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HOLOMORPHIC VECTOR FIELDS AND THE FIRST
CHERN CLASS OF A HODGE MANIFOLD

YOZO MATSUSHIMA

In a recent paper [2] Bott has proved that if a connected compact complex
manifold admits a nonvanishing holomorphic vector field, then all the Chern
numbers of M vanish.

In this paper we first prove the following theorem.

Theorem 1. Let M be a connected Hodge manifold, and suppose that there
exists a nonvanishing holomorphic vector field X in M. Then there exists a non-
vanishing holomorphic 1-form o in M such that o(X) # 0. In particular, the
first Betti number b,(M) of M is different from zero.

We shall then study the structure of a Hodge manifold with zero first Chern
class. We denote by c,(M) and g(M) the first Chern class and the irregularity
(i.e., one half of the first Betti number) of M respectively, and by G the identity
component of the group of all holomorphic transformations of M. The group
G is a connected complex Lie group.

We shall prove the following two theorems which sharpen some of the recent
results of Lichnerowicz [5].

Theorem 2. Let M be a connected Hodge manifold such that ¢,(M) = 0.
Then the group G is an abelian variety of dimension q(M) and the isotropy
subgroup of G at any point in M is a finite group.

Theorem 3. Let M be a connected Hodge manifold and assume that c,(M)
=0 and q(M) > 0. Then there exist an abelian variety A and a connected
Hodge manifold F with the following properties.

a) c¢(F)=0and q(F) = 0;

b) A X F is a finite regular covering space of M and the group of covering
transformations is solvable.

After having finished this work, the author learned that Calabi stated these
two theorems in his paper [4] as his well-known conjecture, and proved them
under the assumption that M is a connected compact Kiahler manifold with
vanishing Ricci curvature tensor.

1. Let M be a connected compact Kihler manifold, and f) and g denote,
respectively, the complex vector space of all holomorphic 1-forms and the com-
plex Lie algebra of all holomorphic vector fields in M. Then dim ) = q(M) and
we can identify g with the Lie algebra of the group G. If w e §) and X € g, then
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o(X) is a holomorphic function on M and hence a constant. Therefore (v, X)
— w(X) defines a bilinear form B on §) X g.

Now let « be the canonical holomorphic mapping of M into the Albanese
variety A(M) of M [1], [6]. There exists also a complex Lie group homomor-
phism & of G into the complex torus A(M) such that a(px) = &(p)a(x) for any
¢ €G and x e M. Let I be the kernel of the homomorphism &: G — 4(M), and
I° the identity component of I. The subalgebra 1 of g corresponding to I con-
sists of all holomorphic vector fields X in M such that w(X) = O for all w e §.
In particular, if zero(X), X eg, is non-empty, then X ¢i, where zero(X) denotes
the set of zero points of X. Assume now that M is a Hodge manifold, and let
¢: M — P" be a projective imbedding of M into a complex projective space
P¥. Let G, be the group of all holomorphic transformations of M induced by
the projective transformations of the ambient space P¥ which leave stable the
submanifold M. The subalgebra g, of g corresponding to G, consists of the
restriction in M of all holomorphoic vector fields in P¥ tangent to M. By a
fixed point theorem of Borel [3], every X eg, has a zero point and hence
g, C i for any projective imbedding ¢. On the other hand, a theorem of
Blanchard (1, Theoreme principal I] asserts that there exists a projective im-
bedding ¢, such that I C G,,. It follows from these that 1) i = g,, and hence
i consists of all X ¢ g such that zero(X) is non-empty; 2) [/: I’ < «, because
I° coincides with the identity component G}, of G, and, since G,, is an algebraic
group, we have [G,,: G} ] < . We have thus proved

Proposition 1. Let M be a connected Hodge manifold, and I the kernel of
the homomorphism &: G — A(M). Then the number of connected components
of 1 is finite, and the Lie algebra i of I consists of all holomorphic vector ﬁelds
X in M such that zero(X) is non-empty.

Now let X be a nonvanishing holomorphic vector field in M. Then X does
not belong to i by Proposition 1, and there exists a holomorphic 1-form
o such that w(X) # 0, because i consists of all Y ¢ g such that o(Y) = 0 for
all w € §j. Since w(X) # 0, w is nonvanishing, which proves Theorem 1.

Remark. Let M be an even-dimensional connected compact semi-simple
Lie group. Then there exists a left invariant complex structure on M, a right
invariant vector field in M is a nonvanishing holomorphic vector field, and the
first Betti number of M is zero. This example shows that the existence of a
nonvanishing holomorphic vector field does not necessarily imply the non-
vanishing of the first Betti number of a connected compact complex manifold.
However, in this example, for any right invariant vector field X there exists a
right invariant 1-form » such that o(X) # 0, and o is holomorphic although
o is not a closed form.

2. Let M be a connected compact Kahler manifold such that ¢,(M)=0. Then
by a theorem of Lichnerowicz [5, a] the bilinear form B: § X g — C is non-
degenerate. In particular, we have dimg = dim g = q(M) and every non-zero
holomorphic vector field in M has no zero point. Hence from Proposition 1 we
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obtain the following

Proposition 2. Let M be a connected Hodge manifold such that ¢,(M) = 0.
Then the homomorphism &: G — A(M) is an isogeny, that is, a surjective
homomorphism with a finite kernel I. In particular, G is an abelian variety of
dimension q(M). If o: M — P" is a projective imbedding, then the group G,
of holomorphic transformations of M induced by the projective transformations
of P¥ is finite.

The assertion of Theorem 2 is included in Propositions 1 and 2.

3. Let M be a connected Hodge manifold such that ¢,(M) = 0 and let M,
= a~'(e), where a: M — A(M) is the canonical holomorphic mapping and e
denotes the identity element of the torus A(M). From the universality of the
mapping a, we can easily conclude that M, is connected [5, b] and see that
¢,(M,) = 0. Since the finite group I acts on M,, let E be the holomorphic fibre
bundle over A(M) with fibre M, associated with the holomorphic principal
bundle 0 -/ — G — A(M) — 0. Then E is the quotient of G x M, by the
action of I defined by ¢(p, u) = (p- ¢, (W)Y el,pe G, ueM,). Let f be the
holomorphic mapping of G X M, into M defined by B(p, u) = ¢(u). Then it is
easy to see that J is surjective and that 3 induces a bijective holomorphic map-
ping of E onto M such that the diagram

B

NA

AM)

is commutative. Thus, M is a fibre bundle over 4(M) with projection « and
fibre M,. 1t follows also from the above that G X M, is a finite covering space
of M with I as the group of covering transformations. If g(M,) = 0, then we
have completed the proof of Theorem 3, because I is abelian. Assume
q(M,) > 0. Then we can find a connected Hodge manifold M, such that c,(M,)
= 0 and that G, X M, is a covering space of M, with a finite abelian covering
transformation group, where G, denotes the identity component of the group
of holomorphic transformations of M,. Continuing in this way we get a sequence
{M;} such that ¢,(M,) =0, dimM,,, = dimM,; — q(M,) for i=0,1, ...,
where M, = M. Therefore, there must exist an integer & such that g(M,) = 0
(the dimension of M, might be zero). Let A=G X G, X -.- X G,_; and F
= M,. Then A is an abelian variety and 4 X F is a covering manifold of M with
a finite solvable covering transformation group. Hence Theorem 3 is proved.
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