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OPERATORS ON ALMOST HERMITIAN MANIFOLDS

YOSUKE OGAWA

Introduction

Recently C. C. Hsiung [1] showed, among other results on the realization
of the complex Laplace-Beltrami operator • on an almost Hermitian space,
that if for an almost Hermitian structure the relation π = Λ/2 holds for all
forms of degrees 0 and 1, then the structure is Kaehlerian, where Δ denotes
the real Laplace-Beltrami operator this result was a conjecture for some time
and is an improvement of a theorem by Kodaira-Spencer [2]. In the present
paper, we point out that the two definitions of the operator • given by Ko-
daira-Spencer and C. C. Hsiung respectively are different, and extend the
above result of Hsiung by showing that for an almost Hermitian structure if
• according to either definition is real on all forms of degrees 0 and 1, then
the structure is Kaehlerian1.

Let 77 be the projection mapping onto the subspace composed of elements

of type (r, s) (see § 1), and 3 the skew-derivation of dgree 1, which coincides
on functions with 77 d and satisfies the relation dd + dd = 0. Then the

definition of the integrable condition of the almost complex structure is given
by d2 = 0, [2]. By investigating the real and imaginary parts of the operator
d, we express an equivalent condition of d2 = 0 in terms of some real operators,
and give a condition on a real operator for an almost Hermitian structure to
be Kaehlerian.

1. Definitions

Let Mn be a Riemannian space, denote its fundamental metric tensor by gλμ,
and put g = det | gλμ | . (In the following the Greek indices λ, μ, v, run from
1 to n, the dimension of the space.) Let ε^ f̂  be the generalized Kronecker's
delta, e2l...;n stand for εj;::5n, and 2FV be the algebra of differential p-forms
on Mn. Then the exterior differentiation d\ !FV -> J ^ + 1 and the adjoint

Received November 8, 1968.
i After this paper was written, Hsiung informed me that at the Summer Institute on

Relativity and Differential Geometry sponsored by the American Mathematical Society
and the National Science Foundation at the University of California at Santa Barbara in
1962 he had raised the question: If • for an almost Hermitian structure is real, is the
structure Kaehlerian?
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operator * : &v -> ̂ n~v can be written for a p-form u = (uλl...λΊ) by

(l. i) (du)λ0...λp =

(1.2) (*u)2ί...λn_p =

where F̂  denotes the covariant derivation with respect to the Riemann

connection. The exterior co-differentiation δ: &v -* « f r l denned by

(1.3) 3 = (-l)np+n+1*d*

can be expressed locally as

(1.4) (δu\,...ip = -VpupH...λv .

Let Δ be the Laplace-Beltrami operator defined by

Δ = dδ + δd ,

then by means of (1.1) and (1.3) it is easy to verify that for a form u of
degree p

(1.5) (Zf<..^ = -F'F, !^. .^ + Σ RH'uλv..t...lp + S V ^ - l i - ί p

holds, where i?^υω (or i ^ ) is the curvature (or Ricci) tensor of the Riemann

connection, w^...;...^ indicates that the subscript p replaces the subscript λi9

and uλl...
A

a...λp indicates that the subscript λa is deleted.
If a Riemannian space Mn admits an almost complex structure φλ

μ satisfying

(1.6) SPaψχPψμ

σ = gxμ ,

then it is called an almost Hermitian space. Let TC{M) be a complexification
of the tangent space of Mn, and denote by 3F? the (complexified) differential
p-forms, that is, the complex-valued functions defined on TC(M) Λ
Λ ΓC(M). For non-negative integers r, s we define the projection mapping
77: ^ c

p -> ̂ c

p where p = r + s as follows. At first

(1.7)

and its

(1 • 8)

conjugate

77/
1,0

77/ =
0,1

= (1/2)0/ - *

77/ = (1/2)0/
1,0

+ V-i

which will be abbreviated to 77 and 77 respectively. Then for a p-foτm u of
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*, we define

(1.9)

A p-iorm u of ̂ c

v is called of type (r, s) if it satisfies Π u — u.
r,s

Lemma 1.1. In an almost complex space, for any set of functions uλχ...λp

we have

(1.10) ± { Π u)λl...lp = uλl...λp .
fc = 0 p-k,k

Proof. We prove by induction. Suppose that (1.10) is true for all sets of
functions uλχ...λr for r < p; for convenience those functions are said to be of
degree r < p. Now let u = (uλQ...λp) be a set of functions of degree p + 1.
Then we have

χ p p
+ l-k,k

p + 1
y C ppi 'pP + i-kσi~'°k]7 Pi. . . 77 ^p + i-A;
= 0

• Π Vχ . . Π v*u
LLox

 llσk

 UH' Ίip + x-kvi'"V]c

= α/(p + i)!)[εjo«:::;//7,;» πP;*uH...μv + ej,-:;/^.,- π,;m,a...,p

P —

i V f C C Λcpί m pP + i-k<Ί'"^kTJ H . . . . 7 7 Pp + i-kΠ »i

. . . . /7 υA;ι/ 1

^^σfc "AΊ /'p + i-Jfcί'l iΆ;-1 '

where p+iC^ denotes the number of combinations of p + 1 different things
taken /? at a time. Considering the assumption of the induction, we get

_L V / ^ ppQ"'Pp-k"i'"σkTJ ^o . . . 77 P

k l

α = 0

In a similar way, we have

_1_ V1 Q QpV"pp-kσo"'σkJJ μi . . . JJ μP-kJJ v° . . 77

= t (-Wtfa/«.i.. i .i,
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Hence we have

= 0 p + l-k,k α = 0

which shows that (1.10) is true for any set of functions uλo...λp of degree/? + 1.

From the proof of the above lemma, we see that in an almost complex space

fi i n V C cpi" ppΠ ^i . . . Π μkff μk + 1 Π μP U — cμi ' μP U
k = 0

holds for any p-form uμi...μp, 1 < p < n.
Now we define the operators άx\ &<? -* J^ c

p + 1 of type (1,0) and d2: ^ c

p

-^ ^c

p+ι of type (2, — 1) in accordance with [2] by

(1.12) d,= Σ Π dΠ ,
r + s = p r + l,s r,s

(1.13) d2= Σ Π dΠ .
r + s = p r + 2,$-l r,s

We denote the conjugate operator of dx (or d2) by dx (or d2).
Lemma 1.2. In an almost complex space, on 2FC

V we have

(1.14) Π
r + 3,s-2 r,s

where r + s = p.
Proof. For any p-form u, we have

Π dΠu)λ0...λp

+ 3,s-l r,s

On the right hand side, there appear such terms of the types as

(ί\} Π ^i . . . 77 vi . . . cτPί'"prσί '" σ's]7 ,μί . . . Π ,μrff /i

• πσyψτuμί...μWl...vr,

(bλ Π Pi . . . TT "l . . . eτP'\ P'r°Ί ••• «'sU TT ,μί . . . TT .μ'rft ."ί
(D) 11 p ι 11,t S/Ί...c r +,»1...,,_,»'r"pi llp'r 11 «l

(c) n,r π,r • • ^^;:L:::,s^π^ • • • Π^FM.Γ

• • π,ymμ.v..μWi...4.

Thus in (a), at least one of terms of the index pairs (σί, , σ's) must coincides
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with that of (μ19 , μ r + 3), and from the fact that

77/77/ - 0 ,

we can conclude that all terms in (a) are zero. For the same reason all terms
in (b) and (c) are also zero. Hence the lemma is proved.

Taking account of Lemmas 1.1 and 1.2., we see that

(1.15) d = dλ + d2 + dx + d2

holds [2].
Next the definitions of complex analogues of the real operators d and δ in

the sense of Kodaira-Spencer [2] are as follows:

(1.16) 3 = 2d2 + dγ - d2 ,

(1.17) 2) = - * d * .

On the other hand, C. C. Hsiung defined them by the following operators

(1.18) (du)λo...λp = (1/p!) Σ Π ^ 'p Π,Φ.uμi...μp ,
r + s = p r + l,s

(1.19) (»«)i,...Jp=-Σ n,£Xv*n.'Vu,v..,v
r + s = p r,s

for a p-form u = (w^...^). Later we shall show that the relation

(1.20) S > = - * 3 *

is valid.
In order to make clear the real and imaginary parts of the operators d and

d and the others, we define the following more operators in an almost
Hermitian space Mn for a p-form u = (w^...^):

(1.21) (Γiι)2o...2p = Σ (-l)V2/^M2 o...s...2 p (p > 0) ,

(1.22) (M.....p = Σ (-1)"F^/Mw...?-;P (P > 1)

from &* to^ J ) + 1 ;

(1.23) ( D M ) , , . . . ^ ? " ! 7 , " . , . . . ^ ( P > 1 ) ,

(1.24) W<...i, = Σ (-Ό"l7Vi.«W ϊ" ip (P ̂  2)
α = 2

from ^"^ to t^'1 )"1 with
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$u = 0 , ue&1

for forms of lower degrees finally

(1.25) (Φu)λl...λp = t P Λ . J . . ^ (P > i ) ,
α = l

(1.26) (Wu)λl...λp = Ψλ^ Ψλp'*uPl...,p (p > 1)

from &p to J ^ .

2. Lemmas

We study the properties of the operators defined in § 1.
Lemma 2.1. In an almost Hermitian space, the operator Γ is a skew-

derivation and satisfies

(2.1) * Γ * = -D .

Proof. The same calculation as in the proof of Lemma 2.2 in [4] shows
that Γ is a skew-derivation, and that, for any p-form u = (uλl...λp),

holds, where n is the dimension of the space. Since n is even, we have (2.1)
immediately.

Lemma 2.2. In an almost Hermitian space, the operator φ is a derivation
and satisfies, for any p-form up,

(2.2) J j

(2.3) dΦ-Φd= -Γ + γ .

Proof. By a directive calculation with respect to an orthonormal local
coordinate system for any p-form u = (uλl...λp) we have

(*Φ*u)λl...λp = (1/(W - p)lpl)ggμiPl grn-pPn-pgTi'1 . . . gvPτPUι)l...Vp

n-p i

' 2 ] Ψn"ετl'"τpf1l" σ "μn-p^P1'"Pn-pλV.'λp
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Since n is even, we have (—l)*<n-*> = (—l) p , and thus (2.2) is proved.
As for (3.3), we get

+ φλί

Pf7λoUλ1'"P'"λp — ψλo

P^HUh'"Ap"^p — Σ.PJ/P'iiUλv..lo.:P.~λp

iu\o~'tp = Ψh? PUh-*p - <Pι/PpUi1.Λ0.»ip + ΨHV^-'P' ΊP

Hence it follows that

(dΦu — Φdύ)λQ...λp = (FλQφλ.
p — PλίφλQ

p)uλl...l...λp— Σ ( ~ Ό V / ί 7 ^ ^ . . . ^ . . . ^

a

a<β a p a ^

= (ru - Γu\...λp.

Next considering the following relation

« λ p+q λ

+ qφ Pj | *γ ^i — PpPp + i — P — Pp + q

j'=p + l

μχ . .. μ +q

V5
we have

(ΦM Λ V ) ^ . . . ^ ^ + (M Λ Φv)h...Xp+q

^ ^

= Φ ( M Λ

Thus the operator Φ is a derivation.
Corollary 2.3. /« an almost Hermitian space, the operator γ is a skew-

derivation.
Proof. Since Φ is a derivation, Φd — dφ is a skew-derivation. By virtue of

Lemma 2.1 and equation (2.3), γ is a skew-derivation.
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Corollary 2.4. In an almost Hermitian space, the relation

(2.4) dΓ + Γd = dγ + yd

holds.

Proof. (2.3) implies

-dΦd = d(-Γ + y) , dΦd = ( - Γ + y)d ,

from which follows (2.4) immediately.

Lemma 2.5. In an almost Hermitian space, we have

(2.5) *γ* = — & — i(δ<p)

where i(δψ) denotes the inner product with respect to a 1-form δψ (φ — φiμ).
Proof. From the definition of y, we have, for a p-form u,

where we put Λλμ

p = V\φμ

p — Vμψλ

p. Therefore we have

p+l

°PVP7J c Λ A

. ...

-̂w/t,....,

= -(%δφ)u - p

Theorem 2.6. /n an almost Hermitian space, we have the following
relations:

(2.6) d = (d- V ^ ϊ Γ)/2 ,

(2.7) 25 = (δ - V^ϊ D)/2 .

Proof. Using

77/77/ = 77/ , 77/77/ = 0 , 77/77/ = 0 , 77/77/ = 77/ ,

we have
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= [i/(p!(r + \)\s\w^-yy Ίfl/πμ^ • πμ;rπH°> • • • π,;>

μr+/r+ι... πμ;*π;vτun...
Pp

Σ!) Σ o v c k π μ ^
o

which is reduced to, in consequence of (1.11),

giving (2.6). As for (2.7), from the definition we have

(»«)i,...ip

V //i 'Vi υs77 ^i
, 7

p rlsl
r 1Ivi l l v s i L τ V UPi" Pr

σi'"σs

= - Σ p r\(s— 1 ) !

£ \P ~~ 1)

(p — 1)! r=i r!(p — r — 1)!

which becomes, due to (1.11),

= -Π/Fτuph...λp = (-1/2XP + <S=ϊφt'V*)u^...Xp ,

giving (2.7).
Corollary 2.6. In an almost Hermitian space, we have

(2.8) S) = - * 3 * .

Proof. Since the dimension n of the space is even, from (1.3) we have
δ = — *d* for any p-form. Hence (2.8) is an immediate consequence of
Theorem 2.6 and Lemma 2.1.

Corollary 2.7. In an almost Hermitian space, we have

(2.9) d = (d + V ^

(2.10) S^GS + V 3
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Next we study the complex operators d and 2). Since 9 is a skew-derivation,
we first show how d is expressed on J^° and ^ ι . Let / be a 0-form. Then we
have

(df)λ = Π/Fpf = (l/2)(df - V ^ ϊ Γf) = (df\ ,
1,0

and therefore

(2.11) df = df = (df-J=ΪΓf)/2.

Let u be a 1-form. Then we shall show that the relation

(2.12) du = (l/2)(Λι - V ^ (Γ - γ)u)

is satisfied. For this purpose, we need the following formulas:

Πw =
2,0

(2.13) 77^ = (l/2)(w + Ψw) ,
1,1

0,2

where >v is any 2-form. By decomposing the 1-form u as u = uλ + u2, where
uλ (resp. w2) denotes the part of type (1,0) (resp. type (0,1)), we have

dxux = Πdu, = (l/4)(rfn1 - Ψduλ - *J~^Λ (ΦduJ) ,
2,0

d2u, = 0 ,

2u, = Πdu, =
0,2

2,0

2M2 = 0 .

/
1,1

= (l/4)(dίi2 -

and therefore, by virtue of (1.16),

du2 = du2 - J^Λ (Φdu2)/2 ,

which imply

du = V^T
0,1

« - Φdu)) .

Making use of (2.3), we hence arrive at (2.12).
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Now we consider an operator

from &v to , F C

P + 1 . Since γf vanishes for any 0-form /, (2.11) and (2.12) show
that d and d' coincide on any form of degrees 0 and 1. Owing to Lemma 2.1
and Corollary 2.3, the operator d' is a skew-derivation. Therefore d coincides
with d' on all forms of any degree. By applying the adjoint operator * and
using Lemmas 2.1 and 2.5, we obtain

- * d * = (l/2)(<5 - V : r ϊ (D - -0 - ί(δφ))) .

Since ® is defined by — *d*, we have proved
Theorem 2.8. In an almost Hermitian space, we have

(2.14) d = (l/2)(d - V - l (Γ -

(2.15) S> = (l/2)(ί - V ^ (D - -0 - ι

Remark. As is easily seen, d and d coincide if and only if the operator γ
vanishes. This condition is equivalent to

(2.16) Vλψμv = Vμφλv.

As the tensor Vλφμv is skew-symmetric in the indices μ, v, from (2.16) we can
easily see that Vλφμv vanishes, and therefore that the structure is Kaehlerian.
Hence the operator d coincides with 3 if and only if the structure is Kaehlerian.

3. Theorems

In [2], the integrability condition of the almost complex structure is defined
by a2 = 0. Since, from Theorem 2.8,

(Γ - Ty + V - l (dΓ + Γd-dγ- γd)) ,

of which the imaginary part vanishes because of Corollary 2.4, we obtain

which is a real operator. Hence we reach
Theorem 3.1. In an almost Hermitian space, in order that the structure be

integrable it is necessary and sufficient that

We shall use the operator Γ to characterize a Kaehlerian structure by show-
ing that an almost Hermitian structure is Kaehlerian if and only if the operator
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Γ2 vanishes. As Γ is a skew-derivation, Γ2 is a derivation. Therefore if Γ2

vanishes for all forms of degrees 0 and 1, then it vanishes for all forms of any
degree. If we take a 0-form / and a 1-form u = (uλ), then we have

where © indicates that the terms are summed cyclicly with respect to λ, μ, v.

Thus the condition Γ2 = 0 is equivalent to the relations

(3.1) ψ^Pψμ

σ - φ f V p ψ i = ° 5

(3.2) © φtφ R,.; = o .
λ,μ,v

Theorem 3.2. In a Kaehlerian space, the operator Γ2 always vanishes.
Proof. Since the complex structure φf is a covariant constant in a

Kaehlerian space, (3.1) follows obviously. Moreover we have (see, for instance,
[1, (4.13)])

and therefore

which easily gives (3.2).
In order to show the validity of the converse of Theorem 3.2 we need the

following lemmas. The almost Hermitian structure is said to be almost semi-
Kaehlerian if the fundamental 2-form is co-closed, that is, if the relation
Vλφλμ = 0 holds.

Lemma 3.3. If Γ2 = 0 in an almost Hermitian space, then the structure
is almost semi-Kaehlerian.

Proof. Transvecting (3.1) with φτ\ we have

vτΨ; + φτ

λφ;vpΨλ° = o .

Contracting τ and a and noting ψλaVpφλσ = 0, we thus prove our lemma.
Lemma 3.4. // Γ2 = 0 in an almost Hermitian space, then we have

(3.3) © φ/Rμvp

ω = 0 ,

(3-4) (1/2W + ψ/R/ = 0 ,

O,S) φ/Rpβ + <p/Rpi = 0 .
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Proof. From (3.2), we get

(3.6) φ/φ;Ψ;Rpaτ

ω = φ/Rvpμ

ω - φ/Rvpλ

ω .

Taking the sum of the terms of (3.6) cyclicly with respect to the indices λ, μ, v,
we have

0 = © φfφμ φ;R,.τ

m = © φλ

pRμvp

ω ,
λ,μ,v λ,μ,v

giving (3.3). Contraction of λ and ω in (3.3) yields

(3.7) φλ'Rλpμv + φ/Rpv - φ/Rpμ = 0 .

On the other hand, from (3.6) we get

-φSφλ φ;R,.t- = φ/Rvpμ

ω - φ/Rλpμ* - φ/Rvλp

ω ,

which can easily be reduced to (3.4) by contracting with gλμ. Finally, the
relation (3.5) follows readily from (3.7) and (3.4).

Lemma 3.5. If Γ2 = 0 in an almost Hermitian space, then

(3.8) VψΨvφλω = 0 .

Proof. Since the structure is co-closed by Lemma 3.3, differentiating (3.1)
by Fx, we have

Owing to (3.4) and (3.5) the left hand side becomes

FλFpΨ; - VpVλΨ;) = (-

In the same way, the second and third terms on the right hand side are reduced
to — Rσ

μ and Rμ% respectively and thus we have (3.8).
Theorem 3.6. In an almost Hermitian space, if the operator Γ2 vanishes

everywhere, then the space is Kaehlerian.
Proof. At first we show that

(3.9) ψμvV^VpΨμv = 0 .

In fact, by virtue of (3.1) we have

which and (3.8), (3.5) imply
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contracting with φμ

σ and applying Lemma 3.5 we hence obtain (3.9).
From (3.9) follows immediately

VγΨλΨμv = (l/2WΨλ(φ<"φμv) - φμΨΨλφμv = 0 ,

which means Vλψμv = 0, showing the structure to be Kaehlerian.
Now we define the complex Laplace-Beltrami operators • and • by

• = sa + as ,
D = 3)5 + SS> .

Then using Theorems 2.6 and 2.8, we can calculate the real and imaginary
parts of the operators • and •• First, for the operator • we have

Theorem 3.8 // the operator • in an almost Hermίtian space is real on
all forms of degrees 0 and 1, then the space is Kaehlerian (cf. [1]).

Proof. From Theorem 2.6 and Corollary 2.7 it follows that

4D = Δ + ΦΓ + ΓD) + V : z ϊ (δΓ + Γδ- dD - Dd) .

Therefore by the assumption we have, on J^0 and ^ ι ,

(3.10) δΓ + Γδ - dD - Dd = 0 ,

which implies, for a 0-form /, δΓf — Ddf = δΓf = 0, since δf = Df = 0.
Thus FpψpΨJ = 0 for all 0-form /, due to F/J = VσVpf. By choosing
orthogonal geodesic local coordinates x\ , xn at a point P and putting
f = x% we can easily see that Vpψp° = 0 at every point P, which means that
the space is almost semi-Kaehlerian. Application of (3.10) to a 1-form u = (uλ)
then gives

-V'φ;V.Uι + (V'φS + Vλψ

apWpuσ + (ϊ<ppσRpσλ

τ + φ/R;)uτ = 0 ,

where the first term is zero. Now to the above equation we first apply u =
δμdxμ for a fixed λ, for which (F pu σ) p = 0, and then apply u = xpdxμ for any
fixed distinct p and μ, for which (Pσuτ)p = δpδ?.

(3.11) Vλψ; + Γ ^ / = 0 ,

(3.12)

(3.11) shows that the space is almost Tachibana. From Koto's theorem (see
K. Yano [5, p. 180, Theorem 2.5]) if (3.12) is satisfied in an almost Tachibana
space, then the space is Kaehlerian. Thus Theorem 3.8 is proved.

Next we consider the operator • . From Theorem 2.8, we have

4 D = A + (Γ - γ)(D - £ - i(δφ)) + ( / > - £ - i(δφ))(Γ - γ)

(3.13) - V ^ [(P-9- i(δφ))d + dφ - $ - i(δφ))

- δ(Γ - γ) - (Γ - γ)δ] .
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Theorem 3.9. // the complex Laplace-Beltrami operator • for an almost
Hermitian structure is real on all forms of degree 0, then the structure is
almost semi-Kaehler.

Proof. For any 0-form /, since δf — Df = 0 and df = γf — 0, by our
assumption from (3.13) follows immediately

φ - & - i(δφ))df - δΓf = 0 ,

which further reduces to, because of Ddf = 0 and $df = 0,

Kδφ)df -δΓf = O,

implying that Vpψp

aVJ = 0 for any 0-form /. Thus Vpφp

σ = 0, and the theorem
is proved.

Theorem 3.10. // the operator • for an almost Hermitian structure is real
on all forms of degrees 0 and 1, then the structure is Kaehlerian.

Proof. By definition, for a 1-form u we have 3u = 0, and

u\ = Fpφ\Fpuσ - FγλFσup ,

(δγu)λ = VpVιψ;ua - FpFpφ/uσ + FλφpΨ
puσ - Fpφx

σFpuσ .

As the structure is almost semi-Kaehlerian due to Theorem 3.9, from the
proof of Theorem 3.8 we obtain

o° - F°φ/)Fpuσ + (-FpFpφλ

τ - φ/Rp

τ + Rλ

pψp

τ)uτ = 0 ,

which implies

FλΨ; + Fμφ/ = 0 , V'Vtfϊ + φ/R; - Rλ

p

Ψ; = 0 ,

by an argument similar to that in the proof of Theorem 3.9. Contracting with
φ\ in the last equation gives (3.9) and therefore Fλφμv = 0 in the same way as
in the proof of Theorem 3.6. Hence Theorem 3.10 is proved.
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