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0. Introduction

With an immersion x of a Riemannian n-manifold M into a Euclidean N-
space EN there is associated the Gauss map, which assigns to a point p of
M the n-plane through the origin of EN and parallel to the tangent plane of
x(M) at x(p), and is a map of M into the Grassmann manifold G Λ f # =
O(N)/O(n)χO(N-n).

An isometric immersion of M into a Euclidean iV-sphere SN can be viewed
as one into a Euclidean (N + l)-sρace E1**1, and therefore the Gauss map
associated with such an immersion can be determined in the ordinary sense.
However, for the Gauss map to reflect the properties of the immersion into
a sphere, instead of into the Euclidean space, it seems desirable to modify
the definition of the Gauss map appropriately. To this end we consider the
set Q of all the great n-spheres in 5Λ", which is naturally identified with the
Grassmann manifold of (« -f l)-planes through the center of SN in E^+ 1,
since such {n + l)-planes determine unique great n-spheres and conversely.

In this paper by the Gauss map of an immersion x into 5* is meant a map
of M into the Grassmann manifold Gn+ltK+1 which assigns to each point p of
M the great H-sphere tangent to x(M) at *(/?), or the (n + l)-plane spanned
by the tangent space of x(M) at x(p) and the normal to SN at x(p) in EN+1.

More generally, with an immersion x of M into a simply-connected com-
plete N-sρace V of constant curvature there is associated a map which assigns
to each point p of M the totally geodesic w-subspace tangent to x(M) at*(p).
Such a map is called the (generalized) Gauss map. Thus the Gauss map in
our generalized sense is a map: M —• Q, where Q stands for the space of all
the totally geodesic H-subspaces in V.

The purpose of the present paper will be first to obtain a relationship among
the Ricci form of the immersed manifold and the second and third fundamen-
tal forms of the immersion, and then to give a geometric interpretation of the
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third fundamental form in this case by using the notion of the Gauss map.
As a result, we will be able to consider the case where these three forms are
proportional to the original Riemannian metric.

By a result of Mostow [3] that every compact homogeneous space can be
equivariantly immersed into a certain sphere, we can show that if the isotropy
subgroup is irreducible the immersion is pseudo-umbilical and the Gauss map
is conformal. More strongly such a homogeneous space can be minimally
immersed into a certain sphere by results of Hsiang [2] and Takahashi [5],
and the Gauss map associated with such minimal immersion is shown to be
homothetic, the latter being a generalization of a result of Chern [1] that a
minimal surface in a Euclidean space has the anti-holomorphic Gauss map.
Indeed, we shall show that the Gauss map associated with a minimal immer-
sion is conformal if and only if the manifold is Einsteinian. If the dimension
of the manifold is greater than 2, then "conformal" turns out to be
"homothetic".

Obviously one can expect to generalize our method to pseudo-Riemannian
manifolds with arbitrary signature of metric.

1. Preliminaries [6]

Throughout this paper let V denote one of the following simply-connected
complete Riemannian manifold of dimension N:

(i) An N-sphere SN of radius a (or of curvature 1/α2).
(ii) A Euclidean N-space EN.

(iii) A hyperbolic N-space HN of curvature —I/a2.
The bundle F(V) of the orthonormal frames on V can be identified with the
group G(N) which is one of the following according as the type of V:

(i) The orthogonal group O(N + 1).

(ii) The group E(N) of the Euclidean motions of EN.
(iii) The group 0(1, N) of inhomogeneous Lorentz transformations on HN.

In fact, fixing a point p° in V and an orthonormal frame b° = (p°, el, , e°N)
at p°, there is one and only one transformation g in G(N) which sends b°
into a frame b = (p9el9 , eN) at a point p in V, and the correspondence
b <->g is the desired identification. The isotropy subgroup at p° is O(N) in
any case, and obviously V is the homogeneous space G(N)/O(N).

Let BAB be the Maurer-Cartan forms on G(N), where from now on we
agree on the following ranges of indices:

0 < A, B, C, . < N; l<λ,μ,v, <N.

Then BAB satisfy the following algebraic relations :

On = 0, εθOi + Bλ0 == 0, θλμ + θμλ = 0 ,
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where from now on ε takes the value:

1 if G(N) = O(N + 1 ) , V = SN ,

0 if G{N) = £(N), V = E» ,

— 1 if G(N) = 0(1, N), V = HN .

ΘAB also satisfy the structure equations:

( 1 / dvAB = = 2 J "AC A v£7β
C

On putting

the Riemannian metric da1 on V is given by

and (1) becomes

dθλ — Σχθμ /\θμx,

dθλμ = Σ ^ Λ θvμ - ±JBλ Λ <?̂  ,

which are the structure equations on V. Denoting by θiμ the curvature forms
on V, from (2) we have

®χμ = = «θχ Λ θμ.

α2

Let Λf be a Riemannian w-manifold isometrically immersed into the space
V by a mapping x: M —• K, F(M) denote the bundle of frames on M, and J5
be the set of elements b = (p, el9 - , eΛr) such that (p, ̂ , , ̂ n) € F(Λf)
and (JC(P), β2, , eN) e F(F), where e<, 1 < i < n, are identified with dx(βi).
Then ψ: B -+ M can be viewed as a principal bundle with the fibre
O(N) x O(N — «), and x: B -* F(F) = G(JV) is the natural immersion defined

Let ω;, ωiμ be the 1-forms on B induced from 0λ9 θλμ by the map 3c. Then
we have

( 3 ) ωr = 0 ,

and the Riemannian metric ds2 on M is given by

ds* = 2
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where from now on we agree on the following ranges of indices:

1 < /, /, k, < n\ n + 1 < r, s, t, . < N .

Furthermore, from (2) we obtain

Λ 1 V A ,ι A A
W[r — / , Si.rijO)j) **rΐj — ^Tji 9

j

* * ,

The curvature

By expressing

— 2-j

= 2 (

k

forms

* * , -

Ωij as

(Oj A ωji ,

(Oik A (okj

Ωυ of M

a 2-f orm

can then

of ωfc:

T

-A

be

ε

jkid

written

(ϋi A ω

ίjt A o)ι

a 2 < L

as

7 —

h A

Σ
r

Λ ω# r .

we obtain

( 4 ) i£ϊ/*i = -(δikδji — δiiδjk) — 2 (ArikArji — ArUArjίc) .
Λ^ r

Obviously £ o t £ give the components of the curvature tensor of M.
At a point b = (p, ̂ i, , e.v) in B by forming the form

// = 2 o>ir(θίer = 2 Arija)iQ)jeT,

we know that 7/ is independent of the choice of the point b over /? and is a
normal-vector-valued quadratic differential form on M. II is called the second
fundamental form of the immersion x, whose vanishing defines a totally
geodesic immersion. The normal vector

N = 2 //(«*, *) = Σ Aτer,
i r

where Λr = 2 ^m, is independent of the choice of the frame and is called

the mean curvature vector of the immersion x. If N vanishes identically,
then x is said to be minimal.

Let X = Σ ^r^r be a normal vector of t(M) at *(p). Then the quadratic
r

differential form defined by

Wjr = <*Λ ^> = Σ Arij
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is called the second fundamental form of the immersion x in the direction X.
Since N is uniquely determined by the immersion, the form

HN = Σ ArArija)iWj
r,i,j

has a special meaning related to the immersion x. It is easy to see that
IIN = 0 if and only if N = 0. Thus the immersion is minimal if and only if
IIN vanishes identically.

If the form IIN is proportional to the Riemannian metric ds2 on M, that
is, if

IIN = pds2 = pΣ ®i<»i >
i

then due to Otsuki [4] the immersion is said to be pseudo-umbilical. If this
is the case we have

n r n

Let us consider the quadratic differential form

?f = Σ Kjk<Oj<Ok ,
j.k

called the Ricci form of M, where we have put

i

The Ricci form is independent of the choice of the frame and therefore is a
quadratic differential form on M. We have, from (4),

ffc — Z-i r ι r i k Λ rji T* /j Λ r Λ r j k >
α2

and hence

(5) Ψ = εϋ^-
a2 i i,r

We shall next consider the meaning of the term Σ (α^r)2.
i

2. The Gauss map

Let Q be the set of all the totally geodesic Λ-spaces in V. Then the group
G(N) acts on Q transitively. Take a point p in Q. Then the isotropy sub-
group at p is identified with G(n) x O(N — n), where G(w) is viewed as acting
on the totally geodesic n-space Vo representing the point p in Q and O(N — ή)
on the totally geodesic (N — n)-space orthogonal to Vo at the point of inter-
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section which is kept fixed. Therefore Q is identified with a homogeneous
space

Q = G(N)/G(n) x O(N - n) .

By using the Maurer-Cartan forms ΘΛB of G(N) we introduce a quadratic
differential form dΣ2 on Q:

dΣ* = Σ OU2 + Σ «U 2 ,
r i,r

which is obviously invariant under the action of G(N).
In the case G(N) = O(N + 1), β ι s Λe Grassmann manifold G n + 1 ,^ + 1 of

the (n + l)-spaces through the origin in the Euclidean (N + l)-space and
dΣ2 is the standard Riemannian metric on it with respect to which Q is a
Riemannian symmetric space.

In the case G(N) = 0 ( 1 , N), dΣ2 is the standard pseudo-Riemannian metric
with respect to which Q is a pseudo-Riemannian symmetric space.

In the case G(N) = E(N), dΣ2 is obviously degenerate. However, if we
consider the natural projection of Q onto the Grassman manifold G n i V , by
identifying the parallel planes, dΣ2 coincides with the quadratic differential
form induced from the standard Riemannian metric on GnN by the projection.

With an immersion x: Λί —• V we associate the (generalized) Gauss map
f:M—*Q, where f(p),pεM, is totally geodesic w-space tangent to x(M) at
x(p), and consider the following diagram:

F
B > F(V) =

f

M-U Q = G(N)/G(n) x O(N - n),
where π is the natural projection and F is the natural identification of a frame
in B with an element of G(N) mentioned in § 1.

The quadratic differential form /// induced from dΣ2 on Q by the Gauss
map / is written as

( 6 ) /// = j*dP = Σ (<θir)2 = Σ ArijArikωjωk ,
i,r r,i,jtk

since ωOr = ω r = 0 by (3). /// is called the third fundamental form of x.
The Gauss map is a constant map if and only if III vanishes identically,

i.e. ωίr = 0 and therefore if and only if the immersion x is totally geodesic.
Combining (5) and (6), we obtain

( 7 ) Ψ - UN

and therefore
Theorem 1. Suppose that a Riemannian n-manifold M is isometrically

immersed into a simply-connected complete space of constant curvature e/a2.
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Then the relation (7) holds among the Ricci form Ψ on M, the second funda-
mental form IIN in the direction of the mean curvature vector, and the third
fundamental form HI of the immersion.

Suppose that Λί is Einsteinian. Then from (7) IIN is proportional to ds2 if
and only if /// is. Thus we obtain

Theorem 2. Let x be an isometric immersion of an Einstein space into a
V. Then x is pseudo-umbilical if and only if the Gauss map is conformal.

Suppose that IIN is proportional to ds2. Then Ψ is proportional to ds2 if
and only if /// is. In particular, if IIN vanishes identically, ¥ is proportional
to ds2 if and only if /// is. In this case if furthermore dimM > 2, then the
proportional factor of Ψ is constant and the same holds for ///. Hence

Theorem 3. Let x be a pseudo-umbilical immersion of a Riemannian
manifold M into a V. Then the Gauss map is conformal if and only if M is
Einsteinian. In the case dim M > 2, the Gauss map is homothetic if and only
if M is Einsteinian.

In a similar way, we have
Theorem 4. Let x be an isometric immersion of a Riemannian manifold

M into a V. Then x is pseudo-umbilical if and only if M is Einsteinian.
By a result of Mostow [3], every compact homogeneous space G/H can

be equivariantly imbedded in a certain Euclidean sphere. If the isotropy
subgroup H is irreducible on the tangent space, then we may naturally assume
that the imbedding is isometric, and Ψ, IIN and /// are proportional to the
Riemannian metric with constant factors, since they are all invariant by G.

Theorem 5. An equivariant imbedding of a compact homogeneous space
with irreducible isotropy subgroup into a Euclidean sphere is pseudo-umbilical
and the Gauss map is homothetic.

By results of Hsiang [2] and Takahashi [5] such a space can be minimally
immersed into a certain Euclidean sphere. In this case the Gauss map is
obviously homothetic.
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