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THE FOUR-VERTEX THEOREM IN HYPERBOLIC SPACE

CURTIS M. FULTON

Let e;,i = 1,2, 3, be the natural frame field on Minkowski 3-space and ‘D
be the connection such that ‘D, W = (VW?)e,. Using the metric {, ) of the
3-space which has one minus sign, the hyperbolic plane is represented by
{x,xy> = —1. Thus, x is a unit normal of the latter surface and we see that
'Dyx = V. Denoting by D the induced connection on the hyperbolic plane
we have for its tangent vectors

(1) 'DyW = DyW + (V, WHx .

On account of (1) we find R(U, VW = —<V,W>U + <U, W>17, and hence
the curvature of our surface is indeed —1.

If T and N designate the unit tangent and normal of a curve in the hyperbolic
plane we know that D, T = ¢kN and D,N = —kT. Now because of (1) 'D,T
= kN + x. But '‘D,T = ’k¥’N, where ’k is the space curvature and 'N the space
normal to the curve. We therefore record for later reference

(2) Ce)=k*—1.
Also, if s stands for arc length we infer from (1) that
(3) 'DyN = N'(s) = DyN = —kT = —kx/'(s) .

Through the two vertices which an oval necessarily has we draw a straight
line whose equation is <{c, x> = 0. Then with all integrals taken around the
oval we conclude in the usual manner with the aid of (3) that

f e, x5K/(s)ds = — § e, X ds = f (e, N(s)>ds = 0 .

This establishes the essence of the proof due to Herglotz [2, p. 201].
We now apply our methods to hyperbolic 3-space. In the imbedding
Minkowski 4-space we see that ('x)? = <T"(s), T'(s)) is equivalent to

(4) (//C)Z — (<xl’ x/><x//’ xll> _ <xl’ x//>2)/<x/, xl>3 R
where the primes indicate differentiation with respect to some parameter u.
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Following Gericke [1] we consider a curve which is the rim of a Mdbius Band
and also lies on a torus. Let r be the radius of the rotating circle, and R be
the radius of the locus described by its center. Setting p = cosh R sinh r and
a = tanh R coth r the curve in question is parametrized as follows, 0 < u < 4r,

x' = pla — sin (u/2)] cos u ,
x* = pla — sin (1/2)] sinu ,
x*=psechRcosu/2,
x* = pl[coth r — tanh R sin (u4/2)] .
Because of (2) which remains valid for a space curve, we find the maxima

and minima of « differentiating ('«)? which itself is computed by the use of (4).
We state the result of the lengthy computation for the given curve.

20%K, XYY
= cos (u/2){[3a°/2 + 3a® + (—3 sech' R + 36 sech’ R)/32]
— [21a'/2 + (9 sech® R + 72)a?/8 + (9/8) sech? R] sin (u/2)
+ [24a® + (9 sech® R + 72)a/8] sin® (u/2) — (24a® + 3) sin® (u/2)
+ (21/2)assin* (u/2) — (3/2) sin® (u/2)} .
Now sin (u/2) is bounded and the leading term a° can be made so large as to

make the expression in braces positive. This is accomplished by making r
sufficiently small. In this case then vertices occur only at # = z and u = 3x.
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