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HOLOMORPHIC VECTOR FIELDS AND THE FIRST
CHERN CLASS OF A HODGE MANIFOLD

YOZO MATSUSHIMA

In a recent paper [2] Bott has proved that if a connected compact complex
manifold admits a nonvanishing holomorphic vector field, then all the Chern
numbers of M vanish.

In this paper we first prove the following theorem.
Theorem 1. Let M be a connected Hodge manifold, and suppose that there

exists a nonvanishing holomorphic vector field X in M. Then there exists a non-
vanishing holomorphic l-form ω in M such that ω{X) Φ 0. In particular, the
first Betti number bx(M) of M is different from zero.

We shall then study the structure of a Hodge manifold with zero first Chern
class. We denote by cx(M) and q(M) the first Chern class and the irregularity
(i.e., one half of the first Betti number) of M respectively, and by G the identity
component of the group of all holomorphic transformations of hi. The group
G is a connected complex Lie group.

We shall prove the following two theorems which sharpen some of the recent
results of Lichnerowicz [5].

Theorem 2. Let M be a connected Hodge manifold such that cλ(M) — 0.
Then the group G is an abelian variety of dimension q(JM) and the isotropy
subgroup of G at any point in M is a finite group.

Theorem 3. Let M be a connected Hodge manifold and assume that cx{M)
= 0 and q{M) > 0. Then there exist an abelian variety A and a connected
Hodge manifold F with the following properties.

a) cx(F) = 0 and q{F) = 0;
b) A X F is a finite regular covering space of M and the group of covering

transformations is solvable.

After having finished this work, the author learned that Calabi stated these
two theorems in his paper [4] as his well-known conjecture, and proved them
under the assumption that M is a connected compact Kahler manifold with
vanishing Ricci curvature tensor.

1. Let M be a connected compact Kahler manifold, and § and Q denote,
respectively, the complex vector space of all holomorphic 1-forms and the com-
plex Lie algebra of all holomorphic vector fields in M. Then dim I) = q(M) and
we can identify g with the Lie algebra of the group G. If ω e Ij and X e g, then
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ω(X) is a holomorphic function on M and hence a constant. Therefore (α>, X)
—*ω(X) defines a bilinear form B on ϊj x g.

Now let a be the canonical holomorphic mapping of M into the Albanese
variety A{M) of M [1], [6]. There exists also a complex Lie group homomor-
phism a of G into the complex torus A(M) such that αr(̂ α:) = ά(φ)a(x) for any
9 € G and t € M. Let / be the kernel of the homomorphism a: G —> A (M), and
7° the identity component of / . The subalgebra i of g corresponding to / con-
sists of all holomorphic vector fields X in M such that ω(X) = 0 for all ω € ίj.
In particular, if zero(A"), X e g, is non-empty, then X € t, where zero(Z) denotes
the set of zero points of X. Assume now that M is a Hodge manifold, and let
φ: M —> PN be a projective imbedding of M into a complex projective space
P v . Let Gφ be the group of all holomorphic transformations of M induced by
the projective transformations of the ambient space Pw which leave stable the
submanifold M. The subalgebra ĝ  of g corresponding to Gφ consists of the
restriction in M of all holomorphoic vector fields in PN tangent to M. By a
fixed point theorem of Borel [3], every X e Qφ has a zero point and hence
ĝ  C i for any projective imbedding ψ. On the other hand, a theorem of
Blanchard [1, Theoreme principal I] asserts that there exists a projective im-
bedding φ0 such that / c GΨo. It follows from these that 1) ί = g^ and hence
i consists of all X e g such that zero(JO is non-empty; 2) [/: /°] < oo, because
7° coincides with the identity component GJ0 of GψQ and, since GψQ is an algebraic
group, we have [GΨo: G°ΨQ] < oo. We have thus proved

Proposition 1. Let M be a connected Hodge manifold, and I the kernel of
the homomorphism ά: G —* A(M). Then the number of connected components
of I is finite, and the Lie algebra i of I consists of all holomorphic vector fields
X in M such that zero(X) is non-empty.

Now let X be a nonvanishing holomorphic vector field in Λί. Then X does
not belong to i by Proposition 1, and there exists a holomorphic 1-form
ω such that ω(X) Φ 0, because i consists of all Y € g such that ω(Y) = 0 for
all ω e I). Since ω(X) Φ 0, ω is nonvanishing, which proves Theorem 1.

Remark. Let M be an even-dimensional connected compact semi-simple
Lie group. Then there exists a left invariant complex structure on M, a right
invariant vector field in M is a nonvanishing holomorphic vector field, and the
first Betti number of M is zero. This example shows that the existence of a
nonvanishing holomorphic vector field does not necessarily imply the non-
vanishing of the first Betti number of a connected compact complex manifold.
However, in this example, for any right invariant vector field X there exists a
right invariant 1-form ω such that ω(X) Φ 0, and ω is holomorphic although
ω is not a closed form.

2. Let M be a connected compact Kahler manifold such that cx(M) = 0. Then
by a theorem of Lichnerowicz [5, a] the bilinear form B: § X g —• C is non-
degenerate. In particular, we have dimg = dimή = q(M) and every non-zero
holomorphic vector field in M has no zero point. Hence from Proposition 1 we
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obtain the following
Proposition 2. Let Mbea connected Hodge manifold such that cx{M) = 0.

Then the homomorphism a: G-*A(M) is an isogeny, that is, a surjective
homomorphism with a finite kernel I. In particular, G is an abelian variety of
dimension q(M). If φ: M-*PN is a projective imbedding, then the group Gφ

of holomorphic transformations of M induced by the projective transformations
of PN is finite.

The assertion of Theorem 2 is included in Propositions 1 and 2.
3. Let M be a connected Hodge manifold such that cx(M) = 0 and let Mx

= a~\e), where a: M—> A(M) is the canonical holomorphic mapping and e
denotes the identity element of the torus A(M). From the universality of the
mapping a, we can easily conclude that Mx is connected [5,6] and see that
cx(Mx) = 0. Since the finite group / acts on Mχy let E be the holomorphic fibre
bundle over A{M) with fibre Mx associated with the holomorphic principal
bundle ( ) - * / - • G-+A(M) ->0. Then E is the quotient of G x Mx by the
action of / defined by ψ(φ, u) = (φ ψ~\ ψ(u)){ψ εI,φ€G,ue Mx). Let j8 be the
holomorphic mapping of G X Mx into M defined by %φ, u) = φ(u). Then it is
easy to see that j5 is surjective and that jB induces a bijective holomorphic map-
ping of E onto M such that the diagram

A(M)

is commutative. Thus, M is a fibre bundle over A(M) with projection a and
fibre Mx. It follows also from the above that G X Mx is a finite covering space
of M with / as the group of covering transformations. If q(Mx) = 0, then we
have completed the proof of Theorem 3, because / is abelian. Assume
q(Mx) > 0. Then we can find a connected Hodge manifold M2 such that cL(Aί2)
= 0 and that Gx X M2 is a covering space of Mx with a finite abelian covering
transformation group, where Gx denotes the identity component of the group
of holomorphic transformations of Mx. Continuing in this way we get a sequence
{Mi} such that cx{Mt) = 0, dimΛfί+1 = dim Mi - q(Mt) for i = 0 , 1 , .,
where Λί0 = M. Therefore, there must exist an integer k such that q(Mk) = 0
(the dimension of Mk might be zero). Let A = G X GXX ••• X Gk.x and F
= Mk. Then A is an abelian variety and A X F is a covering manifold of M with
a finite solvable covering transformation group. Hence Theorem 3 is proved.
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