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REMARKS ON THE FIRST MAIN THEOREM IN
EQUIDISTRIBUTION THEORY. IV

H. WU

1. The purpose of this paper is to prove three theorems; their raison
d'etre will be given in § 5 where a formulation and discussion of some open
problems of the subject will also be found. The first two theorems have to do
with holomorphic mappings into Cn. Let us first recall some notation from
Part III [16]. Let r0: Cn -* R be τ0 = Σ *A» a n d l e t

( 1 ) α>0 = ±-ddcτ = -£ΞL Σ dzt A dlt.
4 2 ί

ωd is the Kahler form of the flat metric on C\ whose volume element is

( 2 ) r = ^ f = (-^ΞLj'ΛiΛ^Λ -dznΛdzn .

The first theorem is a derivative of Theorem 1 of Part III [16].
Theorem l Let f: Ca —• C ι be holomorphic such that df is nonsingular

somewhere, and let C? = {z: J] Zfa < er — 1}. Write f = (fl9 ., / n). Then

f is quasisurjective if

( 3 )

Iliminf —_ *—. f^ _""?'""> _ . •,. = 0 .

(1 + ^~^
Γdt f 1*°* J

cn d + Σ ̂ Wd + Σ
0 cj1

There is a corollary to this theorem. Introduce the notation:

I

( 4 ) »

Then σ\ _x and σ* are respectively the (n — l)-th and the n-th elementary
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symmetric functions of the matrix I £ —ίi '-JU,. in other words ,
\ k dZt dZj )

(5)

a* -YYε(σ)(γ df* Wk ^

where σ runs through all permutations of {1, . , / — 1, i + 1, , n), ε(σ) is
the sign of the permutation, and the roof Λ indicates that the corresponding
factor is omitted.

Corollary. For f: Cn —• Cn as above, if, for some positive K,

(6) (-**-,)<

d e t l 9 ^ ' 2

n "Ί " \ 1 + Σfjt I 1 + ΣV

then f is quasisurjective.
When the domain manifold is replaced by a general V with a convex

exhaustion, we have the somewhat weaker result:

Theorem 2. Let f: V —> Cn be holomorphic, where V has dimension n
and a fixed convex exhaustion τ and df is nonsingular somewhere. Write V[r]
= {P τ(p) < r} a s usual. Then f is quasisurjective if the following two condi-
tions hold:

( 7 ) lim inf i f ddcτΛf*a>rι = 0 ,

J dt j f W ° #M

0 Γ[ί]

1 C
( 8 ) lim inf I dcτ/\f*(T(XUQ~1) = 0 .

0 F[t]

For the third theorem, let V be as above, M an n-dimensional compact Kahler
manifold and /: V —» M a holomorphic mapping. Then the holomorphy of /
implies that for each ae M,

0 < n(rx, a) < n(r2, a),

if rx<r2. So the following definition is meaningful:
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( 9 ) n(F,α) = limn(r,α).

Theorem 3. Let f: V —> M be holomorphic, where dim V = dim M, V
admits a fixed convex exhaustion τ and M is compact Kdhlerian with Kdhler
form K. Assume that n(V, /(«)) is a fixed finite constant nQ for almost all vzV.
Then a necessary and sufficient condition for f to be quasisurjective is that for
every C2 function φ on M,

(10) lim _ 1 _ Γ df+φΛd'τΛPK"-1 = 0 .

— Άr) JM

If f:V-+M is an analytic cover over /(F), then the condition that
n(V, f(v)) = n0 for almost all v 6 V is met. In particular, every holomorphic
imbedding / would do; such is the case of the Fatou-Bieberbach mapping.
This theorem should be improved in two respects: the restriction on AI(F, f(v))
should be removed and the intrinsic geometric structure of V and M should
be invoked in place of the ring of C2 functions on M.

2. This section proves Theorem 1 and its corollary. First recall that an
(n — 1, n — 1) form η is positive (Part I [12]) iff locally there exist (n — 1,
0) forms θi such that

where sign = (n — I)2. Similarly, a (1, 1) form ζ is positive iff locally there
exist (1,0) forms ξ t such that

Given two real (n, n) forms Φ and Λ, we write Φ > A iff Φ = <pψo, A = λΨ0

and the real functions ψ and λ satisfy ψ > λ. Note that if η is a positive (n— 1,
n — 1) form, and ζ, ζ' are positive (1,1) forms, then clearly: (1) ηΛζ' > 0,
(2) ζ ( n- I } is positive, and (3) ηA(ζ + ζθ > ηAζ.

Now the Kahler form of the Fubini-Study metric on Cn is (Part III [16],
§2):

(11) ω. =J!Ll±—Λ
2 (1

and the volume element is

n\
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Furthermore,

(13)

H. WU

cn

In view of (1), we may rewrite (11) as

2

where τx — log(l + 2 ztz^ as usual. ωo,α>i as well as d/τAd/τι are positive
i

(1,1) forms. If f:Cn-> Cn is holomorphic, then /*ω0, fa*! and /*(d/

are also positive. Therefore, the remarks above imply that

ωιA(f*ωι)
n'1 < -

<

<

<

(l +

(i + Σ^A)
i

-Λ

•Λ

+

(/*«,)"-'

A (/*<«„)" -'

By Theorem 1 of Part III [16], /: Cn -> Cn c P n C is quasisurjective if

(14) lim inf -
r-*°°

= 0 .

Hence, if (3) holds, the above inequality together with (12) will imply that
(14) is satisfied. This proves Theorem 1.

The proof of the corollary is patterned after the proof of Theorem 3 of
Part III. We wish to show that (6) entails (3). To this end, first observe that
(6) is equivalent to:

(15)
"(1 4- Σ fifi)n-1

<
+ Σ

For brevity, let us denote the left side of (15) by ψn/{n-ι\ and the right side
by Kl/l*-W. Then (4) and (12) imply that
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Γdt
1 f.

+ Σ*A)d + Σ

JrdtfφV1

l/n

(Holder's Inequality)

/ c

< const. Cr

 flr „ (13)

/ C \ (n-l)n

(JΛ)
< const. — % — . (15)

• c?

α \ (n-l)/n
^ y j . To prove (3), it suffices to prove:

c?

lim inf ^ = 0 .

Γg(t)n/(n-l)dt

0

Let G(r) = I g(t)nnn'ιdt. Then it is equivalent to proving:
0

l i m i n f g / ( r ) = 0 .
r-o G(r)n / ( n-υ

By a well-known lemma (Cf. Lemma 7.2 of [8]), if 1 < k < n/(n — 1), then
G'(r) < Gk(r) on an infinite sequence of real numbers diverging to infinity.
Hence,
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0 < lim inf — 9 ^ Δ — < lim inf - = 0 ,
— r-oo Q(\n/{n-\) — r-~ Qίyn/(n-l))-k

because n/(n — 1) — K > 0 and G(r) —> + cx> as r —• + oo. q.e.d.
Note finally that using the idea of the above proof and invoking Theorem

5.1 of Part II [13], we can get a result quite similar to Theorem 2 of this
paper.

3. We now come to Theorem 2. The proof is a technical variation of that
of the theorem in the Appendix of Part III [16], so it will only be outlined.
On the other hand, there is a high probability of confusion in the symbols
employed, so we shall be careful in this respect.

If z = (zl9 - , zn) 6 C\ let ||z|| = ( Σ ZiZi)1'2. Define

ψςa S2 n(2n-2) Hz-fl

2πn

where 52 n = is the volume of the unit sphere in C n. If Δ =
(n - 1)!

-I n2

2 — is the Laplacian of the flat metric of Cn, then it is classical
4 i

that

(16) Δξa - - ί β ,

where dα is the Dirac measure at a as usual. If

and πa =

(17)

Introduce

ώ —

ψ + ξa, then

the notation:

- - (Σ *i
n i

Δπa =

z )l
n

-δa.

Λ Λ(3z<Λέ/Z<)Λ Λ(dznΛdzn) ,

Λ Λ(έfe,Λέ£,)Λ

If we denote by μa = δπa = — *d*πα, then

Since djt/α = d5πα = ̂ τrα = y β — δa, we have
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(19) dμa = Ψ0 in C - {a} .

Let λa = —Λπa; then δ = Λde — dcA implies

(20) μa = d'λa ,

(21) *- = Ί ^ W ^ Γ ' + 40. - n," ιiz - V- ' ωΓ'
So clearly Λα is a positive (n — 1, w — 1) form.

Suppose D is a compact complex manifold with boundary, and /: D —• C*
is holomorphic. Let a e C\ and f~\a) be finite and disjoint from 3D. Then
(18) - (20) lead to

(22)

(Cf. the proof of equation (21) in Part III [16].) The rest is familiar by now.
Let /: V -> Cn be holomorphic as in Theorem 1, and let a be a regular value
of /. The reasoning in §2 of Part II [13] leads to

(23) Cn(t, a)dt = Γdt J f*Ψ0 - f dcτ/\ f*λa

ro r0 F[l] 3F[r]

+ ί f dcτΛf*λa + J fMαΛ<ω*r) .

If / is not quasisύrjective, let £ be a bounded measurable subset in

Cn — f(V) such that j iΓ0 = ε > 0. We now integrate (23) with respect to a

and Ψo over £ . At this point, we again refer the reader to Part II [13, §§4-5]
for a discussion of how the positivity of ddcτ and λa and Fubini's Theorem
justify the interchanges of order of integration in the sequel. Since n(t, a) = 0
for all t and for all a e E,

Γ, = 0 .
ro r» E

Thus (23) leads to

0 = ε Γdt C f*Ψ0 - J V 0 f d<τΛf*λa

ro Γ[ί] E 9Vlr]

'ψj Γ d°τΛi*λa + Γ f*λaΛddcτ)J
rCr]-F[r0]
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>ε J dCτAf*
ar[r]

because the other term is positive. Since E is bounded, we may assume it to
be contained in the closed ball B of finite radius p in Cn. Furthermore,

I dcτΛf*λa is a positive function of a, so that

0 > ε Jrdt J f*Ψ0 - JV 0 J dcτ/\1*λa
r0 F[t] E 3F[r]

Ξ> β Γdt (f*Ψ0 - (ψ0 f d°τΛf*λa

ro F[ί] B 3F[r]

= ε Γdt J/*?Γ0 - J d*τΛf*a>S-1

ro F[ί] 3F[r]

xf*

by virtue of (21). Now,

J n(n — 1)!

J 4(n - l)jr« ||z - fl|f-1 ~

where C and C' are finite constants, which depend on p but are independent
of r and a. (Cf. Lemma in the Appendix of Part III [16].) So the above
inequality becomes

0 > ε Jrdt ff*Ψ, - J /*(Cr0 + C)dcτΛf*ωrι

r0 F[ί] 3K[r]

= 6 ϊ ώ ϊf*Ψ° " C J ί/CτΛ/*(τ°ω?"1) "
where the last step is due to Stokes' theorem and the fact that dωζ~ι = 0.
Thus, if (7) and (8) are true, then the above inequalities would imply 0 > ε
> 0, a contradiction. Therefore / is quasisurjective.

4. Before giving the proof of Theorem 3, we make some general comments.
Let /: V -» M be a holomorphic mapping between complex manifolds of the
same dimension as usual, and first recall equation (4) in §2 of Part II [13]:
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(24) N(rfa) = T(r) + J f*λaΛddcτ - f dcτΛf*λaϊ~
r .

F[r]-F[r0] άF[ί] °

It is necessary first to elaborate on the form λa. From §2 of Part I [12], we
know that λa = (g(a, ) + K)ΛΨ, where g is the kernel of the Green operator
G, and K is a constant so chosen that g + K>0 on MxM (see equation

(9) of [12]). If p is any continuous function on M such that j pψ = 1, then
M

(25) J(g(a,y) + K)p(a)Ψ{ά) = (Gp)(y) + K .
M

Note that Gp becomes a C1 function (p. 157 of de Rham [5]). Suppose now
we integrate (24) with respect to pψ and a over M. Always assuming that V
has a convex exhaustion, we have, by (25),

frdtfn(t,a)p(a)Ψ(ά)
r0 M

= T(r) + I ddcτΛf*ΛΨ-f*[ I (g(α, •) H
J \J

F[r]-F|:ro] Λ"

- Γ dcτΛf*ΛΨ f*{ ((g(a, •) + /Q^Γ
J \J I r0

3F[i] JIT '

= Γ(r) + Γ /•(Ĝ o + K)ddcτΛf*ΛΨ - Γ /*(G/o + K)dcτΛf*άΨΓ
J J |r,

+ f (f*Gp)ddcτΛf*ΛΨ - J (f*Gp)dcτΛf*ΛΨ
Vlr]-Virol 3F[ί]

XJ Γ ddcτΛf*ΛΨ - Γ dcrΛ/*^trΓ | .

r 0

But K{ } = 0 because of Stokes' theorem and the fact that ΛΨ is a closed
form. As f*Gρ is C1, we may apply Stokes' theorem once more so that

Tdt jn(t9 a)p(a)Ψ(ά) = Γ(r) + J (f*Gp)ddcτΛf*ΛΨ
M F[r]-r[r0]

- J d((f*Gp)dcτΛf*ΛΨ)

= T(r) - J d(f*Gp)ΛdcτΛf*ΛW .
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So finally we obtain

(26)

1 - — ^ - Γdt fn(t9a)p(a)Ψ(a) = —L~ Γ d(f*Gp)ΛdcτΛf*ΛΨ

only under the assumption that p is continuous and that iσΨ = 1. This is
Λf

the basic formula we will use.
Now we come to the proof of Theorem 3. First assume / is quasisurjective.

By virtue of LΉospitaΓs Rule and Lemma 6.2 of [8],

Jrdt J n(ί, a)p(a)Ψ(a) Jn(r, a)p(a)Ψ(a)
l im * o M _ i : m M

r-.oo
lim - ^ *L = lim _*

T(r) ' - Γ

jn(r,a)p(a)Ψ(a)

jn(r,aW(a)

Since M — f(V) is a set of measure zero and, by assumption, n(V,f(v)) = nQ

for almost all v e F , we have that lim n(r,a) = n0 a.e. on M. Hence

Lebesque's bounded convergence theorem implies that the above limit equals

fϊim n(r,a)p(a)Ψ(a) nojpΨ

M

With this, (26) becomes

Γlim n(r,a)Ψ(a) nΛψ

(27) lim — 1 — Γ d(f*Gp)ΛdcτΛf*ΛΨ = 0
r-~ J W rJ

M

for all continuous p such that I pM — 1. If now 9 is a given C2 function on

M, then J^ is a continuous function. In particular, I (Δφ + 1)?Γ = 1 because

J M

(Δφ)Ψ = 0. Thus for p = Δφ + 1, (27) holds. But GΔφ + c = φ, where
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c = fφψ (p. 157 of de Rham [5]). Furthermore, Gl = 0. Hence Gp =

G(Δφ + 1) = φ - c and d(f*Gp) = df*φ, which together with Λ?F = — κn'1

ft!

prove that (10) holds.
Next, suppose (10) holds for every C2 function ψ on Λ/, and we must prove

that / is quasisurjective provided n(V, f(v)) = n0 for almost all v e V. Suppose

/ is not quasisurjective; then I Ψ = e > 0. Since n0 is finite, /(F) must

have interior. Let ψ be a C°° function with support in /(F) such that I ψψ =
M

1. As before,

J dt ln(t,a)φ(a)Ψ(ά)

lim -is £ = lim -£-
Γ(r)

Let χ be the characteristic function of the set f(V) in Aί. Then our assumptions

imply that lim n(r, a) = noχ and I χψ = (1 — ε). So Lebesque's bounded
Λί

convergence theorem again implies that the above limit equals

Γlim >z(r, a)ψ(a)Ψ(a) j χφψ
M

Γlim w(r,

because support φ C /(K) implies χ^ = φ> and Γ̂ iP* = 1. So replacing p by
Λf

^ in (26), we have

Hm_L_ J df*GφΛdcτΛf*ΛΨ = 1 - — * — = -e < 0 ,

which contradicts (10) because Gφ is C°°.
5. In this section, we shall discuss some open problems in n-dimensional

equidistribution theory which seem to be of significance. In accordance with
the precedence set in Part I [12], the discussion will be centered exclusively
on the equi-dimensional case. So let V, M be complex manifolds of dimension
Λ, V open and M compact, and let «^(F, M) be the space of holomorphic
mappings from V into M equipped with the compact open topology (Cf. e.g.
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[14, §1]). In general, it is far from clear that 3^{V, M) has any member
whose differential is somewhere nonsingular even if we assume V to have a
convex exhaustion and M to be compact Kahlerian. We shall therefore even
limit ourself to the case V = Cn and M = PnC in the following.

So denote Jf(Cn, PnC) simply by Jf, and let Q stand for the subset in Jί?
of all the quasisurjective mappings. One of the central objects of the study in
equidistribution theory is the "structure" of Q and jtf— Q. More precisely:

Problem 1. Q has no interior and possesses isolated points.

Problem 2. Characterize the isolated points of Q.

Problem 3. 3^ — Q has interior.

Problem 4. There are points f € Jf— Q such that every neighborhood of
/ in jf contains points of Q.

Problem 5. Describe f̂7, Q and jf? — Q in terms of arcwise-connectivety.
The above problems are admittedly difficult. As a first step, one might

consider the easier problems:

Problem 6. Construct a sequence {fn} such that fn converges to the inclu-
sion mapping Cn c PnC but {fn} QJtT-Q.

Problem 7. Is the Fatou-Bieberbach mapping F: C2—>C2C1 P2C (Bochner-
Martin [15, p. 45]) an interier point of jf — β ?

Real progress will be made if one can get some insight into the Fatou-
Bieberbach mapping F. Recall that it is a holomorphic imbedding of C2 into
C2, which omits a neighborhood of (1,1). Since F(C2) must be contractible,
F has to omit a much larger subset of C2. So one of the problems is to give a
precise description of F(C). In particular, describe the inverse image under F
of a sufficiently large neighborhood of (1,1). Another approach to the same
problem is to prove a necessary condition for quasisurjectivity, and then to
prove directly that F violates that condition. Theorem 3 of this paper arose
from such an attempt and is in fact applicable to F. But as explained above,
the fact that it involves the ring of C2 functions is not satisfactory. So one of
the urgent problems is to decide whether the converse of Theorem 1 of Part
III [16] is valid. In other words, we have

Problem 8. If /: Cn —* PnC is quasisurjective, then necessarily

Γα
lim inf - ^ = 0 .

Γdt Cf*κn

An affirmative answer even for a holomorphic imbedding / would be extremely
valuable.

This series of papers is essentially concerned with sufficient conditions for
quasisurjectivity. One of the main problems in this direction is to insure
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quasisurjectivity in terms of function theoretic properties of the holomorphic
mapping. In this light, such sufficient conditions are useless unles one can
apply them to concrete cases. This explains the concern with mappings Cn

rather than into PnC and the replacement of the Fubini-Study metric by the
flat metric of Cn, (Appendix of Part III [16], and Theorems 1 and 2 of this
paper), for the Fubini-Study metric is computationally untractable. The Co-
rollary to Theorem 1 of this paper is a weak result, but represents a first step
in this direction. Among other things, I would like to pose the following three
problems:

Problem 9. Every holomorphic function φ: Cn -+C gives rise to a holo-
morphic mapping fφ: Cn -> Cn by (dφ/dz^ -,dφ/dzn) (Gauss map). When
is fφ quasisurjective?

Problem 10. Let {/̂ } be n2 holomorphic functions of a single variable.
Are nondegenerate holomorphic mappings of the type (fnizj- -/inte*)* - »
/mfe) -/ππfe)) quasisurjective?

Problem 11. If /: Cn —> Cn is quasiconformal with respect to the flat
metrics, then / is quasisurjective.

Note that quasiconformality with respect to flat metrics can be expressed in
purely function theoretic terms. See [14, Appendix].

The following problems are perhaps of secondary importance, but we list
them because they still seem to be of some interest.

Problem 12. / e j f — Q iff it omits an open set.
Problem 13. Are there nonlinear quasiconformal mappings of Cn —> Cn

with respect to the flat metrics?
Problem 14. Construct nonlinear quasiconformal mappings of Cn —• PnC

with respect to the Fubini-Study metrics.
As a background for Problem 14, one should recall that such mappings are

always quasisurjective (Corollary 4, Part III [16]) and note that every linear
map Cn —> Cn CZ PnC is necessarily quasiconformal with respect to the Fubini-
Study metrics.

Finally, it remains to note that the compact open topology may not be the
"right" topology to put on Jf from the point of view of equidistributions. Let

us denote by JP* the set of holomorphic mappings from Cn -» PnC equipped
with the uniform topology, i.e., a typical neighborhood of /: Cn —> PnC is
{g: sup dist (/(p), g(p)) < ε}, where ε > 0 and dist (, ) is the global distance

function of the Fubini-Study metric. Note that convergence in this topology
implies uniform convergence of derivatives of all orders. Regarding this Jf *,
we have the following theorem by virtue of Theorem 2 and Corollary 4 of
Part III [16].

Theorem 4. // /: Cn —> PnC is either of bounded distortion or quasi-
conformal with respect to the Fubini-Study metrics, then there is a neighbor-
hood of f in tf* consisting of quasisurjective mappings.
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On the other hand, if /: Cn—*PnC omits an open set (e.g. Fatou-Bieberbach
map), then clearly some neighborhood of / in j f * will consist of mappings
omitting an open set. Thus, if Q denotes the quasisurjective members of «^*,
then both Q and «#**— Q will have interior.

Problem 15. Q has isolated points.
Problem 16. Give necessary and sufficient conditions for feQ to be an

interior point.
Problem 17. Describe jf*, Q and jf* — Q in terms of arcwise-connec-

tivity.
Now if Problem 12 should have an affirmative solution, then every point of

jf* — Q will be an interior point so that jf* — Q will be open in Jf*. On
the basis of this, let us pose a very vague question:

Problem 18. Can one express in a quantitative way the fact that Q is a
"smaller" set than j f * - QΊ
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