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OPERATORS ON ALMOST HERMITIAN MANIFOLDS

YOSUKE OGAWA

Introduction

Recently C. C. Hsiung [1] showed, among other results on the realization
of the complex Laplace-Beltrami operator [J on an almost Hermitian space,
that if for an almost Hermitian structure the relation [] = 4/2 holds for all
forms of degrees 0 and 1, then the structure is Kaehlerian, where 4 denotes
the real Laplace-Beltrami operator; this result was a conjecture for some time
and is an improvement of a theorem by Kodaira-Spencer [2]. In the present
paper, we point out that the two definitions of the operator [ given by Ko-
daira-Spencer and C. C. Hsiung respectively are different, and extend the
above result of Hsiung by showing that for an almost Hermitian structure if
O according to either definition is real on all forms of degrees O and 1, then
the structure is Kaehlerian'.

Let !78 be the projection mapping onto the subspace composed of elements

of type (r, s) (see § 1), and @ the skew-derivation of dgree 1, which coincides
on functions with 11% d and satisfies the relation od + do = 0. Then the

definition of the integrable condition of the almost complex structure is given
by ¢* = 0, [2]. By investigating the real and imaginary parts of the operator
9, we express an equivalent condition of > = 0 in terms of some real operators,
and give a condition on a real operator for an almost Hermitian structure to
be Kaehlerian.

1. Definitions

Let M" be a Riemannian space, denote its fundamental metric tensor by g,,,
and put g = det|g,,|. (In the following the Greek indices 2, g, v, - - - run from
1 to n, the dimension of the space.) Let ¢%::;? be the generalized Kronecker’s
delta, ¢,,...,, stand for ¢} , and F” be the algebra of differential p-forms
on M". Then the exterior differentiation d: #? — #7*' and the adjoint

Received November 8, 1968.

1 After this paper was written, Hsiung informed me that at the Summer Institute on
Relativity and Differential Geometry sponsored by the American Mathematical Society
and the National Science Foundation at the University of California at Santa Barbara in
1962 he had raised the question: If [] for an almost Hermitian structure is real, is the
structure Kaehlerian?



106 YOSUKE OGAWA
operator *: &? — Z"P can be written for a p-form u = (#3,...,) bY

(1.1) (du)zo-..xp = (1/p!)5551...‘..§£Vpu#1---i‘p >
(1~2) (*u)jl...)n_p = (I/P')\/ggp”“ LRI gﬂpi‘}-’upl...ppsyl...,up;l...xn_p )

where V7, denotes the covariant derivation with respect to the Riemann
connection. The exterior co-differentiation 6: #? — 7~ defined by

(1.3) § = (—1)renrinds
can be expressed locally as
(1.4) Wy = — Pty -
Let 4 be the Laplace-Beltrami operator defined by
4=ds+ od,

then by means of (1.1) and (1.3) it is easy to verify that for a form u of
degree p

holds, where R,,,, (or R;)) is the curvature (or Ricci) tensor of the Riemann

connection, uh,,,f,,.,xp indicates that the subscript p replaces the subscript 2;,
and u,,...;...;, indicates that the subscript 2, is deleted.
If a Riemannian space M" admits an almost complex structure ¢,” satisfying

(1‘6) gpagolpsoya = g,ly >

then it is called an almost Hermitian space. Let 7°(M) be a complexification
of the tangent space of M”, and denote by % ,? the (complexified) differential
p-forms, that is, the complex-valued functions defined on T¢(M) A ...
N T°(M). For non-negative integers r,s we define the projection mapping
II: . — %, where p = r + s as follows. At first

7,8

a.7n L =120 — vV —1¢" ,

1,0

and its conjugate

(1.8) gx = ;’701# = 1/2@ + vV —=1¢" ,

which will be abbreviated to II and I/ respectively. Then for a p-form u of
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# P, we define
gy U uess = AIPD L5

= (1/(rtstegrezmsgsdl oo I, or J1,00 - - 0T, 25y,

eBpyyeeevg®
A p-form u of &P is called of type (r,s) if it satisfies /T u = u.

7,8
Lemma 1.1. In an almost complex space, for any set of functions u,,..., »
we have

(1.10) PO Wy = Ui, -
k=0 p—-k,k
Proof. We prove by induction. Suppose that (1.10) is true for all sets of
functions u,,...,. for r < p; for convenience those functions are said to be of
degree r < p. Now let u = (u,...,,) be a set of functions of degree p + 1.
Then we have

A/ + DY Z IT 300 Uy

p+1-Fk,k

= (1@ + DD S poiCeyrs Bl eIy,
.]]“”1...]7 vk

ap ul"l"'l‘p+1—kv1"‘l'k
oee 0 1 H vee T T
= 1/(p + DDIgeielefo - I, Py, + 520,00 - - 1, *?u

ap vo*eevp

Ppti-k

TR

Kk

D
3 GCuyCudely ot o igll, - I, 2l
k=1

upl...#pﬂ_m...,k] ,

where ,,,C, denotes the number of combinations of p 4 1 different things
taken p at a time. Considering the assumption of the induction, we get

Poeeep oo, .. “p
eunte L, o - - - 11, 7.

“p

o Apgrestp—_jureeevg

v — —
PgeesPpy_ ces ’ Py
+ Z pck 51: ko1 gz”ﬂoo pr_kp k”nn oo T vry
k=1

M

(=Dp!L fu,,......

0

Il

a

In a similar way, we have

ooerap T vo ., . T »
eiapll, - 01, 2o,

p-1 _ _
weef oy ooo r B
+ 2 C g1 Pr ko }'f,fﬂ PRERRRW /. ot T *IL e - I, ku,
k=0

100 Bp—gvoe e vk
»

= Z (—l)ap!ﬁzuau,,xo...ﬁ...xp-

a=0
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Hence we have

p+1 ¥4 —
oty Py = 20 (=DplUL, + 11, psg...eny

k=0 p+1—k,k

=@+ 1)!1410,,,11, s

which shows that (1.10) is true for any set of functions u,...,,, of degree p + 1.
From the proof of the above lemma, we see that in an almost complex space

4 _ _
£yeeep " ’ " Iz L Hpeeek
(LAD) 3 Ot Il oo T oMy 50 Ty Uy = SR Uiy

holds for any p-form u,,...,,, 1 < p < n.
Now we define the operators d,: % .? — % ?*! of type (1,0) and d,: & .?
— Z %1 of type (2, —1) in accordance with [2] by

(1.12) d= N4,

r+s=p r+l,s 71,8

(1.13) d=Y I dII.

r+8$=p r+2,8-1 7,8

We denote the conjugate operator of d, (or d,) by d, (or d,).
Lemma 1.2. In an almost complex space, on % ,» we have

(1.14) I dll=0,

r+3,8—2 7,8

wherer + s = p.
Proof. For any p-form u, we have

(I dIu,.,,

7+3,8-1 7,8
— gP1etPrs0reteag—g mo, .. rasfT v, .. JT v§—2,7T01 op
= & lle”l H”r+s H"l Hﬂs—z Chyeeesrbgvreeovs—2

‘77(632'"’::’-"{"3.7317/'1”{ v Hp;ﬂ}ﬁdﬁ v ﬁy§v§u#;___",rp;.._u§) .
On the right hand side, there appear such terms of the types as

@ I I et S I L
AL Mgt s
0) I I R T -
: ﬁugv‘éu,a;...p;,;...v§ ,
© My I, glintred o ST o [ o A%
T

’
vs

PSU ,
s k1

P eellylecenf *

Thus in (a), at least one of terms of the index pairs (g7, - - -, ¢}) must coincides
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with that of (4, - - -, g,,,), and from the fact that
o1y =0,

we can conclude that all terms in (a) are zero. For the same reason all terms
in (b) and (c) are also zero. Hence the lemma is proved.
Taking account of Lemmas 1.1 and 1.2., we see that

(1.15) d=d, +d, + d, + d,

holds [2].
Next the definitions of complex analogues of the real operators d and § in
the sense of Kodaira-Spencer [2] are as follows:

(1.16) 0=2d,+d —d,,
(1.17) D = —x0% .

On the other hand, C. C. Hsiung defined them by the following operators

(1.18) @iy = AIPD T T 00500 IV ey
r+s=p r+l,s
(1.19) Wiy = — 20 L5 1LV e,
r+8$=p 7,8

for a p-form u = (u,,...;,). Later we shall show that the relation
(1.20) D = —x9*

is valid.

In order to make clear the real and imaginary parts of the operators d and
0 and the others, we define the following more operators in an almost
Hermitian space M™ for a p-form u = (u,,...,;,):

y 4
(1.21) (Fu)m..qp = Z_:o (_1)“501apl7,,u10...2...1p >0,
(1.22) Wiz = 3 (= DV, Ui inbrsy P21

from #? to #?*;

(1.23) (Du)lz--'Zp = gDponu“,...xp (P > 1) s
(1.24) Oy = 2 (DTG Yy P 22)

from #? to #?! with
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1f=Df=9f=0, feF,
Ju=0, ue F*

for forms of lower degrees; finally
P a
(1.25) (OWy..., = Z_}l 01, Uny ety =D,

(1.26) (zlfu)xl-uxp = §011p1 cee Sozpppupl---ﬂp > 1)

from Z7? to ZF?.

2. Lemmas

We study the properties of the operators defined in § 1.
Lemma 2.1. In an almost Hermitian space, the operator I' is a skew-
derivation and satisfies

2.1) «*['*x = —D .

Proof. The same calculation as in the proof of Lemma 2.2 in [4] shows
that I" is a skew-derivation, and that, for any p-form u = (”zl---xp)>

(T 5ty = (— 1) 2*4(DU),

holds, where n is the dimension of the space. Since n is even, we have (2.1)
immediately.
Lemma 2.2. In an almost Hermitian space, the operator @ is a derivation

and satisfies, for any p-form u,,
2.2) *Qxu, = (—1)*Qu,, ,
2.3) dp — @d = —T + 7.

Proof. By a directive calculation with respect to an orthonormal local
coordinate system for any p-form u = (,...,,) we have

(*@*u)h,,,lp = (1/(n —_ p)lp!)g gl“xl’l e g”n—p"n—pg”l'l e g”P'Puvlu_yp

n—p i
. 4 A
iz—l SD,ui e’x""p“l"'d""‘n—p8P1"'Pn—p11"'2p

y4
= [(=1)?=?/(p!(n — p)!)] Z}l s;:;;j:fg’puvl...,p%n

2 .
= ((_1)p(n—p)/p!) Zl s::...ﬁ...:ﬁsalipu”x""’p
i=

— (_1)17(”—?)((2514)11...;1,-
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Since n is even, we have (—1)?~? = (—1)?, and thus (2.2) is proved.
As for (3.3), we get

_ i
(d@u)xomxp = Vz.,%ipuxl---p---xp - in%opuh---p---zp -2 Vxﬂ’z] Upseslgeesbenetyp

+ 7. u i — °V u x — Z V. u FEA

(778 N dyeeePesedp Dag V23 Ageeepeesdp 2 Daj V2 210eedgeeePeredp 3
k2
(Qdu)zo...xp = ﬂonpruxl... » Pa;j Vpuh"-lo---lp + Sazipyzauxl...p...)p
J
_ GD}OPVZiull"'F"'ZP - ;j §01] Vizulo"'-"'“xo‘"lp

Hence it follows that

(d@u — Qdu)zﬁ...zp = (V;Dgazi” — V;.LQD,lop)u;l...;...gp— Z (_ l)a%a”V,,u;u....:...;p

+ z§7 (— l)i(inSDsz — szSDzip)u/zoxl...f...,i;...;p
- §p(—1)a(‘71a§025‘0 - Vxﬂ%ap)u;o...g..é...;p - Z (_l)apzaprulo...;...zp

= (u — I'Wye.y, -

Next considering the following relation

p#%## ” p+qﬂ/—t# Aj?'# rj
T reen ; PR ;
2 & plpriantie, + 3L gltetenrntipiie,
Jj=1 Jj'=p+1
D+q By e Epig
= Pe %
a=1 ApeecPecedpig
we have
(Qu N\ V)yyagg + WA V),
p .
_ Hieoolt K
= (@1a| 2t on by Vrg et
ptq i’
Hieeslpiq 4 A
Elpeeed P Up e, Vp R ]
j,=Zp;+1 1o 2prg P THaetp Tp ptq
p+q Hy e Bpig
=1/ Y o e UngeouiyVspaeiprg = QWU N Wiy -
as1 ApeesPecidpig

Thus the operator @ is a derivation.

Corollary 2.3. In an almost Hermitian space, the operator y is a skew-
derivation.

Proof. Since @ is a derivation, @d — d@ is a skew-derivation. By virtue of
Lemma 2.1 and equation (2.3), r is a skew-derivation.
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Corollary 2.4. In an almost Hermitian space, the relation

2.4 dl' + I'd = dy + yd

holds.
Proof. (2.3) implies

—dodd =d(—I" +7p), dod = (—I" + 7)d ,

from which follows (2.4) immediately.
Lemma 2.5. [n an almost Hermitian space, we have

2.5) k= —3 — i(p)

where i(6p) denotes the inner product with respect to a 1-form o (¢ = ¢,,).
Proof. From the definition of y, we have, for a p-form u,

@mwwzéuﬂ%mﬂmgiﬁ,
where we put 4,, = V0, — V,¢,*. Therefore we have

(*T*u)12-~~xp
S8/ —p+ DD T (—D g e grnmreise

1<i<j<n-p+1

o1 ... oD A 'Z\
g g uvl...vpeﬂ‘l---"‘p/ll---iu-v-"l“n—p+lepl""”n"P+112'"1p
—D(n-p+1
(_ 1)(17 Y(n—p+1) PiPj ¥y e ¥pT
= 1512"'117"1"“]'”"1”‘”17

(n—p+ D@ — p)p! i<
P
= _Vrsoprum---ip - Z_:z (- l)angDvlauwlz'--a"'*p
= —(1(5go)u — 19“)12...11, .

Theorem 2.6. In an almost Hermitian space, we have the following
relations:

(2.6) d=d—-v-1D))2,
%)) D=@—-—v—-1D)/2.
Proof. Using

Oely=1p, Heflyr=0, Oeldyr=0, dedr=Iy,

we have
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(au)xo-uxp
= [1/(!(r + DDtz Il oI, - -« I, 070 - - - 110

. ‘le aee (o} a
Eppl...prvl...gfﬂr Vau“'l---wp

= (1/(r!s!))55:1."fl'r'p1“}‘§nf‘1pl e H”rprﬂ”lvl o H"sdsHHTVfuf'l""’r"l"""s

» — —
- 'rZ=:1 (1/(7“5“))5;:1‘;5]7#1"1 T H”rprﬂyr+1”r+1 e HﬂpppHﬂTVruh-..Pp

? _ _
o e e Pp o llyees
= (l/p!)kZO O/ PRI ) PR I PR L I, 7 ‘;gﬂ;V,u,,l_,_,,p R

Ao see
which is reduced to, in consequence of (1.11),
(OW;g..r, = (/P Ve 2527V u,....0,)

= (1/2A [ p Wizl — v =Ll i20,V Yp,...o,, 5

ip

giving (2.6). As for (2.7), from the definition we have
(D).
1

BieeollyVeesV P p,.7T © T 9. TT
= — Z —_ 5,032 Ll J;Hh oo Hﬂ,- Tnvl Tees Hvs sHterupl.‘.pTul...vs
rés=p rls!

1 = =
— Z Eﬁ;l "r"l "s—xHFl”l v ”/‘rpr]]”lyl N7}

T+8=p r'(s—l)' .

Is=1]] o

Ys—1 T

VUop,
p-1 — !
— — 1 Z (p 1). E;‘;.:‘-pr;;]]i‘lpl “ e Hﬂr."r

@—-—D!'»=1ri(p—r—1)!

PRV S PP Y

.I‘][‘T+1PT+1 . ﬁl,p_lp:ﬂ—lﬁ,pV’up,,l___,,p_l y
which becomes, due to (1.11),
Oy, = (—1/(p — DDz l2 ULV Uy, )
= —ﬁ,pVTupzz...zp = (-—- 1/2)(V’D + x/ji Sorpr)uplz-“lp ’
giving (2.7).
Corollary 2.6. In an almost Hermitian space, we have

(2.8) D = —%0%.

Proof. Since the dimension »n of the space is even, from (1.3) we have
0 = —=xdx for any p-form. Hence (2.8) is an immediate consequence of
Theorem 2.6 and Lemma 2.1.

Corollary 2.7. In an almost Hermitian space, we have

(2.9) da=d+vV—-1D))2,
(2.10) D=0++V—-1D)/2.
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Next we study the complex operators 8 and . Since 3 is a skew-derivation,
we first show how 4 is expressed on %#° and #'. Let f be a O-form. Then we
have

@, = {,YOAPVJ = (1/2)df — v —1T1) = (8f),

and therefore
2.11) of = of = (df — V=112
Let u be a 1-form. Then we shall show that the relation
(2.12) ou=>1/2du— -1 — puw
is satisfied. For this purpose, we need the following formulas:

gw =(1/Hw —Tw — V—10w),
(2.13) 11,{w =(1/2)(w + Tw),

g’{w ={1/HW —Tw + ¥ —10w) ,

where w is any 2-form. By decomposing the 1-form u as u = u, + u,, where
u, (resp. u,) denotes the part of type (1, 0) (resp. type (0, 1)), we have

du, = 2IZdu1 = (1/4)(du, — ¥du, — v/ —1 (ddu)) ,
du, = 0 ,
du, = gdul = (1/4)(du, — ¥du, + v —1(ddu)) ,
du, = 1I,{du2 = (1/2)(du, + ¥(duw,)) ,
du, = 2I{du2 = (1/4)(du, — ¥du, — v/ —1 (9du,)) ,
du, = 0.
and therefore, by virtue of (1.16),
u, = —v/—1(@du)/2 ,
ou, = du, — v/ —1(ddu,)/2 ,
which imply
ou = d{]lu — &/ —1(®du)/2

= (1/2)(du + v —1 (ddu — ddu)) .
Making use of (2.3), we hence arrive at (2.12).
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Now we consider an operator

9 =01/2)d— V-1 —7)

from & .? to # *'. Since yf vanishes for any O-form £, (2.11) and (2.12) show
that @ and 9’ coincide on any form of degrees 0 and 1. Owing to Lemma 2.1
and Corollary 2.3, the operator @’ is a skew-derivation. Therefore § coincides

with ¢’ on all forms of any degree. By applying the adjoint operator  and
using Lemmas 2.1 and 2.5, we obtain

—%0k = (1/2)(0 — ¥/ —1(D — 9 — i(3¢))) .

Since ® is defined by — xd*, we have proved
Theorem 2.8. In an almost Hermitian space, we have

(2.14) 0=0/d—- V-1 —-7),
(2.15) D=(1/2)0— vV—1(D — 9 — i(dp)) .

Remark. As is easily seen, 9 and @ coincide if and only if the operator y
vanishes. This condition is equivalent to

(2.16) Viow =V 01

As the tensor V,p,, is skew-symmetric in the indices x, v, from (2.16) we can
easily see that V,p,, vanishes, and therefore that the structure is Kaehlerian.
Hence the operator 9 coincides with @ if and only if the structure is Kaehlerian.

3. Theorems

In [2], the integrability condition of the almost complex structure is defined
by 9* = 0. Since, from Theorem 2.8,

*=0/-T =+ V=1l + I'd — dy — rd)),
of which the imaginary part vanishes because of Corollary 2.4, we obtain
0 =(=1/90" —7*,

which is a real operator. Hence we reach
Theorem 3.1. In an almost Hermitian space, in order that the structure be
integrable it is necessary and sufficient that

I —yP=0.

We shall use the operator I" to characterize a Kaehlerian structure by show-
ing that an almost Hermitian structure is Kaehlerian if and only if the operator
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I'? vanishes. As " is a skew-derivation, [ is a derivation. Therefore if /™
vanishes for all forms of degrees O and 1, then it vanishes for all forms of any
degree. If we take a O-form f and a 1-form u = (u,), then we have

(sz)ly = (SDAPVpSDpV - SDpPV,zSDx”)Vaf >
(qu)lit” =1@ (SDXPVAD#” - %"‘7,:501")‘7”“» +& (¢lp¢#avar)uf >

1 HyY 2, 8,9

where © indicates that the terms are summed cyclicly with respect to 2, g, v.
v, ty¥

Thus the condition ™ = 0 is equivalent to the relations

(31) %”VP%" - Soﬂprgolv =0 >
3.2) © 00, 'R, =0.
2By

Theorem 3.2. In a Kaehlerian space, the operator I'* always vanishes.
Proof. Since the complex structure ¢ is a covariant constant in a
Kaehlerian space, (3.1) follows obviously. Moreover we have (see, for instance,

[1, (4.13)D)
'R, = ¢, R,."
and therefore
00 R, = Ry

which easily gives (3.2).

In order to show the validity of the converse of Theorem 3.2 we need the
following lemmas. The almost Hermitian structure is said to be almost semi-
Kaehlerian if the fundamental 2-form is co-closed, that is, if the relation
Vg, = 0 holds.

Lemma 3.3. If I = 0 in an almost Hermitian space, then the structure
is almost semi-Kaehlerian.

Proof. Transvecting (3.1) with ¢, we have

Vr%" + SorZSDpPVpgala =0.

Contracting r and ¢ and noting "V 0., = 0, we thus prove our lemma.
Lemma 3.4. If ['* = 0 in an almost Hermitian space, then we have

(3'3) @ salpvapw = 0 >
A0
(3.4) (1/2)¢”R,.* + ¢R,* =0,

(3.5) ofR,, + ¢,°R,; = 0 .
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Proof. From (3.2), we get
(36) Soipfaﬂusoerpvrm = ¢1pRvP#w - Soprvplw N

Taking the sum of the terms of (3.6) cyclicly with respect to the indices 2, y, v,
we have

0 = @ Solpsoyagouerarw - @ ¢1pRpupw ’
A, p,v A,p,v
giving (3.3). Contraction of 1 and w in (3.3) yields
3.7 ¢*Ripp + ¢.'R,, — 0/R,, =0 .
On the other hand, from (3.6) we get
_Sovp%d@#erarm = SDIPRvpﬂw - gD,,"R;,,,,"’ - ?ppvapw s

which can easily be reduced to (3.4) by contracting with g*. Finally, the
relation (3.5) follows readily from (3.7) and (3.4).
Lemma 3.5. If I'> = 0 in an almost Hermitian space, then

(3.8) ViV g, = 0 .

Proof. Since the structure is co-closed by Lemma 3.3, differentiating (3.1)
by I,, we have

oV o7 =V V07 + 0, Ry, 0 + Ry, 0%) .
Owing to (3.4) and (3.5) the left hand side becomes

(1/2)902"('717#%40 - VpVXSD,ua) = (_ 1/2)§01”R1“‘g05" + (1/2)901PR111:50;
= —R”F-}-R“,,:O.

In the same way, the second and third terms on the right hand side are reduced
to —R°, and R,°, respectively and thus we have (3.8).

Theorem 3.6. In an almost Hermitian space, if the operator I'* vanishes
everywhere, then the space is Kaehlerian.

Proof. At first we show that

3.9 "7V 0, = 0.
In fact, by virtue of (3.1) we have

‘7290140 = SD#FSDrPVpSDlr H
which and (3.8), (3.5) imply
VXVISOAG = 90#"‘7190:7#%1? *
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contracting with ¢, and applying Lemma 3.5 we hence obtain (3.9).
From (3.9) follows immediately

VeV ., = (1127 (¢0,,) — ¢V V0, =0,
which means V,p,, = 0, showing the structure to be Kaehlerian.
Now we define the complex Laplace-Beltrami operators [J and [0 by
0=2%93+3d,
O0=96+dD.
Then using Theorems 2.6 and 2.8, we can calculate the real and imaginary
parts of the operators [] and [J. First, for the operator [ we have
Theorem 3.8. If the operator 1 in an almost Hermitian space is real on

all forms of degrees 0 and 1, then the space is Kaehlerian (cf. [1]).
Proof. From Theorem 2.6 and Corollary 2.7 it follows that

40 =4+ DI+ I'D) + ¥v—1@I' + I's — dD — Dd) .
Therefore by the assumption we have, on %#° and %,
(3.10 6' +I'é —dD — Dd =0,

which implies, for a O-form f, 6I'f — Ddf = 6I'f = 0, since 6f = Df = 0.
Thus V¢, V,f =0 for all O-form f, due to V V,f=VJF,f. By choosing
orthogonal geodesic local coordinates x', ---,x"™ at a point P and putting
f = x°, we can easily see that F'*p,> = O at every point P, which means that
the space is almost semi-Kaehlerian. Application of (3.10) to a 1-form u = (u,)
then gives

=V, Vu, + Fopf + Vg™ W u, + G¢”R,.5 + ¢ RIu. =0,

where the first term is zero. Now to the above equation we first apply u =
d5dx* for a fixed 2, for which (V,u,), = 0, and then apply u = x°dx* for any
fixed distinct p and g, for which (V,u,), = 80%.
(3.11) VxSO,‘a + Vpﬂpxa =0,
(3.12) (1/2)¢*"R,,., + ¢:/R,, =0 .
(3.11) shows that the space is almost Tachibana. From Kot6’s theorem (see
K. Yano [5, p. 180, Theorem 2.5]) if (3.12) is satisfied in an almost Tachibana
space, then the space is Kaehlerian. Thus Theorem 3.8 is proved.

Next we consider the operator []. From Theorem 2.8, we have

A0 =4+ T —~pWD — I —i@p) + (D — 9 — iép)UI" — 7)
(3.13) — v/ =1[D — 9 — i(6p))d + d(D — 9 — i(5¢p))
— 8 — ) — (T — pal .
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Theorem 3.9. If the complex Laplace-Beltrami operator [ for an almost
Hermitian structure is real on all forms of degree O, then the structure is
almost semi-Kaehler.

Proof. For any O-form f, since df = Df = 0 and 9f = yf = 0, by our
assumption from (3.13) follows immediately

D — 9 — i(6p)df — ol'f =0,
which further reduces to, because of Ddf = 0 and 9df = 0,
i(6p)df — oI'f =0,

implying that '*¢,’V ,f = O for any O-form f. Thus F?¢,” = 0, and the theorem
is proved.

Theorem 3.10. If the operator [ for an almost Hermitian structure is real
on all forms of degrees 0 and 1, then the structure is Kaehlerian.

Proof. By definition, for a 1-form u we have 9u = 0, and

Sdw), =Vee* ¥V u, — VgV u, ,
Orw), = VeV, u, — VWV 0 °u, + Vi, Vou, — V,0°Veu, .

As the structure is almost semi-Kaehlerian due to Theorem 3.9, from the
proof of Theorem 3.8 we obtain

2000 — VetV u, + (—V°V 07 — 0R,” + Rrp,Iu, =0,

which implies
Vil + Vo =0,  PV,0° + ¢fR7 — Rfp, =0,

by an argument similar to that in the proof of Theorem 3.9. Contracting with
¢*, in the last equation gives (3.9) and therefore V7,¢,, = O in the same way as
in the proof of Theorem 3.6. Hence Theorem 3.10 is proved.
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