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SUBMANIFOLDS WITH A REGULAR PRINCIPAL
NORMAL VECTOR FIELD IN A SPHERE

TOMINOSUKE OTSUKI

Introduction

In [10], the author defined a principal normal vector for a submanifold
M in a Riemannian manifold M. This concept is a generalization of the
principal normal vector for a curve and the principal curvature for a hyper-
surface. In fact, if M is a hypersurface, let @(X,Y) be the value of the 2nd
fundamental form for any tangent vector fields X and Y of M. Then, we have

O(X,Y)e = —{Fye,Y)e
= normal part of VY = T,Y ,

where e is the normal unit vector field and F is the covariant differentiation
of M. If 2 is a principal curvature at a point x of M and X is a principal
tangent vector at x corresponding to 4, then we have

TyY ={X,Y)le at x .

If we consider Ze as the principal normal vector at x of M, then the above con-
cepts for curves and hypersurfaces are in the same category.

In [10], the author investigated the properties of the integral submanifolds
in M for the distribution corresponding to a regular princial normal vector field
of M in an M of constant curvature. In the present paper, the properties of
M will be investigated for admitting a regular principal normal vector field,
and then the results will be applied to the case in which M is a sphere and M
is minimal and has two principal normal vector fields such that the correspond-
ing principal tangent spaces span the tangent space of M. Theorem 4 in this
paper is a generalization of Theorems 3 and 4 in [9].

1. Preliminaries

We will use the notation in [10]. Let M = M"*? be an (n + p)-dimensional
C= Riemannian manifold of constant curvature ¢, and M = M" an n-dimen-
sional C* submanifold immersed in M by an immersion ¢: M — M which has
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the naturally induced Riemannian metric by ¢. Let P: ¢*T(M) — T(M) be
the projection defined by the orthogonal decomposition :

TyM) = ¢ (T,(M)) + N,, xeM,

alld put PL =1 — P. Let N(M, M) denote the normal vector bundle of M in
M by the immersion ¢. Then we have

G*T(M) = T(M) ® N(M, M) .

In the following, we denote the sets of C* cross sections of 7T(M) and
N(M, M) by X(M) and ¥1(M), and the covariant differentiations for M and
M by F and F, respectively. For the vector bundle N(M, M), we have the
naturally induced metric connection from M and denote the corresponding
covariant differentiation by /1. Then for any X ¢ X(M), we have

(1.1) 7X=VX+TX on %(M)
with /'y = PPy and Ty = PV, and
1.2) Py=Ty+ PVt on X:(M)

Now, for a fixed point x e M, a normal vector v ¢ N, is called a principal
normal vector of M at x if there exists a nonzero vector u e M, = T,(M) such
that

(1.3) T,z = {u, 2)v for any ze M, ,

and the vector u is called a principal tangent vector for v. The set of all
principal tangent vectors for v and the zero vector form a linear subspace of
M, which is called the principal tangent vector space for v and is denoted by
E(x,v).

A normal vector field V e X1(M) is called a regular principal normal vector
field of M, if V(x) is a principal normal vector and dim E(x, V(x)),xe M, is
constant.

In the following, we suppose that V' is a regular principal normal vector
field of M. By Lemma 2 in [10], E(x, V(x)), x € M, form a C* distribution of
M, which we denote by E(M, V). By Theorem 1 in [10], E(M, V') is completely
integrable. Now, we decompose M, in the following orthogonal sum:

M, = EX, V() + N&x, V(») ,
and denote the distribution of N(x, V(x)), x e M, by N(M, V). Then
TM) =EM,V)DNWM,V) .
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Let O: T(M) — E(M, V) and Q+: T(M) — N(M, V) be the natural projections
by this decomposition: E(M, V) and N(M, V) have the naturally defined metric
connections induced from the one of M as vector bundles over M.

By means of Theorem 2 in [10], if the dimension m of the distribution
EM,V) is greater than 1 and V == O everywhere, then there exists a
uniquely determined cross section U of N(M, V) such that for any integral
submanifold M™ of E(M, V), U|M™ is a principal normal vector field of M™
in M", and M™ is totally umbilic in M™".

2. The integrability condition of N(M, V)

In this section, we consider the case stated in the last paragraph in the 1st
section. For any y € E(x, V(x)), we define a linear mapping @,: N(x, V(x)) —
N(x, V(x)) by

(2.1 ?,(2) = Q(V.Y) ,

where Y is a C~ local cross section of E(M, V) at x with Y(x) = y.

Lemma 1. @, is well defined.

Proof. Let B, be the set of frames b = (x, e;, - - -, €,,€,,4, - - -, €,,,) such
that e, - - -, e, ¢ E(x, V(x)) and

2.2) V(x) = A(x)e,,, , Ax) >0.

Then, we have!

(23) warzprwa+ i Fartwta a:l,--o,m,r=m+1,.--,n;

t=m+1

n

(2.4) U= Y pe, .

r=m+1

Now, we put Y = f} f.e, about x and z = Zn: z,e, at x. Then by (2.3)
n=1

r=m+l

0'7.Y) = Q4T 2., (2 fucu)

= a§1 , t§n+1 erawat(er)et = Zt fazrpatret .
The right hand side of the above equation does not depend on the choice of
frame b ¢ B, at x and the extension Y of y, since I',,, are the components of
a cross section of E*(M,V)®NM,V)Q N*(M,V) where E¥(M, V) and
N*(M, V) are the dual vector bundles over M of M(M, V) and N(M, V) respec-
tively.

As in [10], we denote the set of all C= cross sections for any vector bundle
"1 see the proof of Theorem 2 in [10].
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E—Mby I'(E, M). Then, by Lemma 1, for any Y € I'(E(M, V)), we can define
a mapping @y: I'(N(M, V)) — ['(N(M, V)) in a natural way.

Theorem 1. Let M be an immersed submanifold of a Riemannian manifold
M of constant curvature, and V a nonzero regular principal normal vector field
of M in M such that the dimension of the distribution E(M, V) > 1. Then the
distribution N(M,V) is completely integrable if and only if @, for any
Y e I'(E(M, V)) is self-adjoint on I'(N(M, V).

Proof. The completely integrability of the distribution N(M, V) is equivalent
to the following condition:

dvo, =0 (modw,---,w,), on B, a=1,.---,m.

From the structure equations and (2.3), we obtain

dog = 3 0y Aang — X 0, N (p,wa + 7 me,)
b T ¢
E—Zrartwr/\wt (mOda)la"'7wm)'
Tt

Therefore, N(M, V) is completely integrable if and only if I",,, = I',,,, which
is clearly equivalent to that for any Y e I'(E(M, V)), and Z, W e ' (N(M, V)),

we have

<@Y(Z)s W> = <¢Y(W), Z> .

3. Properties of @, and F
On B,, we have

Wgn 1 = Ao, , Wqp = 0,

3.1
a=l5"'9m, ,B:n+25"'9n+p°

From (2.3), (3.1) and the structure equations it follows that?

n+p
dw,, = BZ @up N\ 0p, — Co, N\ 0,
=1

= 0O~ ; wWgp N\ 0y + bZ Iyr@ap N\ @5 + 2 Pswa/\wsr
8 - s
+ Z Fast Wy /\wsr — 2 Z An+1,rswa, /\ws - éwa /\wr s
s,t s
2 In the following, the ranges of indices are:

a,b,C,"‘ =1,---,m;r,s,t,--'=m+1,~--,n;
i,j,k,...: 1,.---,n.
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d(prwa + § r arsws) =dp, N\ o, + p, é 0; N\ 0
+ D dlar Aoy + 3 Ly 3 0 N
= dp, Aoy + p, T oy Nowa + p, T pwa Ao,
+ p, SZL', Iy, N\ 0y + ; ar,,, /\ w,
+ 3 Tanlon Mo, + 5 Toon Ao

and hence
(e + T paor = 0. T pn) Ao
+ 3 (drm + 2 Dorra + 5 Tartr + 3 Lariry
+ T Lanlssin + 00 5 Tas + Doy + Mo 00 Aoy =0

Since m > 1, from the above equations we have

(3.2) dpr + ; 0s@syr — Pr ? PsWs = ; F,o,,

dFa” + ; Fb‘rswba + Zt: Fatswtr + Zt: Fartwts
(33) + LZI:7 Fartrbcswb + O ; Fasta)t + ((_:673 + 2An+1,rs)a)a
= Frswa + Z Barstwt s
t
where F,, and B,,,, are functions on B,, and components of a tensor of type

(1,1) of N(M, V) and a tensor of type (0,1)®(1,2) of E(M,V)R®NM, V)
respectively, and

(34) Ba,rst = Bans N

Now, let F and Byy, for X e I'(E(M,V)) and We I'(N(M,V)), be the
endomorphisms on N(M, V) defined by

F(et) = Z Frter ’
BXW(et) = Z BartsXaWser )

a,r,s

where X = 3 X,e, and W = 3, W,e,. We denote the covariant differentiation

of the tensoraproduct bundles orf EM,V) and N(M, V) by D, Then, (3.2) and
(3.3) can be written as
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(3.5) D,U =<Z,UyU + F(Q4(2)) ,
D @x(W)) — Dp,x(W) — Ox(D,W) + Dx(Pgiz, (W)
(3.6) + (DQHZ)), WyU + {(Z, X){eW — Ty(V)}

= (Z,X)F(W) + Bxy(Q*(2)) ,

where Z e X(M), X e '(E(M, V)), W e '(N(M, V)), and the 2nd term on the
right hand side of (3.6) is expressed, by means of (3.4), as

3.7 Byw(Y) = Bxy(W) , YeI'(NM,V)) .

From (3.5) follows easily

Lemma 2. Under the conditions of Theorem 1, U ¢ I'(N(M, V)) is parallel
along any integral submanifold of the distribution E(M, V).

Proof. For any X e I'(E(M, V)), we have

3.5) DyU=0.

Lemma 3. Under the conditions of Theorem 1, F can be defined by the
equation

(3.5 F(W) = Dy U — <KW, UU .

It is clear that (3.5) is equivalent to (3.5) and (3.5”). Substituting (3.5”)
into (3.6), we get

Bxw(QH(Z)) = D(Dx(W)) — Dp ,x(W) — Ox(D (W) + Dx(Dg 2, (W)
+ {K0(QH2), W) + (X, ZXXW,U)1U
+ (X, ZY{eW — Ty(V) — Dy U} .

In particular, for Z = Y e I'(E(M, V)),

Dy(@x(W)) — @p,x(W) — Ox(Dy(W)) + Dx(y(W))
+ X, Y KW, UU + ¢W — Tw(V) — DyU} =0,
and, for Ze I'(N(M, V)),
Byw(Z) = D (0x(W)) — @DZX(W)
— Ox(DW) + {0x(Z), W)U ,

which may be considered as the formula of definition of By .
Now, for any X, Y e I'(E(M, V)), we have

DyY — DyX = Q(WxY — VyX) = Q(X, Y] = [X, Y],

(3.6")

(3.6

since E(M, V) is completely integrable. Therefore, from (3.6’) follows
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(3.8) Dy @y — Dx-Oy + Oy y; — Dx-Dy + Op-Dy + [0y, 0] =0 .

Lemma 4. For any X,Y e ['(E(M,V)), by defining 65: '(NM, V)) —
I'(N(M, V)) by
3.9 0y = Dy — @y,

we have
ax‘ﬁy — 02"3){ = 0[X,Y] + Ri"Y s

where R+ denotes the curvature tensor of N\M, V).
Proof. By means of (3.8), we obtain

Ox-0y — 0y-0x = (Dy — Px)(Dy — @y) — (Dy — Oy)(Dy — Dy)
= DXDY — DYDX + [(DXa @Y] - DX@Y
— OxDy + DyDyx + OyDy
= Ry + Dix,v1 — Ppx,vy
= R%Y + 0[X,Y] .
From Lemma 4 follows easily
Theorem 2. Under the conditions of Theorem 1, if N(M, V) is flat along
any integral submanifold of the distribution E(M, V), then @ is a representation
of the Lie algebra I'(E(M, V)) on the space of endomorphisms of N(M, V).
Formula (3.6)" implies immediately
Lemma 5. Forany X e '(E(M, V)), with | X| =1, and W e '(N(M, V)),

D (Dx(W)) — @x(Dx(W)) — Dp (W) + O3 (W)
=DyU + Tw(V) — (W, USU — W .

4. Case Mr+? = Sn+p

In this section, we suppose furthermore that M**? is an (n + p)-dimensional
unit sphere S”*? in Euclidean space R**?*!, We may consider the frame b =

(x, e, -+, e,,,) of M to be Euclidean in R**?*! and define a vector field on
M by
4.1) E=U+V — €nipi1 = Z 0.6 + Aey 1 — €rnip+l s

where e, ,,, = xe M. & is clearly orthogonal to E(x, V(x)). Then, by (2.3),
(3.1 and w; 5, p.1 = —w;, we have

n+p
de, = BZI ®.p€p t+ W nipi1€nips1

= 2] Wa€ + 0§ + 2 Y APRON-
b 7,8

4.2)
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Next, we also have

n+p
dé = Z dprer + dlenn + Z Or (BZ—:1 w,p€p — wren+p+1\)
n+p
+ A 3 Oni1,5€8 — 21 08
B=1 k3
=) (dPr + ; 0wy — A ; Ap iy, 10 — w'r) e,
+ (d'2 + tZ: An+1!tr ptwr) €n i1

+ 2 l(zwn+1,ﬁ + lZ: Aﬁtrptwr) €

B>n+
- Z 0:@Wr€n  pi1 (mod €1t 00y em) ’
r

where w;, = }; A,;;0;. On the other hand, using (3.3) and (3.4) in [10]:
(4-3) dz = Z Bn+1,‘rw'r > 2wn+1,ﬁ = Z Bﬁrwr >

exterior differentiation of (3.1) gives

; a)ut(An+1,t'r - 25”) + Bn+1,r(1)a =0 ’

; watAﬁtr + Bﬁrwa =0 H (mOd W15 *° '9wn) .
Substituting (2.3) into the above equations, we get

B””'ly" + tZ: AotAn+l,tr = 2.07 s

4.4)
Bﬁr+;ptAﬂtr:0> .B>n+1-

Making use of (4.3) and (4.4), we have

d& = Z (dpr + [; thtr - '2 ; An+1,nwt - (D,) €,

+ 2 Z prwfren+1 - Z prwren+p+l ’ (I'IlOd eb tt em) .
T r

4.5)

Now, we consider the following Euclidean (m + 1)-vector in R™*?+1,
4.6) r=e/N - Ne, \NE.

By means of (4.2) and (4.5), we obtain
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n
dr = PN 0r0,T
rem+1

F A Neas AT Ty Ny A -+ Aen A&
(4.7) a+1 7,8

+ Z (dpr + Zt: 0:Wyr — A ; An+1,rtwt - a"r)el ANERE /\em /\er

r=m+1

-2 00,8 /\ -+ Ney N 2 0:€;
T 13
which is equivalent to the following equation:

dyn = U, Z>n + e, A -+ Aew AN(DyU — U, Z5U + TH(V) — Z)

4.8) m

+ Z el/\ tre /\ea—l/\djea(Ql(Z))/\ea+1/\ e /\em/\f 5
a=1

for Z ¢ X(M). In particular, we have
“4.9) dyn =0, for Xe I'(E(M, V)) .
Hence, we can easily reach

Theorem 3. Let V be a nonzero regular principal normal vector field of M
in S**? C R™*?*! such that the dimension m of the distribution E(M, V) > 1.
Then for any maximal integral submanifold of E(M, V) there exists an (m + 1)-
dimensional linear subspace E™*! such that it is contained in the m-dimensional
sphere E™*' (\ S**?, Furthermore, the condition for all the E™** to be parallel
to a fixed one is

(4100 DU - U, ZYU+T,(V)—Z =0 for any Z ¢ I'(N(M, V))
and
“4.11) 0, =0 forany X e '(E(M, V)) .

Remark. If M is a minimal hypersurface in §"*' and m = n — 1, then we
have (see [10, § 3])

Wgn = (log V™ w, ,

where 2 = || V|| (principal curvature of multiplicity » — 1), and 2 is a function
of arc length v of an orthogonal trajectory of the family of the integral sub-
manifolds. Thus I',,, = 0 and U = (log 2/")e,,. Hence (4.11) is trivially true
and (4.10) becomes

(log 2"y — {(log 2/*Y¥ + (n — D2*—1=0.

Théorem 4. Let M™(n > 3) be a minimal submanifold in S**? C R™*?+!
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with two regular principal normal vector fields V and W such that
EM,VREM, W) =TM) .

Then there exists a linear subspace E™** through the origin of R**?*! such that
M» C En+? n Sn+p, ’

Proof. We may suppose the dimension m of the distribution E(M, V) > 1.
Since ¥V # W at each point, E(M, V) and E(M, W) are orthogonal by Lemma
1 in [10]. We use frames b = (x, e, - - -, e,,,) such that e, - - -, e, e E(M, V)
and e,,, - -,e, ¢ E(M,W) = N(M, V). By putting V = >, 2,e, and W =

a>n
. M€, WE obtain
a>n
Aaa.j = Zaaaj ) . Aa’l’j = f‘laarj s
a=n+1,.-,n+p; a=1,.--,m;
r=m+1,--,n; i=1,--.,n.

Since M™ is minimal, it follows that
0= Z:Aaii=m2a+(n—m)‘ua=0,

that is,
mV4+m—mW=0.

Since V # W, we see that V = 0 and W +# 0. Therefore we may put V =
2e,.,(2 > 0), W = pe,,,, and then have

Wany1 = A0, Wrpp1 = POy , wiﬁzo (ﬁ=n+2,"',”+l7)-

Hence M-index of M™ in S**? is 1 everywhere. By Theorem 1 in [9], there
exists an (n + 1)-dimensional totally geodesic submanifold of $”*? containing
M™ as a minimal hypersurface, which is the intersection of a linear subspace
E™** through the origin of R**?*! and S**?.
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