
satisfies a certain positivity condition we have Hll(M) — 0 (Theorem (6.2)).
Then in § 7 we show that if the Ricci curvature of M satisfies a positivity
condition we have H^\M) = H°>P(M) = 0 for p > 0 (Theorem (7.1)). Even
though Hι\M) = H2>\M) = #°'2(M) = 0 for a compact nearly Kahler manifold
M, it is conceivable that H2(M, R) Φ 0. Nevertheless, we show that if a non-
Kahler manifold has sufficiently large sectional curvature (or holomorphic
pinching), we have H2(M, R) = 0.

§ 8 is devoted to the proof of the following generalization of a theorem of
M. Berger [3]: Let M be a compact Einstein nearly Kdhler manifold of
constant type. If M has positive sectional curvature and nonnegative
holomorphic bisectional curvature, then either M is isometric to complex
projective space or to S6. (See also [9].) In § 9 we determine differential forms
which represent the Chern classes of a nearly Kahler manifold, or more generally
any almost Hermitian manifold. Finally in § 10 we discuss immersions of
nearly Kahler manifolds and generalize some results of [7], [8], and [11].

In connection with the results of § 8 we wish to make the following
conjecture: // M is a compact nearly Kdhler manifold with positive sectional
curvature, then M is isometric to complex projective space or to S*. It should
at least be possible to prove this under the assumption that M has constant
Ricci scalar curvature. For Kahler manifolds this was obtained in [5].

2. Curvature identities of nearly Kahler manifolds

In [11] we showed that the curvature operator RXY(X, Y <ε &(M)) of a nearly
Kahler manifold satisfies the identities

1 l ) <RχYx, Y> - <RχγJ

( 2 ) <RwχY, z> = <RJWJXJY, JZ} ,

for W,X,Y,Ze&(M).
We give a generalization of formula (1) which will be useful.
Proposition (2.1). For all W, X,Y,Zε &(M) we have

(3) <RWXY, zy - <RWXJY, jzy = <ywu)(X), Fγ(J)(z)y .

Proof. Linearization of (1) together with the first Bianchi identity yields

3<RWXY,Z> - (RwγJX,JZy + (RwzJX,JYy - 2(RwxJY,JZy

( 4) - <Fw(J)(Y), ΓχW(Z)> - <FW(/)(Z), FX(J)(Y)}
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We replace Y and Z in (4) by JY and JZ and subtract the result from (4).
Since VΌ{J)(V) + FjV(J)(JV) = 0 for all U, V e &(M) [10], we obtain, after
some simplification,

5 Wf l f f l , FF(/)(Z)> 5<fl^Y, Z>

5<RjγJzy - <RWJXjγ,zy - <RWJXγ,Jzy .

In (5) we replace X and Y by JX and /Y, and add 1 /5 of the resulting equation
to (5). We then obtain (3).

Recently Goldberg and Kobayashi [9] have introduced the notion of
holomorphic bίsectional curvature for Kahler manifolds. Actually it is possible
to define the holomorphic bisectional curvature Bχγ for any almost Hermitian
manifold. Thus if X, Y € %(M), and ||Z|| Φ 0 ψ || Y||, then we set

BXY\\XUY\\> = <RXJXY,JYy .

In particular, if M is nearly Kahlerian, it follows from (1) that when X, JX,
and Y are linearly independent,

( 6 ) £ X F | |X | | 2 | |Y | | 2 = KXY\\X Λ Y\\2 + KXJY\\X A JY\\2 -

where Kxγ denotes the sectional curvature of M of a field of 2-planes spanned
by X and Y.

From (6) it follows that the Ricci curvature k of M is given by the formula

k(X, Y)=Σ {<RzjγEt9JEt> + 2<FAMEi),FAJ)(Ei)>} ,
ΐ = l

where X,Y e 2£(M) and {E19 , En, JEλ, , JEn} is a frame field defined on
an open subset of M.

The holomorphic sectional curvature H{X) of M is defined by H{X)\\X\\^
= ( ^ J J J ^ , / ! ) wherever I e f ( M ) is nonzero. Obviously H(X) = Bxx.
Also, for convenience we write Q(X) = (RXJXXJXy for Xz%{M). The
antiholomorphic sectional curvature of M is the sectional curvature of M
restricted to fields of 2-planes spanned by vector fields X and Y for which
<Z, Y> = {JX, Y> = 0.

Let m e M, and denote by M m the tangent space of M at m. Each of the
tensor fields defined in this section gives rise to tensors on Mm which we denote
by the same letters.

We next generalize some results of [4], [6].
Proposition 2 2. Assume M is nearly Kahlerian, and let x, u e Mm, m e M.

Then

(i) <Rxux, u) = ^ { 3 β ( * + Ju) + 3Q(x - Jύ) - Q(x + u) - Q(x - u)

- 4β(*) - 4Q(u)} + l\\Fx(J)(u)f;
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(ii) <RXJXu, Ju> = λ{Q(x + Ju) + Q(x - Ju) + Q(x + u) + Q(x - u)
16

- 4β(*) - 4Q(u)} - λ\\Fx(J)(u)\\2 .

Proof. This is a verification using (1) and (2).

As an immediate consequence of these formulas, we obtain the following
corollary.

Corollary (2.3). Assume M is nearly Kdhlerian, and let x,ue Mm be such
that \\x\\ = \\u\\ = 1 and ζx, u) = cos φ > 0, <JC, Jύ) = cos θ > 0. Then

(i) Kxu = —{3(1 + cos θ)Ή(x + Ju) + 3(1 - cos θ)Ή(x - Ju) - H{x + u)
8

- H(x - II) - H(x) - H(u)} + I | | ί7,(/)(w)| | 2, if (x, u> = 0
4

(ii) Bxu = 1{(1 + cos θ)2H(x + Ju) + (1 - cos 0) 2#(JC - /ii)
4

+ (1 + cos ψ)2H(x + ύ) + (1 - cos 02fl(jc - u) - H{x) - JΪ(iι)}

ii

Now let JC, w e M m be orthonormal vectors with (x, Ju) > 0; then x and y
span a plane 77 in Λfm. The average holomorphic curvature H(x, u) and the
average antiholomorphic curvature A(x, u) of this plane (see [6]) are given by
the formulas

1 Γπ

H(x, ύ) = — H(^ cos a + u sin ά)da ,
0

1 Γπ

Λ\X)U) = I A . x c o s α + w g i n a^-jx sin α + Jw COS α^α
7Γ •/

These formulas are independent of the choice of x and u in the plane Π.
Proposition 2.4. If x, u e Mm are orthonormal, and (x, Ju) = cos θ > 0,

then we have

Kxu = //(^, M) - 3^(JC, u) sin2 0 -

= J_{(1 + cos θ)Ή(x + Ju) + (1 - cos θ)Ή(x - Ju)}
4

- A(x,u) sin2 θ- l | | F ,
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The proof is a slight modification of a result of [4] for Kahler manifolds,
and so we omit it.

3. Nearly Kahler manifolds of constant holomorphic curvature

We first prove the following result.
Proposition (3.1). Let x e Mm be a unit vector at which the holomorphic

sectional curvature H assumes its maximum at m. Then for all y € Mm with
(x,yy — <Jx,yy — 0 and ||y|| = 1, we have

H(x) > 3(Rxyx,y} + <RXJyx,Jy> - 3\\Fx(J)(y)\\2 .

/ / H assumes its minimum at x, then the inequality is reversed.
Proof. Let a and b be real numbers with a2 + b2 = 1. A calculation shows

that

H(ax + bJy) + H(ax - bJy) - 2aiH(x) - 2b*H(y)

+ {Rxyx,y} + {RxyJx,Jy}}

(RXJyx,Jyy - 3\\Fx(J)(y)\\2}

If H assumes its maximum at x, then

(1 - α W > b'H(y) + 2aW{3(Rxyx,yy + <RXJvx,Jy> - 3\\Fx(J)(y)\\2} ,

and so

(1 + α W > b2H(y) + 2a2{3ζRxyx,y> + <RXJvx,Jy> - 3||^(/)(y)||2} .

We get the proposition by taking a = 1 in this equation.

Corollary (3.2). Let x,y satisfy the hypotheses of Proposition (3.1). // the
holomorphic sectional curvature H assumes its maximum at m, then

H(x) > 2<RXJXy,Jy> + Wx(J)(y)\\2

// H assumes its minimum at x, then the inequality is reversed.
We now prove a related result which generalizes a result of [6].
Theorem (3.3). Let M be an almost Hermitian manifold whose curvature

operator satisfies (2), and assume that M has nonnegative holomorphic
sectional curvature. Then the ^-dimensional sectional curvature KA(P) of a
^-dimensional subs pace P C Mm which is holomorphic (i.e., P is spanned by
orthonormal vectors x,y,Jx, Jy) is nonnegative.

Proof. Let x e P be a unit vector such that the holomorphic sectional
curvature assumes its maximum on the unit sphere of P. Just as in [6] there
exists yeP such that <*,)>> = <x,Jy> = 0, | | j | | = 1, and <Rxyx,Jy} =
(RJxyJx, Jyy = 0, etc. Then the 4-dimensional sectional curvature K4(P) is a
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positive scalar multiple of

KXJXKyJv + Kxv* + κXJv* + <RXJXy,Jyy + <RxyJχ,Jy>2 + <RXJyJχ,yy .

Hence K,(P) > 0.
Next we consider the case when the holomorphic sectional curvature H(x)

of a nearly Kahler manifold is constant.
Proposition (3.4). Suppose the holomorphic sectional curvature H of M

has the constant value μ at a point meM, and let x, u e Mm with \\x\\ = \\u\\
= 1. Then

(i) Kxu = JL{\ + 3<Λ, uy) + λ\\Fx(J)(u)\\> , if <*, u) = 0
4 4

(ϋ) BXU = JL{i + <χ,uy + φ,uy} - λ\\

Proof. Write w = ax + W* + cy where ||y|| = 1 and <x, y} = <JJC, y> = 0;
then α2 + 62 + c2 = 1. Since H is contant at m, (Rxjxx, y} = (RXJXJX, y} = 0.
Also, by Proposition (3.1) we have

<Λ*y*,y> = <RXJyx,Jy> = j{μ

Therefore

<Rxux,u> = b2H(x) + c\Rxyx,y}

( 7 ) =£_(i-a> + 3b') + 21| Fx(J)(u) ||2

4 4

- 4 ( 1 - <x,w>2 + 3</^,M>2) + *-\\
4 4

Hence (i) and (ii) follow easily from (7).
The following notions will be useful.
Definitions. Let M be an almost Hermitian manifold. Then M is said to

be of constant type at m € M provided that for all x e Mm we have \\Fx(J)(y)\\
= Wχ(J)(z)II whenever <*, y} = <Jx, y} = <x, z) = (Jx, z} = 0 and ||y|| = ||z||.
If this holds for all m e M we say that M has (pointwise) constant type. Finally,
if M has pointwise constant type and for X, Y e &(M) with <Z, Y> = (JX, Y}
= 0 the function \\PX(J)(Y)\\ is constant whenever \\X\\ = || Y|| = 1, then we
say that M has global constant type.

The proof of the following proposition is easy, and so we omit it.
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Proposition (3.5). Let M be a nearly Kdhler manifold. Then M has
(pointwise) constant type if and only if there exists a e !F(M) such that

(8) H^GOOT = «{I|WΊHI*II2 - <^>*>2 - <^>'*>2}

for all W, X e &(M). Furthermore, M has global constant type if and only if
(8) holds with a constant function a.

We agree to call a in (8) the constant type of M. It is unknown to the author
whether if M has pointwise constant type then M has global constant type. A
similar statement applies to holomorphic sectional curvature. The only example
known to the author of a nearly Kahler manifold of constant holomorphic
sectional curvature which is not Kahlerian is S6.

Proposition (3.6). Let M be a nearly Kdhler manifold with pointwise
constant holomorphic sectional curvature μ and pointwise constant type a.
Then

(i) M is an Einstein manifold with 4k(x,x) = (n + 3)μ + 3{n — \)a,
where x is a unit vector and dim = 2n,

(ii) at each point M has constant antiholomorphic sectional curvature
(μ + 3a) 14.

Proof. This follows easily from proposition (3.4).

4. Pinching of nearly Kahler manifolds

In this section we generalize the results of several authors [2], [4], [5], [6]
to nearly Kahler manifolds. The curvature of a nearly Kahler manifold can be
pinched in at least six different ways. In order to describe these, we first
consider a sequence of conditions. Let 0 < η < 1, and let M be a nearly
Kahler manifold. For each of the conditions listed below, L denotes some
number depending on M and η.

R(η): 7]L < Kxu < L for linearly independent x, u e Mm for all mzM.
H(η): ηL < Kxjx < L for nonzero x € Mm for all meM.

BH(η): ηL < Bxu < L for nonzero x, u e Mm for all meM.
BS(η): ηL < Kxu + Kjxu < L for linearly independent x, u, Jx, Ju e Mm

for all meM.

K(η): φiX + 3</*, uy) < Kxu - ~\\Fx(J)(u)f <

for x,u € Mm with ||JC|| = ||u\\ = 1, <JC, u) = 0, for all meM.

, uy)

BK(η): rjL{\ + <x, u}> + (Jx, u}>) < Bxu + 1 \\Fx(J)(u) ||

for x,ue Mm with ||JC|| = ||κ|| = 1 for all meM.

For C = R, H, BH, BS, K, BK we say that M is δ C-pinched if and only if
δ = lub{^|C0?) holds}. Here R stands for Riemannian, H for holomorphic,
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BH for biholomorphic, BS for bisectional, K for Kahlerian, and BK for
bi-Kahlerian.

One problem with these pinchings is to determine the relations among them
another is to obtain bounds for the Ricci and Ricci scalar curvature in terms
of the various pinchings. We determine some of these relations and bounds.
For later applications we shall be particularly interested in determining the
values of δ for which a δ holomorphically pinched manifold has nonnegative
biholomorphic pinching and positive bisectional pinching.

It is clear that since we are dealing with nearly Kahler manifolds, the size
of IIF̂ COOOH2 will be important in the pinching estimates. For this reason we
shall say that a nearly Kahler manifold satisfies condition T(ρ,σ) provided
that PH(x) < \\Fx(J)(y)\\2 < σH{x) for x,y e Mm with ||JC|| = ||y|| - 1, <*,}>>
= (Jχ9 y} = 0 for all meM.

Proposition (4.1). Let M be a nearly Kahler manifold which satisfies
condition T(p,σ). If M has nonnegative holomorphic bisectional curvature,
then 0 < p < σ < 1.

Proof. This is a consequence of Corollary (3.2).
We first determine bounds on the sectional curvature in terms of holomorphic

pinching. Assume in Propositions (4.2)-(4.4) that M has holomorphic pinching
δ and that δL < H(x) < L for nonzero x e Mm for all meM. Also suppose
that condition T(p, σ) is satisfied. Denote by x, u e Mm orthonormal vectors
with <JC, ]uy — cos θ > 0, and let x, Jx, y, Jy be orthonormal.

Proposition (4.2). (i) We have

— (2δ + 23cos2 0 - 1)L + ( - — + — psm2θ]H(x)
8 \ 8 4 /

< Kxu < —(2 + 2 cos2 θ -δ)L+(-— + —σ sin2 Θ]H(X) .
8 \ 8 4 /

(ii) // σ sin2 θ < 1/6, then

λδ + A^cos2^ - — + A^sin
4 4 2 4

< Kxu < (— + — cos2 θ - —δ + — δσ sin2 Θ)L .
\ 4 4 2 4 /

(Hi) // p sin2 θ < 1 /6 < σ sin2 θ, then

λδ + A<5cos20 - — + — ^osi^
4 4 2 4 r

< Kxu < (— + — cos2 θ - —δ + —σ sin2 Θ)L .
- *tt - \ 8 4 8 4 /
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(iv) I)> sin2 θ> 1/6, then

lλ§ + A«5cos20 - — + — δp sin2 θ\L

< Kxu < [L + 1 cos2^ - ϊ-δ + ^σ sin2^)L .

Proof, (i) follows from Corollary (2.3), and (ii), (iii), and (iv) follow from

(i).
Corollary (4.3). (i) We have

(ii) If σ < llβ, then

(iii) If p < 1/6 < ex,

(iv) If ρ> 1/6,

We give another set of bounds for the sectional curvature which sometimes

are better than those of Proposition (4.2).

Proposition (4.4). (i) We have

(δ - (A + l ^ s i n

< ^ < (l - ( 1 + Aδ)sin2 0JL + ( I - Apj si

(ϋ) / / σ < 1/10, ίA^n

(δ - — ( 3 + 5(7̂ ) sin2 0JL < A:̂ M < ( l - — (3^ + 5p) sin
\ 4 / V 4
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(iii) If ρ< 1/10 < σ, then

δ - 1 ( 5 + δ + 10σ) s in 2 ^L < Kxu <(l - 1 (33 + 5 )̂ sin20)L .

(iv) If p> 1/10, then

δ - —(5 + δ + 10(j)sin2^L

< Kxu < ί 1 - 1 (1 + 5δ + ίOpδ) sin2

Proof, (i) follows from Proposition (2.4) and Corollary (4.3); (ii), (iii),
and (iv) follow from (i).

Corollary (4.5). // the holomorphic sectional curvature of a nearly Kάhler
manifold M is nonnegative, then at each point of M, a maximum sectional
curvature is holomorphic.

This generalizes [6, Theorem 8.2].
Next we obtain bounds on the holomorphic bisectional curvature in terms

of holomorphic pinching. We use the conventions of Propositions (4.2)-(4.4),
except that we assume that ||JC|| =' || w|| = 1 and <JC, u) = cos φ > 0, (x, Ju)
— cos θ > 0. These new conventions remain in effect throughout the rest of
§4.

Proposition (4.6). (i) We have

— + !<5(cos2 θ + cos2 φ))L -(— + — - -l(cos2 φ + cos2 θ)σ]H(x)
4 2 / \4 2 2 Y I

< Bxu < ί l - —δ + -ί-(cos20 + cos2 φ)\L

+ f - y ( c o s > + oos2 θ)p]jH(x) .

(ii) Iδ - L - !L + l.(δ + σ )(cos2 φ + cos2 Θ))L

< Bxu <(l-λδ- λpd + 1 ( 1 + ^)(cos2 φ + COS20))L .

Proof, (i) follows from Corollary (2.3), and (ii) from (i).
Corollary (4.7). // M is a nearly Kahler manifold for which the holo-

morphic pinching δ > J( l + σ), then M has nonnegative holomorphic
bisectional curvature.

Proof. From Proposition (4.6) we have

Bxu>δ- l / 2 - < 7 / 2 > 0 .
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Proposition (4.8). Suppose M is a nearly Kdhler manifold with holo-
morphίc pinching δ which satisfies

δ> 1/(3^ + 2 ) , if p< 1 / 3 ,

δ> 1/(6/1 + 2 ) , if p> 1/3 .

Then Kxu + Kjxu > 0, i.e., M has positive bisectional pinching.
Proof. We have

Kxu + KJXU > sin2 φKxu + sin2 ΘKJXU

( 9 ) = Bxu + 2\\Fx(J)(u)\\2

+ i-3L(l - 3p)(cos2θ + c o s » .

If /? < 1/3, the right hand side of (9) is nonnegative, and so in this case,

Kxu + Kxju> [δ - A- + - | ^ ) L . Hence <5 > 1/(3/9 + 2) implies K w + X / W

> 0. On the other hand, if p > 1/3, then Kxu + KJ;rw > (δ - i - + —

+ —dLQp - 1) = ί-ί-3 - J- + 3/oίJL. Thus if 5 > 1/(6/) + 2) we again

obtain JC^ + Kxju > 0.

Corollary (4.9). Let M be a nearly Kdhler manifold which satisfies

condition T(p, σ) with σ > 0. // M has holomorphic pinching δ > —(1 + σ),

then Bxu>0 for nonzero x,u€Mm, and Kxu + Kjxu > 0 for linearly
independent x, u, Jx, Ju e Mm.

Proof. We may take p = 0 in Proposition (4.8). The corollary now follows
from Propositions (4.7) and (4.8).

We next obtain bounds on the Ricci curvature of a nearly Kahler manifold
in terms of the holomorphic pinching. These will be useful in § 7. First we
need the following estimates.

Proposition (4.10). We have

δ- λ + λ
4 2

< Kxv + KXJy < (l - l a + λσ]L - λ-H(x) .
V 4 2 / 4

Proof. This is a consequence of Corollary (2.3).
We now estimate the Ricci curvature.

Proposition (4.11). Let x e Mm be a unit vector and dim M = 2n. Then
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—{ —(w - 1) + 4(n - l)δ + 6(n - l)pδ} - —in - 5)H(x)
4 4

< k(x, x) < —{ — (n — l)δ\ + 4(n — 1) + 6(n — l)σ\ — -
4 A

Proof. This is an easy consequence of Proposition (4.10).
Proposition (4.12). Let dim M = n.
( i ) If n<5, then

—{(3n + l)δ + 6(n - l)pδ - i n - 1)}L
4

< k(x, x) < —U3n + 1) - in - \)δ + 6(rc -

(ii) If n> 5, then

ί 3
\in — l)δ + — in -
I 2

< ~̂s. KyX y X) ~^. i v^ί —

Proof. This follows from Proposition (4.11).
We now prove some results about Riemannian pinching of nearly Kahler

manifolds.
Proposition (4.13). Suppose M is a nearly Kahler manifold which satisfies

condition T(ρ,σ), and assume M has Riemannian pinching λ. Then λ<

Ul + 3σ).
4

Proof. We may normalize the metric of M so that λ < Kxu < 1 for all
linearly independent x, u e Mm for all m e M. Let x, y, Jx, Jy e Mm be
orthonormal. A result of [1] implies that \(RXJXy,Jyy\ < 2(1 — X)/3. Hence
λ<Kxy + KXJy < 2/3 - 5Λ/3 + 2σ and so λ < (1 + 3σ)/4.

Proposition (4.14). Suppose M is a nearly Kahler manifold which satisfies
condition T(p,σ), and assume M has Riemannian pinching λ < 1 and holo-
morphic pinching δ. Then

δ>(λ + Sλ2 + 9σ2 - 18Aτ)/(l - X) .

Proof. We normalize the metric of M as in Proposition (4.13). Let
x, y, Jx, Jy e M be orthonormal. A result of [2] which is valid for all
Riemannian manifolds implies that

3(RXJXy,Jyy < 2(KXJX - λY\KvJv - X)1'2 + Kxy + Kxjy - 2λ ,
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and so

Kxy + KXJy + λ - 3||Fx(./)(3θ||2 < (KXJX - xy'KKyjv - Λ)1/2 .

Since Kxy > λ, Kxjy > λ, KyJy < 1, and \\Fx(J)(y)\\2 < σ, we have

3(λ -σ)< (Kxjx - λy'Kl - λ)1/2 ,

from which follows the proposition.
Proposition (4.15). Suppose M is a nearly Kάhler manifold with constant

positive holomorphic sectional curvature μ aud nonnegative holomorphic
bisectional curvature. Also assume that M satisfies condition T(p,σ). If λ
denotes the Riemannian pinching of M, then

Hence if p > 0 and M is compact, then M is homeomorphic to S6.
Proof. Let meM, and let x, u e Mm be orthonormal. Write cos2 θ =

</JC, u}2. Then by Proposition (3.4) we have

JL{1 + 3(cos2 θ + p sin2 θ)} < Kxu < JL{\ + 3(cos2 θ + a sin2 θ)} .
4 4

Since 0 < p < σ < l , w e have

Ml + 3?)/4 < Kxu < μ .

Hence the proposition follows.

5. Simple connectivity and compactness of nearly Kahler manifolds

In this section we generalize some results of Tsukamoto [18]. The proofs
are essentially the same as those for Kahler manifolds.

Theorem (5.1). Let M be a compact nearly Kahler manifold of positive
holomorphic sectional curvature. Then M is simply connected.

Proof. Assume the contrary. Then there exists a non-trivial free homotopy
class of loops which contains a non-trivial minimal geodesic σ. We may assume
that σ has unit speed and is denned on [0, b]. Denote by af the velocity vector
of σ. Since M is nearly Kahlerian, Jσ/ is parallel on a. The deformation of σ
given by Jaf has second variation

/(Λ/,/σ')= - ΓKσ,Jσ,(t)dt < 0 .
J 0

Thus af cannot be a minimal geodesic. Hence M is simply connected.
It would be interesting to know if in Theorem (5.1) the assumption of
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positive holomorphic curvature could be replaced by that of positive Ricci
curvature. This would be a natural generalization of a result of Kobayashi [15].

We remark that there exist compact non-simply connected nearly Kahler
manifolds with nonnegative sectional curvature which are not Kahlerian. An
example is P7 x P7 (see [20]), where P7 denotes the real 7-dimensional pro-
jective space. On the other hand, in [19] it is shown that compact homogeneous
almost complex manifolds of positive Euler characteristic are simply connected.

Theorem (5.2). Let M be a complete nearly Kahler manifold whose
holomorphic sectional curvature satisfies Kxjx > δ > 0 for x e Mm and all
m € M. Then M is compact and the diameter of M is not greater than π/V δ.

Proof. Let p,q e M. Since M is complete, there exists a unique unit speed
geodesic σ defined on [0, b] from p to q. Then Jσ' is parallel on σ. Let X be

the vector field on a defined by X(ί) — (sin JLΛja'{t). The deformation of σ

given by X has second variation

I(X,X) = J \ | | * Ί | 2 - <Rχ. X, σ'}}(t)dt
0

< ΓKcos^-δsin^U
- J i b 2 b b)

0

< b(π2/b2 - δ) .

Hence, if b > — ^ = , then I(X, X) < 0, and so σ has a conjugate point. Since
V δ

any two points are connected by a unique geodesic, the theorem follows.

6. Harmonic forms on nearly Kahler manifolds

Let M be any manifold with an almost complex structure /. We can
decompose 2£(M) (x) C as

C = / + 1 0 / . ! where

±1 = [X € &(M) ®C\JX = ±iX) .

Definition. Let ω be a differential form (possibly complex) on an almost
complex manifold M. Then ω is said to be of bidegree (p, q) if and only if ω
is of degree p + q and ω(X19 , Xp+q) — 0 whenever more than p of the Xj
are i n / . j or more than q of the Xό are in f+λ.

This generalization of the notion of (p, q) forms from complex manifolds to
almost complex manifolds is due to Kozul [17]. If ω is a (p, q) form, then in
general dω has components which are (p — l,q + 2), (/?, q + 1), (p + 1, q),
and (p + 2, q — 1) forms.
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We shall need the following lemma.
Lemma (6.1). Let ξ be a form of degree p on an almost complex manifold

M.
(i) Suppose ξ has degree 2. Then ξ has bidegree (1,1) if and only if

ξ(JX, JY) = ξ(X, Y) for all X,Y e &(M).
(ii) ξ is the sum of forms of bίdegrees (p,O) and (0,p) if and only if

ξ(JX9JY9X39...,Xp)=-ξ(X9Y9X39...9Xp)forallX,Y9XZ9...9Xpe&m.
The proof is easy and we omit it.
Let Λp>q(M) denote the complex differential forms of bidegree (p, q) on M,

and HP(M) the space of real harmonic forms of degree p. We set

Hp>q(M) = (Hp+q(M) (x) C) Π Λp'q(M) .

It is known that if M is a Kahler manifold, then Hι*\M) is 1-dimensional if M
has positive sectional curvature [7] (or positive holomorphic bisectional
curvature [9]). For nearly Kahler manifolds we have the following result.

Theorem (6.2). Let M be a compact non-Kdhler nearly Kahler manifold
such that the sectional curvature K is positive and the holomorphic bisectional
curvature B is nonnegative. Then H^ι(M) = 0 .

Proof. Let f be a form of bidegree (1,1) on M; then ξ(JX,JY) =
ξ(X, Y) for all X, Y € 3£(M). Without loss of generality we may assume
that ξ is real. According to [7] there exists a local orthonormal frame field
{E19 • • . , £ „ , JE19 , JEn} such that ξ(Ei9 JE3) = 0 for ί Φ j .

In order to simplify the proof, we now introduce some classical tensor

notation. We use the index convention that 1 < i,j,k,l < n and 1 < a,β,γ,δ

< In. Also we set JEt = £** so that n + 1 < /*, /*, Jk*, /* < In. Define

Raβ =1 k(Ea,Eβ) ,

Σ
β

It is well known that if ξ is harmonic and F(ξ) > 0, then F(ξ) = 0 and ξ is
parallel. We have

F(ξ) = 2 Σ {(R-ijίj + Rij*ij*)ξii*2 — Rii*jj*ξu*ξjj*}

Since Ru^j* > 0 for all i and /, it follows that F(ξ) > 0. Assume that ξ is
harmonic; then ξ is parallel and F(ξ) = 0. Hence

(10) *«.„•(?«• - ξjj*)2 + 2||p<i||
2(f«.2 + fyy.2) = 0

for all / and /.
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We wish to show that f̂ * = 0 for all /. There are two cases.
Case 1. There exists / such that φυ Φ 0. Then (10) implies immediately

that ξu, = 0.
Case 2. For all / we have φtj = 0. Then

Rii*jj* — Rijίj + RijHj* > 0 .

Hence from (10) it follows that £<i# = f^ * for all /'. By assumption M is not
Kahlerian, and so for some / and k, φjlc Φ 0. By Case 1 we have f^ * — 0.
Therefore ξu* = 0. This completes the proof of the theorem.

We remark that a slightly stronger result than Theorem (6.2) holds. Instead
of assuming that M has positive sectional curvature, it is only necessary to
suppose that Kxu + Kxju > 0 for linearly independent x, u, Jx, Ju.

A modification of the proof of Theorem (6.2) also yields the following result.
Theorem (6.3). Let M be a {compact) nearly Kάhler manifold with

nonnegatίve holomorphic bisectional curvature. Also, assume that Kxu + Kxju

> 0 for linearly independent x,u,Jx,Ju. Then dim Hι>\M) = 1 if M is
Kahlerian, and H^\M) = 0 if M is not Kahlerian.

Furthermore we have the following theorem on holomorphic pinching.
Theorem (6.4). Suppose M is a {compact) nearly Kάhler manifold which

satisfies condition T{p, σ) with σ > 0, and assume M has holomorphic pinching
δ > i ( l + σ). Then dim Hιι{M) = 1 if M is Kahlerian, and Hι\M) = 0 if
M is not Kahlerian.

Proof. This follows from Corollary (4.9) and Theorem (6.3).

7. Holomorphic forms on nearly Kahler manifolds

It is well known that a compact Kahler manifold with positive Ricci
curvature has no holomorphic p-forms. In this section we give a generalization
of this result to nearly Kahler manifolds. Where it is convenient, we use the
notation of § 6.

Theorem (7.1). Suppose M is a {compact) nearly Kahler manifold of
pointwise constant type whose Ricci curvature k satisfies

k{x,x)> \{p- 1)||F,C/)6O||2

for x,yeMm with \\x\\ = ||y|| = 1 and (x, y} = <Jx, y} = 0 for all mεM. Then
H^\M) = H°>P{M) = Oforp>0.

Proof. Let ξ be a real harmonic form which is the sum of complex forms
of bidegrees {p, 0) and (0, p). It suffices to prove that ξ = 0. Let

Σ Raβζaa2 — ap£βa2 — ap ~ j(P ~ V Σ ^aβrδ^<xβaz...<xpζγδaz> ap
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We show that F(ξ) > 0. Assume the Ricci curvature is diagonalized with
respect to the frame field {El9 , En, JEU , JEn). Then, by Lemma (6.1),

A = Σ (*« + Ri*i*)(ξija3...ap

2 + ξij*a3...ap

2)

= 2 - 2 Riί(ζija3...ap2 + ζίj*a3 'ap

2)

Next we calculate B. We have by Lemmas (2.1) and (6.1) that

B = 2 J] {(Rίjkl — Rijk*l*)ξijaZ> -apζicla3'..ap

α 3 , , α p i , J

Hence

F(ξ) > Σ {2Ra - (P - i)ll^, H2}(f^s...«; + e*.......,2) > o .

Therefore F(ξ) = 0 and we conclude that £ = 0. Hence H**\M) = H°>P(M) = 0.
Theorem (7.2). Suppose M is a (compact) nearly Kdhler manifold of

pointwίse constant type a. Also, assume that M has holomorphic pinching δ
such that

δ > 35
β(n — l)a + 3n + 1

J n - 1)« + Λ - 3
(Π _ p ( 3 α + 2)

where dimM = 2Λ. Γ/zen H*>\M) = H°>»(M) = 0 for p > 0.
Proof. This follows from Proposition (4.12) and Theorem (7.1).
We now prove that under certain conditions the second cohomology group

of M vanishes. We first note that the function F used in § 6 and § 7 is actually
a quadratic form. The symmetric bilinear form associated with F is given on
forms of degree 2 by the formula

(11) F(τj,ξ) = 2Σ KβVjβr ~ Σ KβrtVaβξr* '

Proposition (7.3). Suppose M is an almost Hermitian manifold with the
property that (Rjwjxjy, Jz) = (Rwxy, z) for all tangent vectors w, x, y, z. Let
η be a differential form of bidegree (1,1) and ξ a differential form which is
the sum of forms of bidegree (2,0) and (0, 2). Then F(y, ξ) = 0.

Proof. As usual we normalize η so that ηia = 0 for a Φ i*. It is then easy
to verify that each of the sums in the right hand side of (11) vanishes.
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The next two theorems are generalizations of results of [7].
Theorem (7.4). Suppose that M is a compact nearly Kάhler manifold of

poίntwise constant type a, and that the sectional curvature K of M satisfies

(12) Kxu>a,

where In = dim M. Then dim H2(M, R) = 1 // M is Kdhlerian, and H\M, R)
= 0 otherwise.

Proof. Assume M is not Kahlerian, and let ω be a harmonic form of degree
2. We may write ω — η + ξ, where η is of bidegree (1,1) and ξ is a sum of
forms of bidegrees (0,2) and (2,0). Now (12) implies the hypotheses of
Theorems (6.3) and (7.1) are satisfied. Even though η and ξ may not be
harmonic, from the proofs of these two theorems we have F(ή) > 0 and F(ξ)
> 0. Hence by Proposition (7.3),

F(ω) = F{η) + F(ξ) + 2F{η, ξ) = F{rj) + F{ξ) > 0 .

We conclude that F(ω) — 0 and so F(η) = F(ξ) = 0. Just as in the proofs of
Theorems (6.3) and (7.1) we find that η = ξ = 0, and so ω = 0.

A modification of the proof of Theorem (7.4) yields the following result.
Theorem (7.5). Suppose M is a compact nearly Kdhler manifold of

pointwise constant type a > 0. // M has holomorphicp inching δ > | ( 1 + a),
then dim H\M, R) = 1 for Kdhlerian M, and H\M, R) = 0 otherwise.

8. Einstein nearly Kahler manifolds of positive sectional curvature

Theorem (8.1). Let M be a compact Einstein nearly Kdhler manifold of
pointwise constant type. If M has positive sectional curvature and nonnegative
holomorphic bisectional curvature, then M is isometric either to complex
projective space or to S6.

Since the proof is lengthy, we divide it into several lemmas. We shall
frequently use the classical tensor notation of § 6 furthermore we continue to
use the same index conventions. Our proof is patterned after the corresponding
theorem for Kahler manifolds as given in [9].

Lemma (8.2). Let M be an Einstein almost Hermitian manifold with
Rtj = λgυ. Then

(13) i Σ vavaRιιHi. = Σ U W - W - RχaiβR»*v>β) + a*ii.«.
a a,β

This lemma is a special case of a formula of Berger in the Riemannian case
[3, Lemma (6.2)]; the Riemann curvature tensors in Berger's paper differ
from ours in sign.

Throughout the rest of this section, M will be a nearly Kahler manifold.
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Furthermore we henceforth assume that a local orthonormal frame field
{E19 , En, JEλ, , JEn} has been chosen so that RnHa = 0 for a Φ i*. This
choice is possible for nearly Kahler manifolds because the 2-form ax defined by

a AY, z) = <RχjχY, zy (z, r, z

is of bidegree (1,1) by equation (2), and because of Corollary (4.5). Denote
by <2i the right hand side of (13), and let Hλ = Rn*n*.

Lemma (8.3). We have

Σ {H

- 4 Σ
2Si<

Σ
(14)

Proof. From Lemma (8.2) it follows that

= Σ

= Σ

Σ
i^2

= ~ 2 Σ {<SPiuψi]>2 + <^ii^ij*>2}

Since A = ^ + Σ Rn*u* + 2 Σ ll^iί ll2* t h e lemma follows.
i^2 i>2

Lemma (8.4). Let M be a nearly Kahler Einstein manifold of (pointwise)
constant type and nonnegative holomorphic bisectional curvature. Assume
that the holomorphic sectional curvature H assumes its maximum on
M at a unit vector x e M m , and that the local orthonormal frame field
{El9 -",En, JEλ, , JEn} is chosen so that Hι — H(x). Then for i = 2, , n,
we have

(15) β i = \\φn\\2RnHf = fli " 2 J W - ll^ll2 = 0 .

Proof. Since Hι is a maximum for H we have Qx < 0. Because M is of
constant type the last sum in equation (14) vanishes. Therefore by Lemma
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(8.3) and Corollary (3.2) we have

(16) l ~ ^
+ 5 | | ^ | | 2 i W } > 0 .

Hence Qλ — 0. The rest of (15) then follows from Corollary (3.2) and equation

(16).
The following lemma generalizes a formula of [3].
Lemma (8.5). Let M be a nearly Kdhler manifold of real dimension 2n.

Then at each point meM we have

27*"1) w ί/ie volume of the unit sphere of dimension 2n — 1,
ί/ie canonical measure in the unit sphere Sm of the tangent space M m ,
i^(m) is the Ricci scalar curvature of M at m.

Proof. Let {e19 , en, Je19 , /ew} be a frame at m. Then for * e M
write Λ: = Σrl=ι{aieι + bje^j). A calculation shows that

i<j ί<3

+ (terms with at least one odd exponent) .

Now we have

- [a\ dx = 3 , I CaM = 1 (i φ j),
V(S2n~ι) J 4n(n + 1) V(S2n~l) J J 4n(n + 1 )

and similarly for b\, b\b) (i Φ j), and αJ&J. Thus

+ RijHj* + Ru*jj*)}

o/ Theorem (8.1). Since M is a nearly Kahler manifold of pointwise
constant type, \\Vij\\2 = \\φkl\\2 for all i,j, k, I with i Φ j , k Φ I. By assumption
M is compact and so the holomorphic sectional curvature H does, in fact,
assume its maximum. Thus (15) holds, and so we have two cases.
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Case 1. l l^ll 2 = 0 for all i and /. Then just as in [9] we find that M is
isometric to complex projective space.

Case 2. \\ψis\f > 0 for all i φ j . From (15) it follows that RnHί* = 0 for
i > 2 and that Hx = \\ψij\\2 for i Φ j . Furthermore, we have λ = (2n — 1)H1

and R = 2n(2n — 1)//1# On the other hand by Lemma (8.5) we have at any
point m eM that

n(n
JH(x) dx = {2n(2n - 1) - 3n(n - 1)}/^ = n(n +

V(S2n~

Therefore H(x) — Hx for all xeMm, that is, M has constant holomorphic
curvature H1. Furthermore for unit vectors JC, U € Mm with <(JC, w) = 0, we
have by Proposition (3.4) that

Kxu = ^
4xu

^ w>2) + 1 ( 1
4 4

Hence M has constant curvature. Since M is orientable, M is isometric to a
sphere. In fact, M is isometric to S6, because S6 is the only sphere possessing
a non-Kahlerian almost complex structure.

An examination of the proof of Theorem (8.1) shows that actually a slightly
stronger result holds. We state this as follows.

Theorem (8.6). Let M be a compact Einstein nearly Kahler manifold of
pointwise constant type with nonnegative holomorphic bisectional curvature.
If M has the property that Kxy + Kxjy > 0 for linearly independent x, Jx, y, Jy,
then M is isometric either to complex projective space or to S6.

We also have the following results.

Theorem (8.7). Let M be a compact Einstein nearly Kahler manifold of
global constant type a, and assume M has holomorphic pinching δ > j(l + a).
Then M is isometric either to complex projective space or to S6.

Proof. This follows from Corollary (4.9) and Theorem (8.6).

Theorem (8.8). Let M be a compact nearly Kahler manifold with non-
negative holomorphic bisectional curvature, pointwise constant holomorphic
curvature μ > 0 and pointwise constant type a. Assume also that M has
nonnegative holomorphic bisectional curvature. Then M is isometric either
to complex projective space or to S6.

Proof. By Proposition (3.6) M is Einsteinian, and by Proposition (3.4) the
sectional curvature of M is positive. Hence Theorem (8.8) follows from
Theorem (8.1).

Theorems (8.6), (8.7), and (8.8) generalize results of [3] and [9].
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9. The Chern classes of a nearly Kahler manifold

A well known theorem of Chern states that if Φίό is the matrix of (complex)
curvature forms of a compact Kahler manifold M, then det (d^ — Φij/ (2πV — 1))
is the sum of differential forms which represent via de Rham's theorem the
Chern classes of M. For example, see [16, p. 307]. In this section we find
differential forms which represent the Chern classes of any compact almost
Hermitian manifold M. In the case when M is nearly Kahlerian, these formulas
simplify slightly.

Theorem (9.1). Let M be a compact almost Hermitian manifold with
Riemannίan connection V and curvature operator RXY{X, Y e 2£(M)). Define
a tensor field S of type (1,3) by

(swxγ,zy =

for W, X,Y,Ze <F(M) <g) C. // {E19 - ,En, JE19 , JEn} is a local frame
field on M, set

, Y) =

for X,Y e ar(M) ®C and I < i,j < n. Then det (<^ - 5 O /(2TΓΛ/-1)) is

globally defined, and via de Rham's theorem it represents the total Chern
class of M.

Proof. We define a new connection D on M by DXY = J (FΣY — JVXJY).
Then DX(J)(Y) = 0, and so D is a Hermitian connection in the sense of [16,
p. 178] on the tangent bundle τ(M) of M, where τ(M) is viewed as a complex
vector bundle on M. A calculation shows that S is the curvature operator
determined by D, i.e., Sχγ = DίZtY1 - [Dz, Dγ] for X, Y e %{M). Then the
matrix (Bij) is the curvature matrix defined by D on the complex vector bundle
τ(M). Theorem (9.1) now follows from [16, Theorem 3.1, p. 307].

Corollary (9.2). // M is a compact nearly Kahler manifold, then the total

Chern class is det (3^ — Bij/(2πV^Ϊ)) where

Ξίό{X, Y) = <SZTEi9Ej> - J -

(swxγ,zy = (RWZY9Z>

forW,X,Y,Ze&(M)®C.
Corollary (9.3). // M is a compact nearly Kahler manifold, then the first

Chern class γγ of M is given by

Tι(X, Y) = -^Σ
2π ί=i
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for X, Y e &(M), where {El9 , En, JEX, , JEn} is a local frame field on
M. Hence, for X e &(Af),

2πTl(X,JX) = k(X,X) + 2 Σ | |Fx(/)(^) | | 2

2 ί=i

10. Immersions of nearly Kahler manifolds

Recall [10] that an almost Hermitian manifold is said to be quasi-Kahlerian
provided that FX(J)(Y) + FJX(J)(JY) = 0 for all X,Y e$?(M). A nearly
Kahler manifold is quasi-Kahlerian [10]. Furthermore in [10] it is shown that
an almost Hermitian submanifold M of a quasi-Kahlerian (nearly Kahlerian)
manifold M is itself quasi-Kahlerian (nearly Kahlerian) and is a minimal
variety. Moreover, the following is true.

Proposition (10.1). Let M be an almost Hermitian submanifold of M, and
denote by B and B the respective holomorphic bisectional curvatures. If M is
quasi-Kahlerian, then Bxγ < Bxγ for all X, Y e S£(M).

Proof. Let T denote the configuration tensor of M in M (see [10]). Then
[10] we have TXY + TJXJY = 0 for all X, Y € &(M). The Gauss equation
[10] asserts that, for W, X,Y,Zε

<Rwxγ,zy = <τwγ, τxz> - <jwz, τxγ> + <Rwxγ,zy ,

where Rχγ and Rχγ are the curvature operators of M and M respectively.
From the Gauss equation it follows that

<RXJXγ,jγy - (RXJXγ,jγy = <τxγ, τJxjγy - <TXJY, TJXY>

= -\\TxY\f-\\TxJY\f .

Hence the proposition follows.
This generalizes a result of [9]. Next we generalize two theorems of

F. Frankel [8] to nearly Kahler manifolds (see also [9]).
Theorem (10.2). Let M be a compact connected nearly Kahler manifold

whose sectional curvature satisfies

(18) Kxy + KJxy>\\Fx(J)(y)\\2

for all x,yεMm with \\x\\ = \\y\\ = 1 and <*,y} = (Jx,y} = 0 for all mzM.
If V and W are compact almost Hermitian submanifolds of M such that
dim V + dim W > dimM, then V and W have a nonempty intersection.

Proof. Assume that V Π W is empty. Let σ be a unit speed shortest geodesic
from V to W. Assume that σ is defined on [0, b], and let σ(0) = p € V and
σ(b) = q eW. Since the first variation of arc length vanishes at a, it follows
that σ'(0) is normal to V at p and σ'(b) is normal to W at q.
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Since dim V + dim W > dim M, there exists a vector field X e &(M) which
is parallel along σ and tangent to both V and W at p and q, respectively. Then
JX, although it may not be parallel along a, is tangent to both V and W at p
and q, respectively. Furthermore <X, </>(0 = (JX, σ'>(0 = OforO<t<b.

Let S and T denote the configuration tensors of V and W. The second
variation of arc length with respect to the infinitesimal variations X and JX is
given as follows.

+ J { | | 0 ( ) | | < „ . , > } ( ) dt
0

We have

J δ KJz.,)\\X\\*}(t) dt < 0.

Hence at least one of L^(0) and L"z(0) is negative. This contradicts the
assumption that a is a shortest geodesic from V to W. Hence the theorem
follows.

The above proof is patterned after the corresponding result for Kahler
manifolds as proved in [9].

Theorem (10.3). Let N be a compact nearly Kahler manifold whose
sectional curvature satisfies (18). Then every holomorphίc correspondence of
N has a fixed point.

Proof. We set M = N x N, V = diagonal (N x N), and let W be the
holomorphic correspondence (which is just an almost Hermitian submanifold
of N X N). We must modify the proof of Theorem (10.2) in order to show
that V and W intersect.

Suppose VΠW is empty. Clearly the proof of Theorem (10.2) will carry
over provided we can show the sectional curvature of N x N satisfies (18) at
some point of σ. Consider the vector fields σ\ X and JX defined along σ.
Write

X = Xx Θ X2 , JX = JX,Θ JX

where σi, Xί9 JXλ are tangent to the first factor of N X N and σ^ X2, JX2 are
tangent to the second factor. Now σ is normal to V, and X and JX are tangent
to V for t = 0. Hence we have

^ ( 0 ) = X2(0) , JXM = JX2(0) .
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It follows that σ[(0), <j£(0), XM, X2(0), JX,(0), JX2Φ) are all nonzero.
Therefore for t = 0 we have

κXo, + κJXa, > κXiσi, + κJXl01, > o .
Thus the proof is complete.

In [11] we proved that S6 with the usual almost complex structure has no
4-dimensional almost complex submanifolds. A generalization of this is proved
in [13]. We now give another generalization, this time for nearly Kahler
manifolds of constant type. First we prove a lemma.

Lemma (10.4). Let M be a nearly Kahler manifold, and M an almost
Hermitian submanijold with d i m M — dimM = 2. Denote by T the
configuration tensor of M in M. Then for each maM there exists x e Mm

with \\x\\ = 1 such that Txy = 0 for all y β M m with <*, y} = <Jx, y} = 0.
Proof. If Txx = 0 for all x e M m , the lemma is clear. Otherwise, let x be

the point on the unit sphere of Mm at which the function y —> || Tyy\\2 assumes
its maximum. Since the first derivative of y —> | |Γyy||2 vanishes at x, we have
(Txx, Txyy = (Txx, TJy} = 0 whenever <JC, y> = <Jx, y} = 0. Furthermore,

let u = -^=(x + Jx). Then Tuu = JTxx, and so y -> \\Tyy\\2 also achieves
V 2

its maximum on the unit sphere at u. Hence

0 = <7>, Tuy} = * < 7 Γ Λ Txy + TxJy} .
V 2

Replacing y by Jy in this equation and subtracting the result we obtain
<JTxx, Txy} = <JTxx, TxJy} = 0. Thus Txy and TJy are perpendicular to
both Txx and /Γpc. Since^pc and JTxx spanM^, we have Txy=TxJy=0.

Theorem (10.5). Let M be a non-Kdhler nearly Kahler manifold of point-
wise constant type, and M an almost Hermitian submanifold of M which is
Kdhlerian. Then dim M < dim M — 4.

Proof. Assume dimM = dimM — 2. By Lemma (10.4) for each m eM
there exists x e Mm such that Txy — 0 for all y e Mm with <jt, y> = <7JC, y>
= 0. This implies that HF̂ -C-OO) ||2 = || ̂ Ĉ-OCv) II2 = 0> which is impossible.
Hence the theorem follows.

In [14] we proved that any 6-dimensional nearly Kahler manifold which is a
submanifold of R8, and whose almost complex structure is derived from a
3-fold vector cross product on Rs has pointwise constant type. Thus Theorem
(10.5) applies to these manifolds.

The next theorem, in contrast to Theorem (10.5) and the results of [11] and
[13], shows that in different circumstances Kahler manifolds arise quite
frequently as almost Hermitian submanifolds of nearly Kahler manifolds.

Theorem (10.6). Let M be a nearly Kahler manifold. For each m € M set

X(nί) = {xeMm\Vx{J){y) = 0 for all yzMm) .
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Then on any open subset of M on which dim X(rή) is constant, the distribution

m —> X{m) is integrable. Furthermore the integral submanifolds are Kdhler

submanifolds of M.

Proof. Let W and X be vector fields which at each point lie in the

distribution m -+ X(m). We have, for Y, Z e &(M)9

= <yw{J)VQ, vJY{j){z)y = o .

Hence [W, X] lies in the distribution m —> JΓ(ra). Therefore, by the Frobenius

theorem, it follows that m —> Ctf(m) is integrable on open sets of M on which

dim X(m) is constant.

Let Mr be an integral submanifold of m -» J f (ra). Then Mr is a Riemannian

submanifold of M, and it also is easy to verify that Mf is an almost complex

submanifold of M. Denote by δ and t the connection and configuration tensor

of Mf. For mzM' and x,y e M'm( = X*(m)) we have

0 = Px(J)(y) = δx(J)(y) + tjy - Jtxy .

Hence δx(J)(y) = 0, and so Mr is Kahlerian.
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