## HOLOMORPHIC VECTOR FIELDS AND THE FIRST CHERN CLASS OF A HODGE MANIFOLD

## YOZO MATSUSHIMA

In a recent paper [2] Bott has proved that if a connected compact complex manifold admits a nonvanishing holomorphic vector field, then all the Chern numbers of M vanish.

In this paper we first prove the following theorem.

**Theorem 1.** Let M be a connected Hodge manifold, and suppose that there exists a nonvanishing holomorphic vector field X in M. Then there exists a nonvanishing holomorphic 1-form  $\omega$  in M such that  $\omega(X) \neq 0$ . In particular, the first Betti number  $b_1(M)$  of M is different from zero.

We shall then study the structure of a Hodge manifold with zero first Chern class. We denote by  $c_1(M)$  and q(M) the first Chern class and the irregularity (i.e., one half of the first Betti number) of M respectively, and by G the identity component of the group of all holomorphic transformations of M. The group G is a connected complex Lie group.

We shall prove the following two theorems which sharpen some of the recent results of Lichnerowicz [5].

**Theorem 2.** Let M be a connected Hodge manifold such that  $c_1(M) = 0$ . Then the group G is an abelian variety of dimension q(M) and the isotropy subgroup of G at any point in M is a finite group.

**Theorem 3.** Let M be a connected Hodge manifold and assume that  $c_1(M) = 0$  and q(M) > 0. Then there exist an abelian variety A and a connected Hodge manifold F with the following properties.

a)  $c_1(F) = 0$  and q(F) = 0;

b)  $A \times F$  is a finite regular covering space of M and the group of covering transformations is solvable.

After having finished this work, the author learned that Calabi stated these two theorems in his paper [4] as his well-known conjecture, and proved them under the assumption that M is a connected compact Kähler manifold with vanishing Ricci curvature tensor.

1. Let M be a connected compact Kähler manifold, and  $\mathfrak{h}$  and  $\mathfrak{g}$  denote, respectively, the complex vector space of all holomorphic 1-forms and the complex Lie algebra of all holomorphic vector fields in M. Then dim  $\mathfrak{h} = q(M)$  and we can identify  $\mathfrak{g}$  with the Lie algebra of the group G. If  $\omega \in \mathfrak{h}$  and  $X \in \mathfrak{g}$ , then

Communicated November 27, 1968 and, in revised form, October 27, 1969.

 $\omega(X)$  is a holomorphic function on M and hence a constant. Therefore  $(\omega, X) \rightarrow \omega(X)$  defines a bilinear form B on  $\mathfrak{h} \times \mathfrak{g}$ .

Now let  $\alpha$  be the canonical holomorphic mapping of M into the Albanese variety A(M) of M [1], [6]. There exists also a complex Lie group homomorphism  $\hat{\alpha}$  of G into the complex torus A(M) such that  $\alpha(\varphi x) = \hat{\alpha}(\varphi)\alpha(x)$  for any  $\varphi \in G$  and  $x \in M$ . Let I be the kernel of the homomorphism  $\hat{\alpha} : G \to A(M)$ , and  $I^{0}$  the identity component of I. The subalgebra i of g corresponding to I consists of all holomorphic vector fields X in M such that  $\omega(X) = 0$  for all  $\omega \in \mathfrak{h}$ . In particular, if zero(X),  $X \in g$ , is non-empty, then  $X \in i$ , where zero(X) denotes the set of zero points of X. Assume now that M is a Hodge manifold, and let  $\varphi: M \to P^N$  be a projective imbedding of M into a complex projective space  $P^{N}$ . Let  $G_{\omega}$  be the group of all holomorphic transformations of M induced by the projective transformations of the ambient space  $P^N$  which leave stable the submanifold M. The subalgebra  $g_{\omega}$  of g corresponding to  $G_{\omega}$  consists of the restriction in M of all holomorphoic vector fields in  $P^N$  tangent to M. By a fixed point theorem of Borel [3], every  $X \in g_{\omega}$  has a zero point and hence  $g_{\varphi} \subset i$  for any projective imbedding  $\varphi$ . On the other hand, a theorem of Blanchard [1, Theoreme principal I] asserts that there exists a projective imbedding  $\varphi_0$  such that  $I \subset G_{\varphi_0}$ . It follows from these that 1)  $i = g_{\varphi_0}$  and hence i consists of all  $X \in g$  such that zero(X) is non-empty; 2)  $[I: I^0] < \infty$ , because  $I^0$  coincides with the identity component  $G^0_{\varphi_0}$  of  $G_{\varphi_0}$  and, since  $G_{\varphi_0}$  is an algebraic group, we have  $[G_{\varphi_0}: G_{\varphi_0}^0] < \infty$ . We have thus proved

**Proposition 1.** Let M be a connected Hodge manifold, and I the kernel of the homomorphism  $\hat{\alpha}: G \to A(M)$ . Then the number of connected components of I is finite, and the Lie algebra i of I consists of all holomorphic vector fields X in M such that zero(X) is non-empty.

Now let X be a nonvanishing holomorphic vector field in M. Then X does not belong to i by Proposition 1, and there exists a holomorphic 1-form  $\omega$  such that  $\omega(X) \neq 0$ , because i consists of all  $Y \in \mathfrak{g}$  such that  $\omega(Y) = 0$  for all  $\omega \in \mathfrak{h}$ . Since  $\omega(X) \neq 0$ ,  $\omega$  is nonvanishing, which proves Theorem 1.

**Remark.** Let M be an even-dimensional connected compact semi-simple Lie group. Then there exists a left invariant complex structure on M, a right invariant vector field in M is a nonvanishing holomorphic vector field, and the first Betti number of M is zero. This example shows that the existence of a nonvanishing holomorphic vector field does not necessarily imply the nonvanishing of the first Betti number of a connected compact complex manifold. However, in this example, for any right invariant vector field X there exists a right invariant 1-form  $\omega$  such that  $\omega(X) \neq 0$ , and  $\omega$  is holomorphic although  $\omega$  is not a closed form.

2. Let M be a connected compact Kähler manifold such that  $c_1(M) = 0$ . Then by a theorem of Lichnerowicz [5, a] the bilinear form  $B: \mathfrak{h} \times \mathfrak{g} \to C$  is nondegenerate. In particular, we have dim  $\mathfrak{g} = \dim \mathfrak{g} = q(M)$  and every non-zero holomorphic vector field in M has no zero point. Hence from Proposition 1 we obtain the following

**Proposition 2.** Let M be a connected Hodge manifold such that  $c_1(M) = 0$ . Then the homomorphism  $\hat{\alpha}: G \to A(M)$  is an isogeny, that is, a surjective homomorphism with a finite kernel I. In particular, G is an abelian variety of dimension q(M). If  $\varphi: M \to P^N$  is a projective imbedding, then the group  $G_{\varphi}$  of holomorphic transformations of M induced by the projective transformations of  $P^N$  is finite.

The assertion of Theorem 2 is included in Propositions 1 and 2.

3. Let *M* be a connected Hodge manifold such that  $c_1(M) = 0$  and let  $M_1 = \alpha^{-1}(e)$ , where  $\alpha: M \to A(M)$  is the canonical holomorphic mapping and *e* denotes the identity element of the torus A(M). From the universality of the mapping  $\alpha$ , we can easily conclude that  $M_1$  is connected [5, b] and see that  $c_1(M_1) = 0$ . Since the finite group *I* acts on  $M_1$ , let *E* be the holomorphic fibre bundle over A(M) with fibre  $M_1$  associated with the holomorphic principal bundle  $0 \to I \to G \to A(M) \to 0$ . Then *E* is the quotient of  $G \times M_1$  by the action of *I* defined by  $\psi(\varphi, u) = (\varphi \cdot \psi^{-1}, \psi(u))(\psi \in I, \varphi \in G, u \in M_1)$ . Let  $\beta$  be the holomorphic mapping of  $G \times M_1$  into *M* defined by  $\beta(\varphi, u) = \varphi(u)$ . Then it is easy to see that  $\beta$  is surjective and that  $\beta$  induces a bijective holomorphic mapping of *E* onto *M* such that the diagram



is commutative. Thus, M is a fibre bundle over A(M) with projection  $\alpha$  and fibre  $M_1$ . It follows also from the above that  $G \times M_1$  is a finite covering space of M with I as the group of covering transformations. If  $q(M_1) = 0$ , then we have completed the proof of Theorem 3, because I is abelian. Assume  $q(M_1) > 0$ . Then we can find a connected Hodge manifold  $M_2$  such that  $c_1(M_2)$ = 0 and that  $G_1 \times M_2$  is a covering space of  $M_1$  with a finite abelian covering transformation group, where  $G_1$  denotes the identity component of the group of holomorphic transformations of  $M_1$ . Continuing in this way we get a sequence  $\{M_i\}$  such that  $c_1(M_i) = 0$ , dim  $M_{i+1} = \dim M_i - q(M_i)$  for  $i = 0, 1, \cdots$ , where  $M_0 = M$ . Therefore, there must exist an integer k such that  $q(M_k) = 0$ (the dimension of  $M_k$  might be zero). Let  $A = G \times G_1 \times \cdots \times G_{k-1}$  and F $= M_k$ . Then A is an abelian variety and  $A \times F$  is a covering manifold of M with a finite solvable covering transformation group. Hence Theorem 3 is proved.

## References

- [1] A. Blanchard, Sur les variétés analytiques complexes, Ann. Ecole Norm. Sup. 73 (1956) 157-202.
- [2] R. Bott, Vector fields and characteristic numbers, Michigan Math. J. 14 (1967) 231– 255.

## YOZO MATSUSHIMA

- [3] A. Borel, Groupes linéaires algébriques, Ann. of Math. J. 64 (1956) 20-82.
- [4] E. Calabi, On Kähler manifolds with vanishing canonical class, Algberaic geometry and topology, A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, 1957, 78-89.
- [5] A. Lichnerowicz, a) Variétés kählériennes et première classe de Chern, J. Differ-ential Geometry 1 (1967) 195-224, b) Variétés kählériennes à première classe de Chern positive ou nulle, C. R. Acad. Sci. Paris 268 (1969) 876-880.
  [6] A. Weil, On Picard varieties, Amer. J. Math. 74 (1952) 865-894.

UNIVERSITY OF NOTRE DAME

480