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POSITIVELY CURVED n-MANIFOLDS IN Rn 2

ALAN WEINSTEIN

Introduction

In view of the difficulty of classifying all compact Riemannian manifolds
with strictly positive sectional curvature, we make the additional hypothesis
that the manifold is isometrically immersed in a Euclidean space with
codimension 2. In § 1 we prove a theorem in what B. O'Neill has called
"pointwise differential geometry" (i.e. linear algebra). This theorem is applied
in § 2 to obtain results about the manifolds specified in the title. For instance,
we show that a metric of positive curvature on S2 X S2 cannot be induced by
an immersion in R6.

1. An algebraic theorem

Let V and W be real vector spaces of finite dimensions n and p respectively,
and B: V X V —> W a symmetric bilinear form on V with values in W.
Suppose n > 2 and W has an inner product < , >. Define the associated
curvature form RB: ΛΨ X Λ2V -> R by

RB(X Λy,zΛw) = <B{x, z), B(y, w)> - <£(*, w),

RB is again symmetric, and is positive definite iff RB(ω, ω) > 0 whenever ω Φ 0.
We say that i ? s has positive sectional values iff i?β(x Λ y, x A y) > 0 whenever
x Ay φθ.

Consider the following conditions on B:
(a) There exists an orthonormal basis {e19 , ep} for PF such that the real-

valued forms on V defined by (JC, y) ι-> <B(JC, y), ê > are all positive definite.
(b) RB is positive definite.
(c) RB has positive sectional values.

Theorem 1. (a) => (b) =φ (c). // p = 2, ίA*?Λ (c) ^ (a). In fact, let p = 2
am/ ^ = {β | i? β /zαs positive sectional values}. Then there are continuous
functions eι and e2 from 0> to W, canonically determined by an orientation of
W, such that for each B e &1, {ex(B)9 e2(B)} is an orthonormal frame for W, and
the forms (x, y) ι-> (B(x, y), e^B)} are both positive definite.
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Proof, (a) => (b): If Bt denotes the form (x,y) *-+ <B(x, y), O , then

B(x,y) = Σ Bt(x9y)ei9 and ΛΛ = Σ # „ where

Rt(x Λy,z Λw) = Bt(x, z)Bt(y, w) - Bt(x, w)B,(z, y) .

To prove that RB is positive definite, it suffices to prove that all the Rt are
positive definite. For fixed /, let {x19 , xn) be a basis for V which diagonalizes
Bt\ i.e., Bi(xj9xte) = λjdjk. λj > 0 for all /, because Bt is positive definite.
Then {xj Λ xk \ j < k) forms a basis for Λ2V which diagonalizes Rt with proper
values λjλk > 0, so 7?̂  is positive definite.

(b) =̂> (c) is trivial.
p = 2: Let 7?5 have positive sectional values. Then for all pairs (x, y) of

linearly independent vectors,

, y), BU, y)> > 0

Since n > 2, # 0 , JC) ^ 0 when x Φ 0, and

( 2 )

so long as x and y are both non-zero.
Now choose an element x0 Φ 0 in V and an orientation for W. For x Φ 0

in F, let ^(Λ:) denote the directed angle from B(x0, x0) to B(x, x). θ(x) is a priori
defined only modulo 2π, but (2) implies that we can define θ as a continuous
function from the non-zero elements of V to the interval ( — π, π). From the
quadratic homogeneity of B, it follows that θ factors through the (compact)
projective space of V, so it must attain its maximum # m a x and minimum # m i n .
Now (2) implies that

( 3 ) flπiax - 0mln < * / 2 •

Let

( 4 ) θ = (^m a x + θmin)/2 ,

( 5 ) θ^θ + π/4,

( 6 ) θ2 = θ - τr/4 .

Let ^(5) and e2(5) be the unit vectors in W such that the directed angle from
B(x0, x0) to βi(B) is θi. It is easy to see that eλ(B) and e2(B) are independent of
the choice of x0 and that they depend continuously o n 5 e ^ . (5) and (6) imply
that {e^B), e2(B)} is an orthonormal frame. It follows from (3), (4), (5), and
(6) that the angle between B(x, x) and et{B) is less than π/2 for any x φ 0, so
that the forms (x, y) H* <2?(X, y)ei(B)y are both positive definite.
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2. Applications

Let Mn be a Riemannian manifold isometrically immersed in Euclidean
space Rn+2. The Gauss equations state that the curvature tensor of Mn,
considered as a symmetric bilinear form on tangent bivectors, is equal to RB,
where B is the second fundamental form of Mn, considered as a symmetric
bilinear form on the tangent space with values in the normal space. The
following result follows immediately from Theorem 1.

Theorem 2. // Mn is a manifold of strictly positive sectional curvature,
isometrically immersed in Rn+2, then the curvature tensor of Mn is positive
definite. If Mn is orientable, the normal bundle of Mn has a canonical
trivialization, so Mn is stably parallelizable.

Theorem 3. Let Mn be a compact manifold of strictly sectional positive
curvature, isometrically immersed in Rn+2.

(1) ThenH2(Mn,R) = 0.
(2) // n is even, the Euler characteristic of Mn is positive.
(3) // Mn is orientable, the Pontryagin and Stiefel-Whitney classes of Mn

are trivial.
Proof.
(1) By Theorem 1, the curvature tensor of Mn is positive definite.

According to Berger [1], this implies that every harmonic 2-form on Mn

vanishes identically.
(2) By taking the orientable double covering of Mn, if necessary, we may

assume that Mn is orientable. Now the Gauss-Bonnet integrand of Mn, whose
integral is the Euler characteristic, is positive when the curvature tensor is
positive definite. (This last assertion is due to B. Kostant (unpublished)).

(3) M is stably parallelizable.
Remark. The product Sm x Sn (m, n > 1) of two spheres is naturally

embedded in Rm+n+2 with non-negative sectional curvature. Theorem 3 implies
that there is no immersion of Sm X Sn in Rm+n+2 with positive sectional
curvature, unless, perhaps, m and n are both greater than 2 and not both odd.
(The case where m o r n equals 1 is eliminated by the theorem of Bochner and
Myers which states that the first Betti number (over R) of a compact manifold
of positive Ricci curvature must be zero.)

Problems. Classify all positively curved compact Mn isometrically
immersed in Rn+2. In case n = 4, Theorem 3 and the theorem of Bochner and
Myers imply that M4 must be a real homology sphere. If Mn is orientable and
embedded, Theorem 2 and the Pontryagin-Thom construction [2, §7]
associate to Mn an element of πn+2(S2). Is this element always zero (i.e., is
Mn always framed cobordant to the unit sphere in a hyperplane of Rn+2)Ί

In Rn+\ a positively curved Mn has positive definite second fundamental
form, and this leads to the result that Mn is the boundary of a convex body.
In Rn+2, we know by Theorem 1 that there is a quadrant in each normal space
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which contains the range of the second fundamental form. Perhaps this fact
can be used to obtain global results concerning the way in which Mn lies
in Rn+2.

A restricted version of the problem above is to classify all positively curved
compact ^-dimensional manifolds isometrically immersed in Sn+1 cz Rn+2.
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