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HOMOGENEOUS SPACES DEFINED BY
LIE GROUP AUTOMORPHISMS. II

JOSEPH A. WOLF & ALFRED GRAY

7. Noncompact coset spaces defined
by automorphisms of erder 3

We will drop the compactness hypothesis on G in the results of §6, doing
this in such a way that problems can be reduced to the compact case. This
involves the notions of reductive Lie groups and algebras and Cartan
involutions.

Let @ be a Lie algebra. A subalgebra & C © is called a reductive subal-
gebra if the representation adg|g of ® on ® is fully reducible. ® is called
reductive if it is a reductive subalgebra of itself, i.e. if its adjoint represen-
tation is fully reducible. It is standard ([11, Theorem 12.1.2, p. 371]) that
the following conditions are equivalent:

(7.1a) & is reductive,

(7.1b) @ has a faithful fully reducible linear representation, and

(7.1c) & = & @ 3, where the derived algebra & = [®, @] is a semisimple
ideal (called the “semisimple part”’) and the center 8 of ® is an abelian ideal.

Let & = @' @ 3 be a reductive Lie algebra. An automorphism ¢ of ® is
called a Cartan involution if it has the properties (i) ¢ = 1 and (ii) the fixed
point set &’ of o|g is a maximal compactly embedded subalgebra of &'.
The whole point is the fact ([11, Theorem 12.1.4, p. 372]) that
(7.2) Let R be a subalgebra of a reductive Lie algebra &. Then & is re-
ductive in & if and only if there is a Cartan involution ¢ of & such that
a(R) =K. .

Let G be a Lie group. We say that G is reductive if its Lie algebra & is
reductive. Let K be a Lie subgroup of G. We say that K is a reductive sub-
group if its Lie algebra & is a reductive subalgebra of @. Let ¢ be an auto-
morphism of G. We say that ¢ is a Cartan involution of G if ¢ induces a
Cartan involution of &.

Let G be a reductive Lie group, and K a closed reductive subgroup such
that G acts effectively on X = G/K. Choose a Cartan involution ¢ of &
which preserves &, and consider the decomposition into (= 1)-einspaces of ¢ :

(7.3a) G =6+, =R +®@NM).
Received August 29, 1967.
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That decomposition defines compact real forms of &¢ and K¢ :
(7.3b) G.=@ +{-IM, K=f +—1E@NM).

7.4. Lemma. There is a unique choice of compact connected Lie group
G, with Lie algebra &, which has the properties [Z, denotes the identity
component of the center of G,]

(i) the analytic subgroup K, for &, is a closed subgroup,

(ii) the action of G, on the coset space X, = G,/K, is effective, and

(i) X, = G,/Z,K, is simply connected, the natural projection X, — X,
is a principal torus bundle with group Z,, and 7(X,) = =,(Z,), free abelian
of rank dim Z,,.

Proof. R contains no nonzero ideal of ® because G is effective on X, so
&, contains no nonzero ideal of &,,. In particular, for any choice of compact
group G, with Lie algebra &,, K, is closed in G, and G, acts on G,/K,
with finite kernel.

For the unique choice decompose &, = &, + 8, and let G, = G, X Z,
where G, is the compact simply connected group with Lie algebra @&. Let F
be the (finite) kernel of the action of G, on X, = G,/K, where K, is the
analytic subgroup for &,. Then G, = G,/F, K, = K,/F, X, = G,/K, give
us condition (ii). For (iii) note that Z, is a torus acting freely on X, ; so we
need only prove X, simply connected. But X/, = G,/ L where L is the analytic
subgroup for the projection of &, to &,. This gives existence of the desired
G, ; uniqueness is obvious. q.e.d.

We have constructed a ‘“‘compact version” X, of a coset space X of re-
ductive Lie groups. Now we turn the procedure around.

Let X = G/K be a coset space of compact connected Lie groups, G acting
effectively. Let ¢ be an automorphism of & such that ¢ = 1 and ¢(R) = f.
Then we have (7.3a) and can define real forms of &¢ and ¢ by

@* =@ + =1, RX=Q + {=T(®NWM).

Then &* is reductive, 8% is reductive in &*, and

7.5. Lemma. There is a unique simply connected coset space X* = G* | K*
such that (i) G* is a connected Lie group with Lie algebra &*, (ii) K% is the
Lie algebra of the closed subgroup K*, and (iii) G* acts effectively on X*.

Let F be the torsion subgroup of =,(X). Then F can be viewed as a finite
central subgroup of G* (=(G*),) such that G = G¥/|F, K = (K¥F)/F and
X = X*|F.

Proof. For the first statement G* = G*/S and K* = (K*S)/S where G*
is the simply connected group for &*, K* is the analytic subgroup for &%,
and S is the kernel of the action of G* on G*/K*. The second statement is
equally transparent. q.e.d.
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Lemmas 7.4 and 7.5 allow us to go back and forth between coset spaces
of compact Lie groups and coset spaces of reductive Lie groups. In our ap-
plications we need only assume G reductive and then K will be a reductive
subgroup. For [2, Proposition 4.1] and an obvious induction on the length
of the derived series of © give

7.6. Lemma. Let & be a reductive Lie algebra, and © a solvable group
consisting of automorphisms of & which are fully reducible as linear trans-
formations. Then the fixed point set &® is a reductive subalgebra of &.

To make these applications in Theorem 7.10 we need two intermediate
results on invariant almost complex structures.

7.7. Proposition. Let X = G/K where G is a compact connected Lie
group, K is a closed connected subgroup, and G acts effectively on X. Let o
be an involutive automorphism of G which preserves K, and thus acts on X.
Let X* = G*/K* be the corresponding simply connected space. Extend ¢ to
&° by complex linearity, so that ¢ also acts on X*. @ = & + M and G&*
= ®* + IN* as usual.

(i) The G-invariant g-invariant almost complex structures on X are in
one to one correspondence with the G*-invariant g-invariant almost complex
structures on X*, where two structures correspond if they are equal on
mc — m*c.

(ii) Suppose R* = &*° where Y is a compact subgroup of the auto-
morphism group Aut(®*), suppose M* chosen invariant under %, and let g
denote the representation of 2 on MC. If X induces an invariant almost com-
plex structure on X*, i.e. if = @B with § and §’ disjoint, then §%* = G*"
for some compact subgroup I' C Aut(®*) such that I" induces a G*-invariant
g-invariant almost complex structure on X*.

Proof. Let ¢ (resp. *) denote complex conjugation of I¢ over M (resp.
I*). An invariant almost complex structure on X (resp. X*) amounts to an
ad(®°)-invariant IMC = M+ 4 M~ where ¢ (resp. z*) interchanges M+ and
M-. As g7 = t* = ¢g, the interchange conditions are equivalent when ¢
preserves I+ and I -, i.e. when ¢ preserves the almost complex structure.
That proves (i).

Let A be the centralizer of &* in Aut(®*), linear algebraic group normal-
ized by ¢. Let B be a maximal compact subgroup of 4 normalized by ¢. As
gl, is a Cartan involution of A, bg = gb for all beB. Let ac A with
aXa'*C B. Define I' = aXa~'. Then &* = @*  and (ii) follows with IR¢
=M+ + WM~ where a~}(I*) and a~'(M ") are the representation spaces of
and §'. q.ed.

7.8. Proposition (cf. [12, Theorem 13.3 (2)]). Let K be a connected sub-
group of maximal rank in a compact connected centerless simple Lie group
G. Let a be an outer automorphism of G which preserves K, thus acts on
X = G/K, and preserves a G-invariant almost complex structure on X. Then
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(i) G=S8UQ2n)/Z,,, K= S{Un) x Un)}/Z, and « interchanges the
two factors U(n) of K; or '

(i) G=8002n)/z, K={Un) X---X Un) Xx SO2m)}|Z,, n, + - - -
+n,+m=n, m>2, where a is conjugation by diag {P,, - - -, P,; Q} with
P,e Uny), Qe O(2m) and det Q = —1; or

(iii) G=E;/Z, K= {SUQB) xSUQB) X L;}}/{Z; X Z}}, 1 <i < 3, where
« interchanges the two SU(3)-factors of K, a(L;) =L,, and L,c L,C L,
given by T* C S{U(1) x U(2)} c SU(3).

Now we need notation for noncompact semisimple Lie groups. Compact
connected simply connected groups were denoted by their Cartan classifica-
tion type in boldface letters:

A, = SUn + 1), B, = Spin2n + 1), C, = Sp(n),
D, = SPi"(zn) ) Gz ’ Fi ) EG ) E7 ’ E8 .

Now the complex simple simply connected groups are denoted in the obvious
manner :

AS=SL(n+ 1,C), B¢ = Spin2n+ 1,C), C¢= $p(n,C),
DS = Spin(2n, C) , G¢, F¢, E¢, E? E§ .
Further T~ denotes an r-torus, C* denotes the multiplicative group GL(1, C)

of nonzero complex numbers, and we use the following standard notation on
linear groups.

S(---): subgroup consisting of elements of determinant 1, with exceptions
noted.

O'(n): real orthogonal group of — i X:y; + i} X;¥;.
i=1 J=7+1
O(n, C): complex orthogonal group of — }T"_‘ xX¥;: + i x;y;.
i=1 J=r+1

S07(n), SO(n, C): respective identity component of 07(n) and O(n, C).

SO*(n): real form of SO(n, C), n = 2m, with maximal compact sub-
group U(m).

Spin™(n), Spin(n, C): respective 2-sheeted (spinor contruction) covering
groups of SO7(n) and SO(n, C).

U7(n): complex unitary group of — Zr] Xy + Zn: X;¥;.
i=1 J=r+1
Sp(n, R), Sp(n, C): respective real and complex linear groups for the

nondegenerate alternating form Y, (X;¥;,» — Y:Xi,») On 2n-space.
i=1
Sp7(n): quaternion unitary group of — X x;y; + X, Xx;¥;.
i=1 J=r+1

(7.9) In addition we introduce the notational convention. Centerless simple
real groups are denoted with boldface for their Cartan classification type and
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the Cartan classification type of the maximal compact subgroup as a second
subscript. Thus C, 4, ,r1 = Sp(n, R)[{+1}, By.p, = SO'2n + 1), Dy 4,_,1*
= SO*(2n)[{ 1}, Crracpty = SpP(p + q)/{x1}, etc. The only exception is
that, in expressions such as {E. ,. X T'}/Z,, the central group being divided
out (here the Z,) projects monomorphically into the torus and isomorphically
onto the center of the simple group. For example U(n) = {4
X T4/ Z,.

Now we can describe the irreducible spaces defined by automorphisms of
order 3.

7.10 Theorem. Let X* = G*/K* be a simply connected coset space
where G* is a connected Lie group acting effectively. Suppose f* = @**
where § is an automorphism of order 3 on &* which does not preserve any
proper ideals. Then G* is reductive, K* is a closed reductive subgroup, there
is some number N > 2 of G*-invariant almost complex structures on X*,
and the following tables give a complete (up to automorphism of G*) list of
the possibilities.

n—-l,A,-lAn_r..lTl

7.11. Table. G*: centerless classical simple
K*: centralizer of compact toral subgroup

G* K* conditions N

SUMn)|Z, | SIUSrIXUsr)X Uss(rs)} /Z, !

n=ri+rat+r;

SL(n, R)/ Z, m=sitsts | 2 if =0
" {SL(5, €)xT1}/ 22, n=02) 0<n<nsn i

sL(5,0)iZ: 1<rs 8 if >0
0<2s:<r; ;

SL(n, C)/ 2, S{GL(r, O)XGL(ry, CO)XGL(r3, O}/ Z,, ?

1<r<n

25 +2¢ 1 5 2n—2r+1 c 2 if r=1
S0*+%*(2n+1) , Us(r)X SO*(2n +1) 0<2s<r .
: 4 if r>1
S0@2n+1,C) : GL(r, C)XS0@2n—2r+1,C) | 1<rgn :
Pz | {UOXSpn—D}/ 2, | 1<rn .
S, R)Z, | {USIXSpln—r, R}/ Zs Ho<2s<r
L 0<2t<n— 4 if r<n
Sp(, 022 | {GL(r, ©)XSp(n—r, O}/ Z, sHsam
S0¥+(2n)/Z;, | {UNHXSO'2n—21)}/Z, i<r<n Z 1: r=1
S0*(2n)/Z, (U)X SO*(2n—2r)}/ Z; 0<2s<r . ;f r=n
S02n, C)/Z: | (GL(r, OXSO@n—2r, C)}/Zs O<t<n—r 1<r<n
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7.12. Table. G*: centerless exceptional simple

K=*: centralizer of a compact toral subgroup

G* K conditions N i
i 1
G ! vQ) — ‘-
Gg:Gz.AxAx U(Z), U(2) - 4
G GL(2,0) —
F, {Spin(1)X T}/ Z,, {Sp(3)XT}/Z, -
F,, B, {Spin" ()X T}/ Z,, {Sp'Q)XT'}/Z, r=0,1
{Spin" ()X T}/ Zs, {SpG)X T}/ Z, e 4
F,, csc0: and {SpG, RIXTY}/Z, r=2,3; t=0,1
| {SO10)X SOQR)} / Z; — 2
! .
Es/Z, {SWEX VM) X SUQ)}/Z:, ‘ _ l 4
{[SU6)/Z:1X T}/ Z,
{[SOB)X SOQ)1 X SOR)}/Z, — 8
{SO*(10)X SOQ)} /Zs, {SO*10)xX SOQ2)}/Z, — 2
. . (s, N=(0, 0),
{(SWUTG)X U)X SU*2)}/ Z, ©.1), ©.2), (1.2) .
Eﬁ, A1ds
{ISUT(6)/Z)X T3}/ Z» r=0,2,3
{[SO*@8)x SOR)1X SOQ)}/ Z. '3 4 ¢
{ISO"®)X SOR)IX SOQ2)}/Z. '
: {SO"(10)x SO(2)}/ Z., {SO*(10)X SOQ2)}/Z, r=0,2 2
. . (s, N=(1,0),
(SWrS)YX U)X SU*QR)}/ Z, | 0.1, 4,1, ©2) .
Es, pst1
([SUT(6)/Z;1X T}/ Z, r=1,2 !
{ISO*@)x SORIX SOR)}/ Z3, 02 | g |
{[SO(8)X SOR)IXSOR) / Z, : ’ {
{SO(10, O)X C*}/Z. _ 5 |
£S)Z {S(GL5, OOX C)XSLQ2, O}/ Z, _ 4
o {[SL(6, C)//ZIX C*}/Z, i
{[SOB, O)X C¥1X C*}/Z. — 8 !
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Ga‘:

K=

conditions N

E,/Z,

{EsXT*}/Z5

{SUQ)X[S0(10) x SO()1}/ Z;,
{S02)xS0(12)}/Z,;, SUMNXU))/Z,

|
j

Ey, 47

{Es, 4145 X T}/ 2,

{SUQR)X[S0*(10)x SOQ)1}/ Z,
{SU2)X[SO*(10)X SOQ)}}/Z,
{SO()XS0*(12)}/Z;, {SO2)xSO%12)}/Z,,
S(UT(MHxXU(1)/Z,

r=0,3 4

E7, 4106

{Es, Ds71 X T}/ 2>, {Eg, 4145X T}/ 22

— 2

{SU2)xX [SOT(10)X SO2)1}/ Z,
{SUY2) X [SO*(10)X SOQ)}/Z;
{SO(2)x SO?(12)}/ Z,
S(UMXUQ))/Z,

@, n=(0,0),
©,2), (1,2), (0,4,
p=0,4
s=1,2,3

E; gert

{EeXT*}/Zs, {Es, ps71XT'}/ 2,

- 2

{SU2)X[SO(10)x SO()1}/ Z.,
{SUQR)x [S0*(10)x SO}/ Z.,
{SO0Q2)xX S0*(12)}/Z,, {SO()XS0*(12)}/Z.
S X UQ)/Z,

r=1,2 4

Ef/2Z,

{EfxC*)Z,

{SL2, O)x[S0(10, OYX C*1}/ Z,,
{C*x 80012, O)}/Z,, S{GL(1,C)XC*}/Z,

Es

S0(14)X SOQ2), {E;XT*}/2Z;

Eg, pg

S0(14)X SO0Q2), SO°(14)xXSO0Q2),
S0*(14)x S0Q),
{E;, 1106 X T}/ 2Z,, {E7, 4:XT'}/2:

EB.A|E1

S$0%(14)X SO(2), SO*(14)X SO2),
S0%(14)X SO(2),
{ErXT"}/Zs, {E:; g1 XT'}/ 2y,
{E7, 4106 X T}/ 2,

50(14, C)XC*, {EfXC*}/Z,
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7.13. Table. G*: centerless simple, rank G*=rank K*
K#: not the centralizer of a torus
{N=2, G* is exceptional, and K* has center of order 3.}
G* K+
G: SUB3)
 Gi=Grum SU'G)
T Gf i SL3,C)
F, {SUB)XSUB3)}/Z;
) Fu 5. (SU'G)x SUG)} /2,
o Ficior {SUGYXSU(3)}/Zs, {SUMB)XSU'(3)}/Zs
Ff {SLB3, C)XSL3, C)}/Z,s
E¢/Z;s {SUB)YXSUB)X SUB)}/{Z3X Z3}
} £ (SU'G)XSUG)XSUG)/{Zsx Z5)
! {SU'G)XSU)XSU'(3)}/{Z:X Z3}
;.‘s D;Tl - {SUB)XSU(3)XSUB)}/{Z:X Zs}
) Eo.rs (SLG, )X SUGY/Zs
] Eoce (SLB, C)XSU'()}/Z,
T B¢z, (SLB, C)X SL(3, CYXSL3, OV /{Z:X Zs}
E:/Z. {SUG)X[SU(6)/ 2,1} / Zs
E,_;, {SURYX[SU6)/Z:1}/2Z,, {SU'R)XISUX6)/Z,1}/Z,
E: aime {SU'GIX[SU®)/Z,1} /25, {SURB)XISU6)/Z.1}/2Zs,
- ; {SU'G)X[SU6)/ 2,1}/ Zs
E7, ger! 5 {SU3)X[SU6)/Z:1}/Zs, {SUB)XISU6)/Z:1}/Z5
Ef {SL3, C)XISL(6, C)/Z.1}/Z;
Es {(SURYXEe}/Zs, SUO)/Zs
Eo.ps {SU(3) X Es, DslTl}/Zsy {SUG)X Es, 4145} 23
: SU'09)/Z;, SU‘©9)/Z;
Eq aiz: : {SUQ)X Eg}/Z3s, {SU(3)XEs, psT1}/Zs,
’ | {SUB)XEs, 4145}/ Zs, SU*9)/Z;, SU¥9)/Z;
ES l {SLB3, C)XEf}/Zs, SLO,C)/Z,
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7.14. Table. Rank G* > rank K*
G* K* conditions N
Spin(8) SUQB)/Zs -
SO048) SUY3)/Z, — 2
Spin(8, C) SL3, C)/Z; —
Spin(8), Spin(8) G -
—_— note (1)
Spin*@8), Spin*8) G3 —
Spin(8, C) GY — note (2)
{L*XL*XL*}/0Z* OL*/8Z* note (3)
- ~ note (1)
{LCX L*}/oZ* OL*/6Z* note (4)
{LEXLCXLC}/oZ 8LC/3Z note (3) note (2)
vector group R? {0} — note (1)
note 1 i one-one correspondence with 22 real matrices of square -I
note 2 one-one correspondence with 2 X2 complex matrices of square -I
f is an arbitrary compact simple Lie algebra.
2* is an arbitrary real form of g¢.
note 3 L* and L¢ denote the connected simply connected Lie groups with Lie
algebras 8* and {¢; Z* and Z denote their centers.
d(x) denotes (x, x, x).
te 4 ' &(x) denotes (x(x), x) where =: L*—~LC gives the universal covering of the
note R-analytic subgroup of LC with Lie algebra 2+,

Proof. If &* is not semisimple then it has radical R = 0. Let © be the
last nonzero term of the derived series of ;. Then © is an abelian Lie sub-
algebra stable under §. Now ©&* =& and dim & = 2 because &* has no
proper f-invariant ideal. Thus G* is a 2-dimentional vector group, K* = {0}
and X* = R%.

If @* is not semisimple we have just seen that it is abelian. So &* is reduc-
tive, and now &* = @*° [0 = {1, 6, 6*}] is a reductive subalgebra by Lemma
7.6. In particular we have a #-stable ad(K*)-stable decomposition &* = &*
+ IM* and f|m= = cos % I + sin %"’_J defines two G*-invariant almost com-

plex structures on X*.
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We may now assume &* semisimple. Extend @ by linearity to an auto-
morphism of &*¢ and let B be a maximal compact subgroup of Aut(&*°)
containing ¢. B specifies a compact real form & of &*¢ by: exp(ad®) is the
identity component B,. Now (@) = ®. Let = &’ and let X = G/K be the
simply connected coset space, G connected and acting effectively on X,
defined by (&, &). Let X* = G*/K* as in Lemma 7.4. There is an auto-
morphism « of @*¢ sending ® to . As a(R) = & = K because the latter
two are compact real forms of (&*°)° there is an automorphism g of &} =
a(®) sending a(R) to K*. Now Ba:® = @* sending & to &F, X to XF.
Thus we may view X* = G*/K* as constructed from X = G/K as in Lemma
7.5, provided that we view ® as ®° where ¢ = pafa~'g~*. In other words,
we are in the duality of Lemmas 7.4 and 7.5, except that ® = & and &* =
&** where the only relation between ¢ and 4 is their conjugacy in Aut (&°).
In particular, if ¢ is the Cartan involution of &* preserving ®%*, hence the
involutive automorphism which defines X* = G*/K* from X = G/K, ¢ need
not commute with § nor with .

We apply the hypothesis that &* has no proper ideal preserved by 6. As
6 has order 3 it says that there are just four cases, as follows®.

1. &¢ is simple.

2. &* is simple but &¢ is not.

3. @* = 2* D R* D {* with {*¢ simple.

4. ©&* = {* D L* @ 2* with * simple, L*¢ not simple.

In cases 3 and 4, § acts by cyclic permutation of the summands 2*.

In case 2, ¢ = H D H where © is a complex simple Lie algebra, &* is
isomorphic to § as a real Lie algebra, and &* is embedded diagonally. 4
extends to B¢ as ¢ X ¢ where ¢ has order 3. Now & = Q@ & where is a
compact real form of §, and ¢ = v X v where v has order 3 on 2. Thus
X =G/K is given as (L X L)/(S X S) = (L/S) x (L/S) where L is simple
and L/S is listed in Theorem 6.1, while X* = L¢/S°¢.

In case 4, the same arguments show X = G/Ktobe (4 X A)/(B X B) =
(A/B) x (A/B) where A/B is the space listed in Theorem 6.1 with 4 not
simple, and X* = G*/K* is A¢/BC.

In cases 1 and 3, X = G/K is listed in Theorem 6.1. We go on to consider
those cases.

We first consider the case where ¢ is inner on G. If rank G = rank
K (tables 1 and 2 of Theorem 6.1) then Propositions 6.4 and 7.7 say

= ad(k) for some k ¢ K. Note k? central in G because ¢> = 1. Now we run
through the list.

SUn)[S{U(ry) x U(r,) x U(ry)}. We may conjugate in K and assume &
diagonal. k? is scalar so k has just two eigenvalues. Now G* = SU™(n) and

4 If we had ¢ of order &, and m were the number of divisors d > 1 of &, then we would
have 2= cases in the obvious manner.



HOMOGENEOUS SPACES. 11 125

K* = S{U"(r,) x U(ry) x Ur,)}, m = s, + s, + s,, with normalization 2s;
<r.

S0(2n + 1)/ U(r) x SO2n — 2r + 1). Here k*=1 so k is of form
diag{—1,,1,_;} X diag{—1Io, lsn_3,_u..}. Now G* = S0***?(2n + 1) and
K* = U(r) x §0*(2n — 2r + 1) with the normalization s < r/2.

Sp(n)/U(r) X Sp(n — r). Here k* = +I and may be assumed diagonal. If
k* = —1I then G* = Sp(n, R) and K* = Us(r) X Sp(n — r,R), s < r/2. If k?
= I then G* = Sp**(n) and K* = U*(r) X Sp!(n —r), s <r/2,t < }(n—7).

S0(2n)/ U(r) x SO(2n—2r). Here k® = +1. If k*= —1 then® G* = SO*(2n)
and K* = U¥(r) X SO*(2n — 2r), s < r/2. If k* = I then G* = SO***(2n)
and K* = Us(r) X $O0*(2n — 2r), s <r/2,2t<n —r.

G,/UQ2). If k = 1 then G* = G, and K* = U(2). If k # 1 but k is central
in K, then G* = G (unique noncompact form of G,, equal to G, ,,,) and
K* = U(2). If k is not central in K then G* = G and K* = U'(2).

If G = F, then either (i) ¢ = 1, or (ii)) G* = F, 5, with dim & = 36, or
(iii) G* = F, ¢,c, with dim & = 24

F,/Spin(7)- T*. Here G has diagram e-6D-0 and the semisimple part K’

1 42 ¢3 ¢34
2 2 1
of K has diagram z:?—?. Now the vertices modulo »,R of the fundamental
3 4

simplex of K’ are 0, v; = 21)2, v} = 3v; and v] = 2v,. Thus we may restrict
attention to k = exp 2z — —1x) where®

X (0] "1 22, 21)3+'Ul %1)3 ’3'1)3-’-’01 Vs Vit
G* F, F, B, F4.B4 F4.34 Fq,cscl F4,036‘1 FA.C:;C: FA‘CSCI
K* B;T! B;, p,T! B3, 5,0, T! Bs, .0, T*

where D, = A,, B, = A,, D, = Al(-DA and D, = T
F,/Sp(3)-T'. K’ has diagram o ¢3> and v] =, ~ 2v, =2} in K’. Now as

1 2 ¢g

above, we need only note

x ‘ 0 v, I V14, 3v; 303+,
G* F, l F4.Cacl Fd.B4 F4.0301 F4.0301 F4.0301
K* CsT! Cs,cic.T? Ca, 4,1 T?

If G = E, then either (i) ¢ = 1, or (ii) G* = E, 44, with dim & = 38, or
(iii) G* = E;, p,r: With dim @ = 46

5 $0*(2m) is the noncompact form with maximal compact subgroup U(m).
¢ Determination of K* is obvious, of G* is obtained by counting roots with integer
values on x.
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E;/S0(10)-SO(2). Here G has diagram é—é—é—é—é and K’ has diagram

20¢s

\O—O—x . As /o ’ an A ’ 1
o O As 3v; ~ tv¢ and v; ~ v} in K/, we need only note
x (o] i Vy Vet 3vs vs+in 35 v 430,
G* Eg Eg,ps71 | Es, 4145 | Es, D511 Eg, 4145 Es.psr1
K ' DT D gy T D5, 414143 T Dy pyr1-T?

were Dy, 44,4, = Ds, p.p,- L 111
E,/S(U5)-U(1))-SU(2). K’ has diagram Q 2—2—2—8 and vg ~ v§, v ~ v}
in K’. Now we need only check

x o Vg ELN 0+ Ve ‘ Ve+ V2
G* Eg Eg, 4145 Eg, st Eg, ps1 Ee, 4145 ‘ Es, ps1
K* A, AT Ay 114" ArAy, a1 T

x Ve+3v: | Ve+ivi+V2 $vs v3+v, $vs+in | vstini+o,
G* Eg,ps1 Es, pst Eg, 4145 Es, psr1 Es, 4541 Es, 454,
K Av,71A4, 4, T? ArAg 4.7 T A, 7144, 414,01 T

. 1 1 1 1 1 .
E,;/U(6). K’ has diagram O—0-0-0-0 and v ~ v;, v; ~ v, in K’. Thus we
1 92 93 ¢4 95
need only check

x (] ) v, 201+, Vg Va+ Vg v, 33+ vs
G* Eq Eg, 4145 | Ee.ps71 | Eo,ps7t | E6,4145 | E6,DsTt | Eg,4145 | Eo.4145
K* AsT? l As, a1 T? As, 4145711 As, a24,71T?

1
E,/SO(8)-SO(2)- SO(2). K’ has diagram :g>§-§ with 3v] ~ 3v] ~ v in
421
K’. Now we need only check.

x o v 3vs v +v5) vy Va3
G* E, Es, ps1t Es, pst1 Es, psr1 Eg, 4145 Eg, psr1

K= D,-T? Dy, g571- T2

x Va+3vs | v2+3(v1+vs) 3vs fvstivi | Bust+ivs | FustE(oitos)
G* Eg 4145 Ee,pstt | Es 4145 1 Es 4145 Eg, 4145 Eg, 4,45
K* Dy, a5r1-T? Dy srar414,-T?
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= E;, 4,p, With dim &° = 69, or (iv) G*
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E, ,, with dim & = 63, or (iii)) G*
E,, Bers with dim &’ = 79.

E./E,T'. Here G has diagram 05-8;9—8-8—8 and K’ has diagram
¢102
0-0-5-0-5. |~V ~ V) ! ~ 3l in K’
Q g P o-0. As v; ~ v; ~ v; and ¥v; ~ 3v; in K’, we need only check
9102
X (0] &, Ve V2 +3v; %’Ua %‘U:; +3v;
G* E; Eq, pert E7, 4106 Ez Eert E: aq E7, 4106
K EgT? Eg,psr1-T? EG,AxAs'Tl
O 1
E,/SU(2)-50(10)-SO(2). K’ has diagram 6-5-06¢>" &, v} ~ }v} and
96 95 ¢4, YO¢1 d1
v; ~ vi. Thus we need only check
x [0} Vg EX l 1+ a}vs g’b'3+’vz %’Us‘\"i‘vl g”3+‘1‘vl+'02
G* E; |Eja1ps Ez, Eer! Ez, 41 |Er,gert | E7,4106 E7 4106
K DA T! DyAy T Dy, gyr1 AT Ds, 401 Ay 1 T!
x 204 29447, 2".’4+i’1)xi 2v4+3v14v, Vg Ve+Ve | Ve+3V; | vet+Ev+ V2
G* E1.A1Ds E7.A7 E1.A1D5 ET,A1D5
K* | D5, 414143417 |  Ds, 41414941, 71T D5, pyr1A: T D, pyr A1 T!

E;/SO(12) x SO(2). Here K':

So we need only observe

o—o—o—o(o"5
91 ¢2 43 94,097

with {v; ~ 3v; and v, ~ ;.

|
x (¢] Ve v lk’Ul+’Ua V2 i’l’z+'Ue $v; |§v3+v5 v; V4V
G* E: | E7,a106 E; et E7 4106 E; 4¢ Ez 41 |EzEem!
K* DT Dg,psr1 T* Dg, 414104 ‘ Dé, 434, D¢, 451 Tt !

E,/U(7). Here K’: o—o—o~o—o—o with v ~ 1vj, {v; ~ 30} and v; ~ $v;.

92 $3 ¢4 9¥5 96

Now we need only check

x o v; o | duitos s V2 +vr 3vs | 3vstor
G* E; E;.41 | Erpert | Er,4106 | Er, 4106 | Ev,Eemt | Er,47 | E7,41D6
K* AeT? ! Ag,as1-T? As, 414,71 T? As, azas71-T"
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If G = E; then (i) ¢ = 1, or (ii) G* = E, 5, with dim & = 120, or (iii)
G* = Eg 4, with dim & = 136.

E,/SO(14).S0(2). G has diagram $—0-0-6-6-0-0 and K’ has diagram

T 9695 P31 ¢3
4803
lo"’\sz 2 2 2 1

~0—-0-0-0. As v, ~ tv}, vi~ v, and v ~ v, we now need onl
10795 44 93 92 1 Ve 0 T2 s y

observe
x o vy v I vi+v; | 3v: | $va+v,| 205 203+ 07| Fvs l%vﬁ“ Uy
G* EB EB.DB EB,AIE'[ E8.41E7 Es.Ds EB.Da ’EB.AlE'I
i K* D.1T* D:, per T* D7, 4y410sT* D7, 430,T" Dy, aer T

. 2 3 4 3 2 1
Ey/E,-T'. K’ has diagram O=Q-0-90-9-9 with v; ~ v;. Now we need only

3O¢a
check
X o] l "1 -g-'vz %}’03 + v 2v; 20340 %vg %’Ue +v
G* Eg !Es.A1E7 Es,41E7 | Es,a167 | Es,ps | Es,a1E7 | Es,Ds Eg,ps
K> E-T | BT Erai06 T Epar T

This completes our run through table 1 of Theorem 6.1 for ¢ inner. We
go on to table 2.

G,/SUQ3). If 0 =1 then G* =G, and K* = SU(3). If ¢ # 1 then G* = G¥
and K* = SU(3), for those are the only possibilities.

F,/ A,A,. K has diagram é—é f)—é where ¢; = —(2¢, + 4¢. + 3¢: + 2¢.),
so the vertices of its fundamental simplex are v; = 0, v{ = 2v, — 2v;, v; =
4v, — 4v,, v = —v, and v, = 29, — 2v,. As V] ~ ¥v; and Iv; ~ Jv,byan
inner automorphism of G which preserves K, now we need only calculate
dim @, ¢ = ad(k), k = exp2r—1x e K, as follows.

x o Fvi~v $vi~3v; vi+Jvi~vi—3vs
G* F, F4.84 F4,0301 F4.CsCx
K* AzA; Az, 417142 AzAsz, ay1! Az, 4171 A2, 4,71

E,| A,4,4,. K has diagram 0-0 0-0 5—205 with ¢ = — (¢, + 2¢; + 3¢s

91 92 P4 95 93
+ 2¢, + ¢5 + 2¢be); its fundamental simplex has vertices v; = 0, v] = v, — v,,
Vi = 20, — 20;, V) = —0,, ¥} = 20, — 20,, ¥, = v, — v, and V] = 20, — 2v,.
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An automorphism of G preserves K and permutes its summands cyclically,
inducing

Vo= Vg, VUV —V, Uy VgV — V5.
Another acts by
VoV, VoV, VUV, v — V0,

given by wa, w e W with wa®, = ©,, « given on a maximal torus of K by
t — 7!, Now we need only calculate dim & in the cases

3(vi+vi)~4v; and | }(vi+vi+ vE)~3(V1+3v3+v5)
x o Bvi~3(v1+3v3) | $(vi+ve) 3(vi+vi+vi)~3vi+ v,
~3(1+3v3+2v5) | 3(Wit+vi+vE)~vi+ Vet ve

G* Es Eg, 4145 Eg, g1 Eg, 4145

K* Ag'Az‘Az Az,AITl'Ag'Az Az,AlTl'Az.AlTl'Az AZ.ALT"Az.ALT"AZ,AlTl

E;/4,4;. K has diagram -0 é—éé—i)—é with ¢} = — (¢, + 2, + 3¢,
6 95 41 3 da 97 ;

+ 4¢, + 3¢5 + 2¢5 + 2¢5;). Its fundamental simplex has vertices v; = 0, v;

=V, — Vs, V) = 20, — 2V, Vi = 30, — 30;, U, = 4v, — 4v,, Vi = —v;, V=

2vg — 2v; and v} = 2v, — 2v;. The center is generated by an element con-

jugate to its inverse, and that conjugation gives

4
Vo> Vg, V3>V, VeV, Ve, Ve V.

Now we need only check the following determinations of .

: ' , , $(vi+vs)
x ! o i 36 Jvi | 3(vi+v8)
G E. Eamse  Ea Engen
K | Agd; 'v_"—--AZ.AlTlASA Ty A;A-;.AAT‘ o m;l )
x fvi ;g:::g 05 $(v3+v8)
G* E7.A1Ds——— E7, 4106 E: ert E: 47
K* Azds, 41451 A3, 417145, 4,431 A2A45 434,11 Az, 417145, 42457

. 11 1 2 3 2 1 .
E;/ A;E;. K has diagram o 8-8;%—8—% with ¢ = — ¢, + 3¢, + 4
4502

+ 5¢, + 6¢5 + 4¢s + 2¢; + 3¢s). As above we now need only check
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. , $(vitvi) 3vi+3vi
x o v 0, 30
i s 3(vi+v3) ! 3vi+§vs
G EB EB.A1E1 E&Ds E;»A;E-r ES-A\E'I’ EB,DS
K% | AsE¢ | As,a,r1Es ‘ AsEe,psrt | Az.ai71Es,ps7t | A2Ee, 4145 | A2,417'E6 4145
. 1 1 1 1 1 1 1 1 .
E;/ A,. K has diagram 0-0-0-0-0-0-0-0 with ¢ = —(2¢; + 3¢, + 4¢;

90 91 g2 93 ¢4 ¢5 6 ¢1
+ 5¢4 + 6¢5 + 45+ 2¢; 4 3¢s). Now V) = — g, V] = 20, — 204, V5 = 3U,— 30,
v; = 4v; — 4v,, and we need only check the cases

x| o $v; $oi $v3 03
G* Es Eg.pg Eg, 4181 Es 4,1 Eg, ps
K= As Asg, 4771 Asg, 44671 Ag, 424571 Asg, 434411

This completes our run through tables 1 and 2 of Theorem 6.1 for ¢ inner.
If o is outer there, then Proposition 7.8 says that (a) G = E,/Z, and
K = A,- A, A, with ¢ interchanging the first two factors and preserving the
third, or (b) G = SU(n)/Z, with n = 2r and K = S{U(r) X U(r)}, o inter-
changing the two factors of K, or (¢) G = SO(2n)/Z, and K = {U(r) X
SO0(2n — 2r)}/Z, with 1 < r < n — 1 and ¢ = ad(k) where k = diag{k,, k,},
ke U(r), k,e OQ2n — 2r), detk, = —1.

In case (c), k ¢ O(2n) has square +I and determinant — 1, so k> =1. Thus
ki=1. Now G* = SO**'(2n)/Z, where K* = {U*(r) X SO‘(2n — 2r)}/Z.
with ¢ odd.

In case (b), ¢ = v-ad(g) where ge G and v is complex conjugation of
matrices. 1 = ¢* = ad(g)-ad(g) = ad(*‘g™*)-ad(g) = ad(‘g~*-g) shows g = c'g
for some complex number ¢ with ¢» = 1. Now (}g) = g shows c = +1. g

has form (g g\) in r x r blocks because ¢ interchanges the two U(r) factors

of K, so g = (g g) with B = c¢'A. Now G* is SL(n,R)/Z, if c=1,
SL(r, Q)] Z, if c = —1, and K* is the image of {g e GL(r, C):|detg|= 1} in
any case.
In case (a), let g, be the automorphism of G defined on a Weyl basis by
92 91
=)
g—g<§ 1. 1fo=o,then G* =, and K* = {SL(3, O) X SUB)Y/ Z..
P4 95
As K is its own normalizer in G, ¢ = g,v with v = ad(g) for some g ¢ K fixed
by ¢,. We note that K= {SU(3) x SU(3)}/Z, has diagram o—o o-o where

B1 B2 11 12

B = -‘(¢1+¢'5) - z(ébz + ¢y + Sbs) - 3¢'3, Be=tsn= ';l.'(¢2 + 9[’4) and T2 =

(¢ + ¢5); so the nonzero vertices of its fundamental simplex are ¥; = —;,
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U, = 205 — 2v;, w; = 2(v, + v,) — 4v, and w, = v, + v; — 2v,. Now we need
only consider the cases v = ad(exp2zJ—1x) for x = Ju;, 3w;, 3(u, + w)
and $(u, + w,). If x = }w, then K* = {SL(3, C) x SU(3)}/ Z;, and then G*
= E; p, because 4,4, ¢ C,. If x is fu; or 3(u; + w;), then K* is {SL(3,C)
X SUY(3)}/ Z, and we run through a list of roots to compute dimensions of
intersections of eigenspaces as dim{E(a,, 1) N €(v, 1)} = 24 and dim{€(g,, — 1)
N &, — 1)} = 12; thus dim €(s, 1) = 36 and G* = E .

This completes our analysis of the case where rank G = rank K. We go on
to table 3 of Theorem 6.1.

Let G=L X L x L with L simple and K = {(g,, 8,,8,)€ G:8, = 8 = &}
If o preserves each factor of G then o(K) = K says that ¢ = v X v X v for
some involutive automorphism v of L; then G* = L* X L* X L* and K is
L* embedded diagonally, where L* is the form of L defined by the involution
v. If ¢ permutes factors of G, then we may take o(g;, g, 8) = (+28:, V181, ¥383),
vi=1, from ¢>= 1; and further », =y, =y, as o(K) = K, so ¢ acts by
(81, 82, 8) — (v8,, v81,v8,); then G* = L¢ x L* and K* = L* is given by
K* ={(g,g’)e L¢ x L*:g = g'}. In all cases K* has linear isotropy repre-
sentation adx* @ adyx, whose commuting algebra is the algebra of 2 x 2 real
matrices; so the invariant almost complex structures on X* are in 1 to 1 cor-
respondence with the 2 X 2 real matrices of square —I.

For the remaining two cases we replace Spin(8) by SO(8); this is permissi-
ble because ¢* = 1 says that ¢ is conjugate in the automorphism group of G
to conjugation by some element s in the full orthogonal group O(8).

SO(8)/G,. o(K) = K says that s permutes the irreducible summands of the
representation of G, on R®. Thus R® = R*@ R" under G, and s = (1) D,
s’e (7). = 1,50 s*= +1I, and now s* = I. g|g, is necessarily inner, so

dlg, = ad(t) for some t € G, of square 1. If 1 # 1, so & = ("I' I ) with

1 < r £ 6, then GF C SO7(7) and maximal compact subgroups SO(4) C SO(r)
X SO(7 — r). As SO(4) contains a Cartan subgroup of G¥, and as the repre-

sentation €=D of the latter on K" has O as a weight of multiplicity 1, we
have r >2 and 7 — r > 2. Now r is 3 or 4. Changing s to —s if necessary

we may assume 7 = 3. Then s is (‘I“ I) or (_13 1), ¢ being inner in the
4 5

first case and outer in the second, provided ¢ 3 1:

s e | =(Th) (7R =Ry
G* SO(8) SO'(8) SO*(8) SO38)
K G2 G§
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In all cases the isotropy representation of K* has commuting algebra (2 x 2

real matrices), so the G*-invariant almost complex structures on X* are in

1 to 1 correspondence with 2 X 2 real matrices of square —1.
SO(8)/adSU(3). |y is inner because ¢ cannot interchange the irreducible

summands 0-0 and 0O of the linear isotropy representation. Now ¢|x =
ad(ad(v))|x for some v € SU(3). If v # I, then #? scalar allows us to assume

-1
v =< -1 ), so ad(v) = (_I‘I) € SO(8). In either case Schur’s
1

Lemma and ad(v)* = I; say s~'-ad(v) = +1I;. Now s = x1I;, G* = SO(3),
K* = adSU(3); or s = :( —L ) G* = SOX8), K* = adSU'(3).

This completes the run through the three tables of Theorem 6.1. There is
no redundancy for the cases rank G > rank K. Now we need the following
lemma, which eliminates redundancy for the cases of equal rank.

7.15. Lemma. Let rank G = rank K, G/K listed in Theorem 6.1. Let o,
be involutive automorphisms of G, which preserve K and invariant almost
complex structures on G/K. Let G¥ and K¥ be the corresponding real forms
of G and K. Suppose (i) K¥ and K} are of the same type, (ii) G¥ and G¥ are
of the same type. Then there is an automorphism B of G which preserves K
such that ¢, = Bo,p7".

Proof. By (ii) there is an automorphism g’ of G such that ¢, = g'¢,8’~*.
Now we must find 8 in the form «p’ where « commutes with g,.

Define ¢ = 0, and 6, = §. Define §, = §’~*8’ and K; = G’. Now (i) says
that K; = (G°)* and K; = (G°)* are of the same type, thus conjugate by an
inner automorphism ad(a) of G°. Let « = ad(a) on G; a € G° says g,a = ag,;
replace ﬁ' by = af’; we still have g, = fg,f~* but now (G°)"* = (G°)*.
Thus 6,0 = ad(v) where v is central in G°, v* =1, If v# 1, then G’ is a
hermitian symmetric subgroup of G, so the center of G°is a circle group;
then 6; = ad(v*') and 6, = 63, i.e. BB~ = 6%, i.e. B(K) = K. q.e.d.

The final step is to check the global form of each of the entries of the
table of our theorem. There we must check that G*/K* is simply connected
and that G* acts effectively. For the first, z,(G*/K*) = x,(4/B) where B is
a maximal compact subgroup of K* contained in a maximal compact sub-
group A of G*. For the second, using the fact that &* has no nonzero ideal
contained in §*, we need only check K* N Z* = {1} where Z* is the center
of G*. These small calculations are left to the reader. g.e.d.

Theorem 7.10 extends Theorem 6.1 to the ‘“noncompact case.” To extend
Theorem 6.4 we need an appropriate version of the connectedness of the
isotropy subgroup as mentioned in Proposition 4.1.

7.16. Lemma. Let X = G/H be an effective coset space, where G is a
connected reductive Lie group and H is a closed reductive subgroup of max-
imal rank. Choose maximal compact subgroup L — K of H c G and suppose
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rank L = rank K. If X carries a G-invariant almost complex structure, then
H is connected.

Proof. © contains the center of & because it has maximal rank, so H
contains the identity component of the center of G. Now G is semisimple
because it acts effectively on X. Let © be the centralizer of & in ®. Define
& =8 +Sand & =2 + S. & is a compactly embedded subalgebra of &
so {’ is a compactly embedded subalgebra of §. The linear isotropy represen-
tation of H, is faithful because G is effective on X ; thus the analytic subgroup
of H with Lie algebra L’ is compact; it follows that ' = . Now & C &, so
& c &, and this shows that £ and & are maximal compactly embedded sub-
algebras of § and ®. In particular K contains the center of G, L contains
the center of H, and L, contains the center of H,.

Let @ = § + I be the orthogonal decomposition under the Killing form.
Decompose M¢ = M* 4+ M~ into =+(J—I)-eigenspaces of the invariant
almost complex structure. Now let Z denote the center of H,, so H, and L,
are the respective identity components of the centralizer of Z in G and K.
Choose a Cartan involution ¢ of G which preserves H,. Then ¢(Z) = Z and
K is the fixed point set of ¢ on G. Now & = & + N where t = & N WM.
Define *=KNM* =NCNM* and R-=KCN M- =N N M-, so
NE =N+ + N~ defines a K-invariant almost complex structure on K/L.
Proposition 4.1 says that L is connected. As L meets every component of H,
now H is connected. g.e.d.

Now we can complete Theorem 7.10 to a structure-classification theorem
which extends Theorem 6.4 to the noncompact case.

7.17. Theorem. The coset spaces X = G|H with the properties (i) G is a
connected reductive Lie group acting effectively, (ii) § = @’ where 6 is an
automorphism of order 3 on ®, and (iii) X carries a G-invariant almost
complex structure, are precisely the spaces (X, X X, x --- X X,)/T" =
[(G, X G; X --- X G,)/I'1/H constructed as follows.

X, is a complex euclidean space, G, is its translation group, and H, = {1}
c G,;

r >0 is an integer. If 1 <i<r, then X, = G,;/H; is one of the spaces
listed in Theorem 7.10, and Z,; denotes the center of G;

I' is arbitrary discrete subgroup of Gy X Z, X --- X Z,;

G=(G, XG, X --- X G)I and H is the image of H, X H, X --- X H,
in G.

Remark. Z; is trivial if rank G; = rank H,, i.e. if X; = G,/H; is listed
in Table 7.11, 7.12 or 7.13. If rank G; > rank H;, i.e. if X, = G,/H; is
listed in Table 7.14, then Z, is:

Z, X Z,if G, is Spin(8), Spin*(8), Spin*(8), Spin*(8) or Spin(8,C);
Z,if G; is SO'(8);
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Z* x Z* if G, = [L* x L* x L*]/6Z*,Z* if G, = [L¢ x L*]/6Z*,
ZXx Zif G;=[L¢ x L® X L¢]/éZ .

Proof. The proof is identical to the proof of Theorem 6.4, except that
Theorem 7.10 substitutes for Theorem 6.1 and Lemma 7.16 for Proposition
4.1.

7.18. Corollary. The coset spaces X = G|H with the properties (i) G is a
connected reductive Lie group acting effectively, (i) § = &° where 6 is an
automorphism of order 3 on &, (iii) X carries a G-invariant almost complex
structure, and (iv) X is locally a product of coset spaces with R-irreducible
linear isotropy subgroup, are precisely the spaces (X, X X; X --- X X,)/T"
which are listed in Theorem 7.17 and satisfy the additional condition :

If 1 <i<rthen X, is listed in the tables of Theorem 7.10 with N = 2.

Proof. X is listed in Theorem 7.17 and this is equivalent to conditions
(i), (ii) and (iii). Condition (iv) says, precisely, that 1 <i < r implies, in the
notation of Theorem 7.17, that the linear isotropy representation 8; of H; is
R-irreducible. If §; is R-irreducible then of course N = 2. If N = 2 then g;
cannot decompose into summands stable under an almost complex structure,
s0 B; = m; @ r; with r; absolutely irreducible; then 8; is R-irreducible, for
reality of z; would imply (cf. Table 7.14) N = . q.e.d.

We have been implicitly using the fact that Theorem 4.3 extends without
change to the case where K is a connected reductive subgroup of maximal
rank in a connected reductive Lie group G. At this point we should note, for
purposes of § 8, that Theorem 4.7 extends without change of the case where
K is the identity component of the centralizer of a connected subgroup of a
Cartan subgroup of a connected reductive group G, and that Theorem 4.5
and Corollary 4.6 extend to the reductive case with the restrictions that T
remains compact and we use restricted Weyl groups.

8. Types of homogeneous almost Hermitian manifolds

In this section and the next we give a detailed description of the almost
hermitian geometry of the almost complex manifolds of §§ 4 through 7. The
general results are given here in §8; §9 is concerned with somewhat more
delicate results involving calculations with the root systems of the relevant
Lie algebras.

We first describe several conditions for almost hermitian manifolds which
are weaker than the kaehler condition. We then prove a series of theorems
relating those conditions, for a homogeneous almost hermitian metric on a
reductive coset space G /K, to criteria concerning whether f is the fixed point
set of an automorphism of order 3 of &.

Let M be a C~ real differentiable manifold and (M) the Lie algebra of
vector fields on M. We assume that M possesses an almost complex structure
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J and a pseudo-riemannian metric tensor field (, ) which satisfy (JX,JY) =
(X,Y) for all X,Y ¢ Z(M). The kaehler form of J and (, ) is the 2-form F
defined by F(X,Y) = (JX,Y) forall X,Y e F(M). Letds* = (,) + N—1F.
Then the existence of ds* on M is equivalent to the existence of compatible
(,) and J. We say that (M, ds®) is an almost hermitian manifold and that ds*
is an almost hermitian metric on M.

Assume that (M, ds?) is almost hermitian and let / denote the riemmanian
connection of the pseudo-riemannian metric (, ) determined by ds®. If J is
the almost complex structure determined by ds?, we say that (M, ds?) is
kaehlerian if V y(J) = O for all X ¢ £ (M), almost kaehlerian if dF = 0, nearly
kaehlerian if V x(J)(X) = O for all X e (M), quasi-kaehlerian if

Vx(N) + V;x(DJY) =0

for all X, Y e (M), semi-kaehlerian if 6F = 0, and hermitian if J is integra-
ble, i.e. if M is a complex manifold relative to J. Let X, & X, /' ", 24,
LA and # denote the classes of kaehler, almost kaehler, nearly kaehler,
quasi-kaehler, semi-kaehler, and hermitian manifolds, respectively. In [5] it
is shown that the following inclusions hold between the various classes :

LI <

Y.JVML&I.%’U./VJK<.Q.9£’<.6L9£’U(5/’.9fr1.;ff)<5"9£’,

LA <

L
.%"<.7‘%’ﬂ.%"v.yf <

FLH UL AK .

Here < denotes strict inclusion and .«/5# stands for the class of all almost
hermitian manifolds. Furthermore, o = 2 N 24 = LA N /KA so that
all possible inclusions are determined.

Now we consider the above conditions on a homogeneous almost hermitian
manifold (M, ds?). We assume that M = G/K is a reductive homogeneous
space, and that the metric (,) and almost complex structure of (M, ds?) are
both G-invariant. In refering to classifications we will assume that G is con-
nected and acts effectively on M, but in general we make no additional
hypotheses on the Lie groups G and K. In particular, we do not assume the
pseudo-riemannian metric (, ) to be definite. If the isotropy representation of
K has no irreducible summand of multiplicity greater than 1, then homo-
geneity automatically implies the compatibility condition (JX,J/X) = (X, Y)
for X,Y e £(M). Furthermore, we have the following formulas for
X, YeZM):

(X,K,Y)=(X,[K, YD, [K,JX] = JIK, X].

If V is a real vector space and P: ¥V — V is a linear transformation without
real eigenvalues, then P determines an almost complex structure J on V in a
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canonical fashion. Let Im2 > 0 and V, be the subspace of V¢ on which
P — 2 is nilpotent. Then J is given on V N (V, + V3) by the reguirement that
P — {(Re A)I + (Im 2)J} be nilpotent. J extends to V= 3, V NV, + V3)

Im 2>0
by linearity. The linear transformation J of V has square —I and is called

the canonical almost complex structure determined by P.

Thus an automorphism § of G of order n for which —1 is not an eigen-
value determines an invariant almost complex structure on G/K if K is the
fixed point set of §. For n = 3 or 4 we shall characterize the canonical almost
complex structures of the almost hermitian manifolds so obtained.

8.1. Theorem. Let M=G/K be a (reductive) homogeneous space for which
K is the fixed point set of an automorphism 6 of order 4, and assume that
—1 is not an eigenvalue of the induced action of § on &. Then the canonical
almost complex structure J determined by 6, together with any compatible
metric (,), makes G/K into a hermitian symmetric space. Conversely, if
G/K is hermitian symmetric, then R is the fixed point set of an automorphism
of & of order n for any n > 1.

Proof. For the necessity let P be the induced action of # on . On I we
have P=1J so JIX,Ylm = [JX,JY]m for X,Y e M. (Here the subscript
denotes the component in IR.) Hence

X, Yl = X, PYl; = JUUX, JYI = —[X, Yim,

and so [, M] c K. Thus G/K is hermitian symmetric.

Conversely, if G/K is irreducible hermitian symmetric, then K has a 1-
dimensional center Z. It is not hard to see that any element in Z of order n
(n > 1) has fixed point set K. q.e.d.

The characterization of an almost complex structure determined by an
automorphism of order 3 is more complicated.

8.2. Theorem. Let M = G/K be a (reductive) homogeneous space for
which R is the fixed point set of an automorphism 6 of & of order 3. Then
the canonical invariant almost complex structure J determined by 6 satisfies

8.3) UX,Ylp = —JIX, Yln,
(8.4 [X, Y]le = [JX,JY]e
for all X, Y ¢ M. Conversely, if M = G/K has an invariant almost complex

structure satisfying (8.3) and (8.4), then R is the fixed point set of an auto-

morphism of & of order 3.
Proof. For the necessity let P denote the induced action of § on &. The
canonical almost complex structure on I determined by P is given by

8.5 Pgp=——1+4+22"
8.5 m +2
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Since P[X, K] = [PX,K] for X e M and K € K, it follows that J is invariant.
Furthermore,

PIX, Y] — [PX,PY] = 21X, Yla — 2 [X, Yl + i'ziJ[X, Yim
(8.6) _ -
= 2ux,m + Zuxon + Zxm,

In particular,

8.7  PIX,JX] — [PX, PIX] = —%[X, IXIm + .J;_J[X, Xl .
Since P is an automorphism of & the left hand sides of (8.6) and (8.7)
vanish. From (8.7) it follows that [X, JX];m = 0. Hence (8.6) reduces to

0= %([X, Ylg — UX, I¥]g) + J—f—(ux, Ylg + [X, JY]g)
(8.8) —
+ %(J[X, Yl + UX, Ylm) .

Thus we get (8.3). Furthermore, (8.4) is obtained by substituting JY for Y
in (8.8) and subtracting the result from (8.8).

Conversely, suppose (8.3) and (8.4) hold. Define P: & — & by (8.5) and
the requirement that P be the identity on &. From (8.3) we have [JX, Y]m
= [X,JY]m for X, Y ¢ M, and (8.3) and (8.4) imply (8.8). Thus (8.6) be-
comes P[X, Y] = [PX, PY] for X, Y € M. Furthermore, since J is invariant,
P[X,K] = [PX,K] for X e M, Y € &. Therefore P is an automorphism of &
with fixed point set . {Consequently, if G is simply connected, P determines
an automorphism of G of order 3 whose fixed point set is K.} q.e.d.

The next theorem shows that it is sometimes possible to determine the
class of a homogeneous almost hermitian manifold (M, ds®) even if the metric
(,) is not assumed to be obtained by restriction of M and translation over
G /K of a bi-invariant bilinear form on &.

8.9. Theorem. Let (M, ds?) be a reductive homogeneous almost hermitian
manifold, M = G /K.

(i) If J satisfies (8.3) then (M, ds*) € 2.

(i) If the isotropy representation of K has no invariant 1-dimensional
subspaces, then (M, ds*) e L. This holds, for example, if the isotropy
representation is irreducible or if G and K are reductive Lie groups of equal
rank.

Proof. For (i) we note that the riemannian connection ¥ of M is given by
the formula
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(8.10) 20,Y,2)= —(X,[Y,Z) — (Y,[X,ZD + (Z,[X, YD
for X, Y, Z e IM. Because of (8.3) we have
Px(F)XY,Z2) = + (X,JIY,Z])) + (Y,JIX,Z]) — (Z,][X,Y]) .
Again on account of (8.3) it follows that
Vx(FXY,Z) + V,;x(F)JY,Z) = 0.

Finally (ii) follows from the fact that §F is invariant under the isotropy
representation of K. q.e.d.

Next we assume that (M, ds*) has a metric (,) which is the projection of
a bi-invariant metric on G. This holds, for example, if the isotropy repre-
sentation of K is irreducible. We have then

(x,Y,2)=&,[y,zh, (X, Y],K)=(X,[Y,KD)

for X,Y,Z e M and K ¢ &. Furthermore, the riemannian connection of M is
given by V/,Y = }[X, YIm for X, Y e M.

8.11. Theorem. Let (M, ds®) be a reductive homogeneous almost hermitian
manifolds with M = G|K such that the metric (, ) of M is a projection of a
bi-invariant metric on G. Then the following conditions are equivalent :

(i) M,dsHeA.

(i) [X,JX]eQforall X,Y ¢ M.

(iii) R is the fixed point set of an automorphism of & of order 3.

Proof. We have VVy(J)(X) = i[X,JX]m, and so (i) and (ii) are equivalent.
Furthermore, (ii) is equivalent to equation (8.3). Bi-invariance of (, ) implies
that (8.4) holds. The rest of the implications follow from these facts.

8.12. Theorem. Let the metric of the homogeneous almost hermitian
manifold (M, ds*), M = G/K reductive, be the projection of a bi-invariant
metric on G. Then

(i) WM,ds>e ¥ A if and only if (M, ds?) e 224,

(i) (M,ds®) e if and only if (M, ds*) e L X .

Proof. We have

Vx(NX) + V1 x(NDUX) = [X, IX]m = 27 x()(X) .

If (M, ds* e 2, the left hand side of the first equation is zero and so
(M, ds*) e 2. Since we always have &' ¢ 22, (i) follows. Further-
more, X C 224 and L H N N H = X ; hence (ii) follows. qg.e.d.
The possible classes for a homogeneous almost hermitian manifold (M, ds®),
whose almost complex structure J is canonically determined by an auto-
morphism of order 3, are summarized by the following theorem.
8.13. Theorem. Suppose M = G /K is a (reductive) homogeneous space
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and 8 is the fixed point set of an automorphism 6 of & of order 3. Let ds® be
a G-invariant almost hermitian metric on M whose associated almost complex
structure is the canonical one determined by 6. Then

(i) M,ds»)e 32X,

(ii) if the metric (,) of M is induced from a bi-invariant metric on G,
then (M, ds*) e /"X,

(iii) wunder the hypothesis of (ii), the following are equivalent: (a)
(M, ds*) e 5 ; (b) (M, ds*) e X; (c) M is hermitian symmetric with respect to J.

Proof. (i) follows from (8.9), and (ii) is a consequence of (8.11). For
(iii) we note that (c) implies (2) and (b), and (a) and (b) are equivalent by
(i). Furthermore, if (M, ds?) e 2" and the metric of M is induced from a bi-
invariant metric of G, we have J[X, Ylg = [JX, Ylm for X, Y € M. That M
is hermitian symmetric now follows from (8.3). q.e.d.

A weak version of Theorem 8.13 can be proved in the general case (where
the almost complex structure is not assumed to be the canonical one):

8.14. Theorem. Let (M, ds®) be a homogeneous almost hermitian manifold
such that M = G /K, where G is a reductive Lie group and = &° for some
automorphism 6 of order 3 on &. Then (M, ds*) e ¥A".

If M is compact and @ induces an outer automorphism on the semisimple
part of &, then (M, ds®) ¢ ¢, (M, ds*) ¢ A and (M, ds®) ¢ £ 4.

Proof. Without loss of generality we may assume G connected and
effective on M. Then M is one of the spaces M/I', M = My X M, X ---
X M,, of Theorem 7.17. We are examining conditions determined by inte-
grability of the almost complex structure J of ds* and by the differential dF
and the codifferential F of the kaehler form F of ds®. Those properties are
local so we may replace M by M. After having done this we have M = M,
XMy X - XM, G=G,xG X ---XG,, K=K, XK, X+ XK,
and M; = G,/K;, where M, is a complex euclidean space and the other M;
are listed in the tables of Theorem 7.10. ds* is the direct sum of G;-invariant
almost hermitian metrics ds? on the M;; if J; and F; denote the almost com-
plex structure and kaehler form of ds?, then J is the direct sum of the J; and
F is the direct sum of the F;.

8F; is a G;-invariant 1-form on M;. Let I, denote the complement to K;
in @,. If §F; % 0, then ad;,|x, must have a trivial subrepresentation on I;.
If rank K; = rank G;, Theorem 4.3 show that there is no such trivial sub-
representation. If rank K; < rank G; but M, is not a complex euclidean
space, the same fact follows from Theorem 5.10. Now 6F; = O for i > 0.
But ds? is stable under a nonhomogeneous indefinite unitary group on the
complex euclidean space M,, and the isotropy subgroup, which is an in-
definite unitary group, is irreducible; as before it follows that §F, = 0. Now
F=6(F,®F,®.--®F,)=06F,®--- ®6F,=0. That proves (M,ds*)
e LA .
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Now suppose that M was compact before we replaced it with M, and the
¢ induces an outer automorphism of the semisimple part of G. Then G; is a
compact for i > 0 and we may assume 6|;, to be an outer automorphism.
Note, from Theorem 6.1 or Table. 7.14, that K is semisimple. K, cannot be
the semisimple part of the centralizer of a toral subgroup of G, because
adg |k, has no trivial subrepresentation on I, ; it follows [10] that 7, is not
integrable; then J is not integrable, so (M, ds*) ¢ 5# and (M, ds*) ¢ A".

Retain the assumptions of the preceding paragraph. Suppose dF, = 0. If
F, = dB for some 1-form g on M, = G,/K, let §’ denote the Haar integral
average of g over G,. Then g’ is a G,-invariant 1-form on M, and

g = d f g*pdu(g) = f d(g*Bdulg) = f g*dpdu(e)
G1 G G

= Gf g*Fdu(g) = ! Fdu(g) = F .

Thus we may assume § to be G-invariant. But then g = 0 because ad;,|x,
has no trivial subrepresentation on IR,. That contradiction shows F, # dp
for any 1-form g. In other words, the closed 2-form F, represents a nonzero
cohomology class in H*(M;; R). Duality and the Hurewicz Theorem then
show that the homotopy group =,(M,) is infinite. But =,(K,) is finite because
K, is semisimple, and we have the exact sequence 0 = 7,(G,) — 7,(M,) —
m,(Ky). This contradiction shows dF, 3= 0. Now dF #* 0, so (M, ds*) ¢ 2 and
M,ds) e A q.e.d.

Let M = G/K be a reductive homogeneous space with R-irreducible linear
isotropy representation. Then every invariant riemannian metric is induced
from a bi-invariant metric on G, under the mild condition that G is the
translation group if M is an euclidean space or a circle. Let ds* be an in-
variant almost hermitian metric on M. Then the almost complex structure J
is unique up to sign [12], and Theorem 8.11 shows that (M, ds*) e /' if
and only if & is the fixed point set &’ for some automorphism 6 or order 3
on &. This situation persists under products and under quotient by discrete
central subgroup of G. In summary, we have

8.15. Theorem. If M = G/K is one of the spaces of Corollary 7.18, and
ds® is any G-invariant almost hermitian metric on M, then (M, ds*) e /"X ".

By way of contrast we have

8.16. Theorem. Let M = G/K be a reductive coset space with an invariant
almost hemitian metric ds*. Suppose that R is not the fixed point set of an
automorphism of order 3 of &, and that the linear isotropy repeesentation of
R is irreducible. Then (M, ds*) e 4" and (M, ds®) ¢ 24 .

Proof. (M, ds*) is semikaehlerian because the linear isotropy representa-
tion of K cannot have F as a nonzero invariant. If (M, ds®) were quasi-
kaehlerian it would be nearly kaehlerian by Theorem 8.12, and then Theorem
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8.11 would force & to be the fixed point set of an automorphism of order 3
on &. q.e.d.

The spaces M = G/K which satisfy the hypotheses of Theorem 8.16 have
been classified [12,_§ 13]. The ones for which G is not a complex Lie group
are given by G = G/Z and K = KZ/Z, where Z is an arbitrary subgroup of
the center Z of G, and all possibilities are given by:

G z | K conditions !
Spin(n2—1) | Z,x2, | SUM)/Z. nodd, m>3 |
S0* "N (n2~1) Z, SU™(n)/Z, | nodd, n>3, 0<2r<n
SO -N(n2—1) I {1} SU(n)/Z, |neven, n>3,0<2r<n :
E "z, | suoyz, s |
" simply connected group of type Eq, 454, l Zs [ SU(3)/Zs —_—

{Note that n = 3 is excluded from the first two entries of the table by the
condition that & is not the fixed point set of an automorphism of order 3 of
®.}

The spaces M = G/K satisfying the hypotheses of Theorem 8.16, for
which G is a complex Lie group, are the spaces given by G = A¢/Z and K
= BCZ|Z, where Z is an arbitrary central subgroup of 4 (i.e. an arbitrary
central subgroup of the complexification 4¢), and A /B is either a compact
simply connected nonhermitian symmetric coset space or one of the coset
spaces listed in [12, Theorem 11.1] for which the linear isotropy representa-
tion y is absolutely irreducible.

9. Invariant almost Hermitian structures on compact
homogeneous spaces of positive characteristic

We conclude by studying the types of positive definite invariant almost
hermitian metrics ds* on homogenous spaces M = G/K, where G is a com-
pact connected Lie group and K is a subgroup of maximal rank. Note that
(M, ds*) e £ by Theorem 8.9, and that Theorem 4.5 gives the criterion for
whether (M, ds®) e 5. We find root system criteria for (M, ds* to be in the
classes &, &, 224 and &, respectively, and we specialize those criteria
with the aid of the various classifications of § 4.

Choose a maximal torus T of G which is contained in K. Let Ax and A
denote the respective systems of EC-roots of K¢ and @¢, and let (, ) denote
the Killing form on ®&¢. For 1¢ 4 we denote by &, the element of v—1
such that (h,, k> = A(h) for all he TC. Since G acts effectively on M, G is
semisimple, and so 4, is well-defined. Next we choose root vectors e, ¢ &, for
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2 € A with the following properties: [k,, e,] = {2,v)e,; le;,e_.]1 = h,; [e,, e]
=n, .., if 2+ved;[e,el=0if 21 4+v¢d If 24 v is not a root we
define n,, = e,,, = 0; then we still have [e,,e,] = n,,e,.,. The e, can be
chosen so that n, , is real, and n,, = —n_, _, (see [7, Chapter 3]). Then

0.1 = —N, =N 3240,

because of the anticommutativity of & and the Jacobi identity.

Forall le A wesetx,=e,—e_,= —x_,and y,=J—1(e,+€_)=y_,.
If ¥ is any system of simple roots and A* is the corresponding system of
positive roots, then

W=1h,; x;;y,: e ¥, 1€ 4%}

is a basis of &. In order to compute in this basis we need the following pre-
liminary calculation, which is left to the reader.
9.2. Lemma. If A,ve A then

[xb yl] = 2‘Jri hl ’ [“Jj hh 'x»] = <2’ ”>yu ’ [‘J——l hla yv] = _<29 y)x, .

If, further, 2 #+ +v, and we make the convention that e, = x, = y, = 0 for
a¢ A, then

[x,, x] = NpXawy — My Xy
boyl=—n %, —n_x._,,

x,y]=n. + n, Y-y -

We can now describe invariant almost hermitian metrics. For this purpose
decompose =8 + M, M= Y &,, and break 4 — Ax into a disjoint

iA€d-Ag
union of subsets I'"; such that the irreducible representation spaces of K on

MC¢ are the spaces M; = Y, @,. We arrange the ['; into a sequence
ierg

{FI)F-I; "’;F79F-r’;rr+1; "';F7+s} Where F1= "'F-t fol' ISiSf
and I'; = —I';forr + 1 < i <r + s. Then the R-irreducible representation
spaces of K on It are the spaces N;; 1 < i < r + s given by

Ne=D; +M_I)NG, NRE=M; +M_,, for 1<ir,
N=|W NG, NE=MWM,, forr+1<iLr+s=.

Then R, has basis {x,,y,:4¢€ I'; N A4*}, and the Killing form is nondegenerate
on each N,.

9.3. Proposition. Let K be a subgroup of maximal rank in a compact con-
nected Lie group G, and retain the notation above.

1. The G-invariant pseudo-riemannian metrics on M = G/K, viewed as
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ad;(K)-invariant bilinear forms on I, are just the symmetric bilinear forms
(', ) with the following properties: (1a) {x,,y,:2€ A* — Ay} is a basis of M

consisting of mutually orthogonal vectors (so in particular M = Z N, is an

orthogonal direct sum), and (1b) for each i there is a nonzero real number c;
which defines the bilinear form (, ) on R; by the condition |x,|* = ¢; = ||y,]*
for every 2¢ I';, where | | is the norm of ().

2. View the G-invariant almost complex structures on M = G /K as endo-
morphisms ] of square —I on IN which commute with ad;(K). Such an endo-
morphism exists if and only if I'; = —I'_; for all i, i.e., s = 0. If this condi-
tion is satisfied, then ] is completely determined by the equations

Jx, = ey, , Iy, = —e(Ax,

forie A — Ax. Here () = +1,e(—) = —ec(A) forall Ae A — Ag, and ¢ is
constant on each I';.

3. Any G-invariant pseudo-riemannian metric (,) is compatible in the
sense of § 8 with any G-invariant almost complex structure J, and hence they
determine a G-invariant almost hermitian metric ds*. In the notation of (1)
and (2) above, the kaehler form F of ds*is the antisymmetric bilinear form
on M with the properties (3a) F(x,,x,) = F(x,,y,) = F(,,5,) =0 for all
A,ve A — Ag with 2 # +v, and (3b) F(x,,y,) = e(A)|x,|2 for 2e A — Ag.

Proof. The N; are orthogonal because they are representation spaces for
inequivalent representations of K. On ; the invariant bilinear form ( , ) must
be proportional to the Killing form, which is negative definite; hence (, ) is
definite. Choose 4 € I'; and define ¢; = | x,||*; now c; is a nonzero real number
and the first sentence of Lemma 9.2 shows that c¢; = |y,|*. If veI'; with
v # 2, then v = 2 + o where ¢ € Ax. Using the ad;(K)-invariance of (, ) and
Lemma 9.2, we compute '

nl.anxw"2 = ([‘xb xa]s xv) = (xb [xn xu]) = nv,-vnxlllz .

On the other hand, 0% n, ., =n,_, by (9.1) and so |x,|*> =|x,|* This
proves (1).

Part (2) follows from Theorem 4.3. Compatibility is clear in (3), as is
property (3a). We compute F(x,,y,) = (Jx,,y,) = Q) |,]* = ()] x,|?, prov-
ing (3b). g.e.d.

Now we can characterize the classes &, &/ %", and s# for invariant almost
hermitian metrics on M = G/K, rank K = rank G. Furthermore we charac-
terize hodge metrics on M.

9.4. Theorem. Let ds® be an invariant positive definite almost hermitian
metric on M = G /K, where G is a compact Lie group and K is a subgroup
of maximal rank. Let J and (,) be the almost complex structure and the
riemannian metric associated to ds*.
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1. The following conditions are equivalent:

(la) (M, ds*) e o# (i.e. J is integrable).

(Ib) A,v, A+ ved — Ax with (1) = e(v) = 1 implies (2 + v) = 1.

(1c) There exists a system of positive roots A* of A such that A* N A is
a system of positive roots for Ay and A* N (A — Ax) ={Ae d — Ax:QQ)
= 1}

2. The following conditions are equivalent:

(2a) Let Z be the center of K. Then K is the centralizer of the torus
Z,, and there is a linear form ¢ on ¢ such that {p,2> = 0 for 1€ Ay and
{p, 2> =e)]x;)*for Ae 4 — Ay.

(2b) J is integrable, and A,v,2 + ve A — Ax with ¢(2) = (v) = 1 implies
o =2l + |x02

(2c) (M,ds®)ex.

2d) M,ds®) e L.

3. Assume (M, ds®) e A". Then the following conditions are equivalent:

(3a) (M, ds®) is a hodge manifold.

(3b) If ¢ denotes the linear form defined in (2a), then the {¢p,2) are
rational multiples of each other for 1 ¢ A.

(Bc) If U ={¢, ---,¢} is a simple system of roots of G such that ¥ x
= {¢,41, - - =, 1} is a simple system of roots of K, then |x,|*, - -, |x,.|* are
rational multiples of each other.

Proof. In the notation of Theorem 4.5, J has (¥ —I)-eigenspace on IN¢
given by M* = Y ®, and has —(J{—1)-eigenspace M- = 3 ©,. Now

A€A-Ag Ae€A-Ag
e(2)=1 e@@)=-1

K¢ 4+ M+ is an algebra if and only if 2,v,2+ ve 4 — Ax with £(2) = &(v)
= 1 implies &(2 + v) = 1, and Theorem 4.5 says that J is integrable if and
only if ¢ 4 IM* is an algebra. This proves that (1a) and (1b) are equivalent.

1t is clear that (1c) implies (1b), since the sum of positive roots is positive
if it is a root. To prove the reverse implication we define A* to be the union
of the positive roots A of Ax and {2e€ 4 — Ax:e(2) = 1}. If 2,v € 4* and
A+ v is a root, then it follows from (1b) and ad;(K)-invariance of J that
2+ ve A*. Theorem 4.5 shows that 4* is a system of positive roots of A.

Next we turn to (2) and prove that (2a) = (2b) = (2¢) = (2d) = (2a). Let
¢ be the linear functional of (2a) and 4,»,2 + v € 4 — A be such that &(2)
= ¢e() = 1. Then

A+ VXL 00 =LKp, 2+ v)> =Lp, D + Lo, vy = X" + 217,

Since ( , ) is positive definite, e(A + v) = 1 and |x,,,|* =|x,]* + }x,|*. From
the equivalence of (1a) and (1b) it follows that J is interable. Hence (22) im-
plies (2b).

Next assume that (2b) holds. We define a linear form 7:® — R by 5(x,)
=9(y)=0for 2e 4, p({=1h,) =0for 1€ Ag, and p(N —1h,) = —eQ)|Ix,|?
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for 2e A — Ax. We view 7 as a left invariant 1-form on G. Then dy(x,,y,)
= —p([x;, ¥.]) = Q)| x,]* = F(x,,y,) for € A — Ak, and 7 vanishes on the
rest of & x &. Now the kaehler form F determines a 2-form n*F on G,
where z: G — M is the natural projection. The above calculation shows that
dy = z*F, and so dz*F = z*dF = 0. Since zn* is injective dF = 0. We are
assuming that J is integrable and so (M, ds?) ¢ 2. This proves that (2b) im-
plies (2c).

Trivially (2c) implies (2d), and so it remains to show that (2d) implies (2a).
If (M,ds*) e &, then dF = 0, and so n*F is closed, where 7: G — M is
the natural projection. The cohomology H*(®, R) = 0, and so it follows G
has a left invariant real 1-form 5 with dy = n*F. If A,v,A+ve d — Ay, it
follows, using (3b) of Proposition 9.4, that

@ + V%7 = @R, Vi) = — 9%, YisD)
= —pQi=1h,) = =2{=1{, 21 + )
= —2{"1 (5, — 2{=1y, v
= —([x,, ¥.) — »([x,, ».])

eMDNx|* + )] x,]* .

I

As (,) is positive definite, £(2) = «(v) = 1 implies (1 + v) = 1. Hence by
the equivalence of (1a) and (1b) it follows that J is integrable. By Theorem
4.5, K is the centralizer of Z,. Furthermore, the above calculation shows that
o= —1  satisfies the conditions of (2a). Thus (2d) implies (2a).

We prove (3). Let (M, ds*) € 2#". By definition (M, ds?) is a hodge manifold
if and only if some nonzero real multiple of the de Rham cohomology class
[F]l e H*(M, R) is an integral class. Let ¢ be the linear form defined in (2a);
then ¢ is orthogonal to the roots of & and (3b) is just the condition that some
nonzero real multiple of ¢ exponentiate to a character { on K. So we must
check that a nonzero multiple a[F] is integral if and only if a nonzero multiple
by = log¢ for some character { on K. If exp by is a character on K, then it
induces a projective embedding of the complex manifold M as in [1, § 14.4],
and a certain nonzero multiple b[F] is the pull-back of the Chern class of the
hyperplane section bundle; thus b[F] is integral. If b[F] is integral it is the
Chern class of a positive line bundle L — M ; we may assume L homogeneous
and find a G-invariant hermitian metric on it whose curvature form o is a
multiple of [F], and then o transgresses to a multiple by + 0; it follows that
exp (by) is a well defined character on K. This proves equivalence of (3a)
and (3b). Equivalence of (3b) and (3c) amounts to equivalence of (2a) and
(2b). q.e.d.

We have the following consequence of Theorem 9.4, new for the class
2" and bringing together known results from various authors for the other
classes.
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9.5. Corollary. Let M = G/K where G is a compact Lie group and K is
a subgroup of maximal rank.

(i) If K is the centralizer of a torus then there is a G-invariant almost
hermitian metric ds* on M such that (M, ds®) is a hodge manifold. In par-
ticular, (M, ds*) e o, (M, ds*) e L4 and (M, ds*) e A".

(ii) If K is not the centralizer of a torus, and ds* is any G-invariant almost
hermitian metric on M, then (M, ds>)¢ 5, (M, ds*>) ¢ « A" and (M, ds*) ¢ .

Proof. If K is not the centralizer of a torus then Theorem 4.5 shows
(M, ds*) ¢ o#. In particular, (M, ds*) ¢ 2", and then Theorem 9.4 shows that
M,dst)¢ LA .

Let K be the centralizer of a torus. Theorem 4.5 gives us a system ¥ =
{¢1, « - -, ¢} of simple roots of & such that ¥'x = {¢,,,, - - -, ¢} is a system of
simple roots of & We define J by: (1) = +1 for e A* — Ay, —1 for
—AeA* — Ag, and the metric (,) by |x;|*=an, + --- + a.n, for 1=
2 ap; € A* — Ak, where the n; are arbitrary positive integers. Then the ds*
defined by J and ( , ) is a hodge metric on M by Theorem 9.4. q.e.d.

For the classes 2 and #°¢" we must look at the covariant derivatives
of J. First, however, we need the following lemma. It is a long calculation,
but it is straightforward from Lemma 9.2, and so we leave it to the reader.

9.6. Proposition. Let (,) be a pseudo-riemannian metric on a compact
Lie group G which is invariant under left translation by G and right transla-
tion by the maximal torus T of G. Given A,v e A with 2 # =+, define num-
bers a, ,and b, , by

RN EN el B WA if A+ved
(9.7a) j 2 ( %2l ) M ’
[0 if A+ ved;
10 IIx I —=lxl*), if 1—ved
(9.7b) b, = ( 2( 1% )2 ) " ’
l if 2—ve¢d.

View & as the algebra of left invariant vector fields on G and let ¥ be the
riemannian connection of (, ). Then

(9.82) Vox) =P,,0) =0 and 7,03, F,,(x)eX;
(9.8b) Voi(x) = @, %0, — by %, 3

(9.8¢c) Vw(y,) = —a, %, —b, x_,;

(9.8d) P:00) = .50, + b3i

(9.8¢) 7}’1(-"1) = 4 Y2 — D2 s-.

Now let ds* be a G-invariant almost hermitian metric on M = G/K. We lift
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its riemannian metric ( , ) to a riemannian metric on G which is left invariant
by G, right invariant by K (thus also by the subgroup T of K), and also
denoted by (, ). (This metric is the sum of a bi-invariant metric on K and
7*(,).) We denote by ¥ and ¥ the respective riemannian connections on M
and G.

We lift the almost complex structure J of ds* to a tensor field J on G as
follows. If ge G, then the tangent space G, can be decomposed as G, =
V,®H, where (V,,H,) = 0 and V, = kernel (z,|G,). For ze G, we may
write uniquely z = 2, + z4. If we M_,,, then w € G, denotes the horizontal
preimage under n,. We set

-~ ~—
(9.9) J@) = zy + J(zy2y) forzeG,.

Then J is a (1, 1) tensor field on G.
9.10. Lemma. Let ds?, (,), ¥, and J be as above, and use the notation
(9.7). Then for 2,ve A — Ax with 2 #+ +v we have

Vo (DX, Vo (DG, 7, (DX, 7y(NB) € T,

V. (D) = a,,(() — @ + V)yss, + by () + e — )yse,

7, (D) = a,,(—e() + e + 2))yse, + by () + € — D))y, s
7o (DG = a, (—e) + e + )x,s, + by (elv) + 6 — )x,_, ,
7, (Dx) = a,,(—e@) + e + )x,0, + by (—e() + e — W)X, .

Proof. These equations follow from Propositions 9.3 and 9.6, and the
fact that (by definition) 7, ()(y) = V,(Jy) — JV,y for x,y € ®.

9.11. Proposition. Let ds* be a G-invariant almost hermitian metric on
G/K, and let 2,y € A — Ay with 2  =+v. Then at the point of M at which K
is the isotropy subgroup of G, we have

Ve D) = Vo (D) =V, (Dx) =V, (NG) =0,

Vo (D) = {a, (e() — e + v)yis, + b, () + (2 — ))yasu}epn

7, (NG, = {a,.(—e@) + Q@ + 2))yie, + b, (V) + (R — 2))yis }ep »
V(DG = {a,(—e@) + £ + )x,,, + b, () + (2 — V)X, )}
V, (D) = {a,.(—eW) + Q + )x,,, + b, (—e() — (1 — )x, }gp -

Proof. Letrn:G — M be the natural projection with #(1) = m, where 1
is the identity of G. There exists a coordinate neighborhood U of 1 in G map-
ping onto a coordinate neighborhood =(U) of M such that U and =(U) have
the following property: each vector field X on n(U) can be lifted to a hori-
zontal vector field X on U, i.e., r,(X) = X and (X, kernel z,) = 0. There X
is not in general left invariant.
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Now let x, y € M,, and choose vector fields X and Y on =(U) such that X_,,,
= x and I_’m =y. If %, €@ are such that z,(¥) = x and =,(§) =y, then X,
=X and Y, = j. We have

(9.12) IX =7%, FPi7 =Y.

The first of these formulas easily follows from the definition of J, and the
second is known [6, Theorem 3.2]. Note also that

(9.13) V.D) = VxDNV)w,  FzN@) = Px(NT),,

because 7y(J)(Y) and Pz(J)(¥) are tensorial in X and ¥, and in X and ¥,
respectively.
An easy computation from (9.12) and (9.13) shows that

9.14) 2V 3(NF) = 7.U)Y)

for x,y e M,,. If we apply n, to each of the formulas in Lemma 9.10 and
identify x,,y, € M with r(x,), 7. (y,) € M, then using (9.14) we obtain all
the formulas in the statement of Proposition 9.11. q.e.d.

In order to facilitate our consideration of the classes 22" and A4 we
define tensor fields O and N on M by the formulas

Q(x,y) = V(NG + V..U,
N(x,y) = V(D) + V,(DX),

where x and y are tangent vectors on M.

9.15. Theorem. Let ds® be an invariant almost hermitian metric on M =
G/K, where G is a compact Lie group and K is a subgroup of maximal rank.
Then the following conditions are equivalent:

G) M,ds)e 24 .

(ii) Forall 2,ve A — Ay with 2 = +v we have Q(x,, x,) = Q(x,,y,) = 0.

(iii) For all 2,ve A — Ax such that 2 +ve d — A; and Q) = () =
e + v), we have |x,,,]2 = |%]* + |x,I°.

Proof. It is obvious that (i) implies (ii). Conversely. we always have
Qx,, x) = 0(x,,5) = 00, x) = 0, ¥) =0, Oy, ».) = De()Q(x,, x,),
and Q(y,,x,) = e(De(v)Q(x,,y,), for A, v € A — Ax, 2 #+ +v. Hence (ii) implies
).

To show the equivalence of (ii) and (iii) we first apply Proposition 9.11 to
write Q(x;,, x,) and O(x;,¥,):

0(x,, x,) = {a, [e() — (D) — (2 + v) + e(De()e@ + V)]yis,

(9.16a)
+ b, [e() + Q) + e — v) + eDe()e(z — VY-l »
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0(x;,5,) = {a, [—e() + @) + &2 + v) — e(De()e2 + V)]x,,,
+ b, [e() + e(D) + e — v) + e(DeW)e(2 — V)X, gp -

We first prove that (ii) implies (jii). Let A,v € 4 — Ax be such that 2 + ve 4
— Ag and &(2) = e(v) = &(2 + v). Then by (ii), Q(x,,,, x,) = 0. Since the two
terms on the right hand side of (9.16a) are linearly independent and (2 + v)
—v=2¢e€ /A — Ag, by replacing 2 by 2 + v in (9.16a) we have

0 = b, [e() + A + ) + &(2) + (2 + »)e(W)e(D)] = 4b,.,.£(R).

Therefore b,,,, = 0, and so |x,,,|* = |x,|* + | x.}* by (9.7b).

Conversely, let A,ve€ 4 — A; be such that 1% +v. Without loss of
generality we may assume that ¢(1) = e(v) = 1. Then (9.16a) and (9.16b)
reduce to

(9.16b)

O(x,, x,) = 2{b, ,[ed) + 2 — VIy:_.}ey
ox;,y,) = z{bz,»[e(z) + e — U)]xz—v}gm .

Clearly Q(x,, x,) and Q(x,,y,) vanish if A —v¢ A — A or if A —ved— A
and ¢ —v) = —1. Suppose 1 —ve A — A and ¢(2 —y) = + 1. Then by
(iii) we have |x,_,|* + |*,]|* = |x;|>. Hence b,, =0, and we again obtain
O(x,, x,) = Q(x,,y,) = 0. Thus (iii) implies (ii).

9.17. Theorem. Let ds® be an invariant almost hermitian metric on M =
G/K, where G is a compact Lie group and K is a subgroup of maximal rank.
Then the following conditions are equivalent :

i) M,dsHenvH.
(iiy Forall 2,ve A — Ax with 2 # +v we have N(x,, x,) = N(x,,y,) = 0.
(iii) Forall 2,ve A — Ay such that 2 + ve A — Ax and £Q2) = «(v), we
have |%,,, 17 = |52 + |57 if ) = e0) = e + 1), and |x,.,|* = | %2
=|x1%if eR) = e(v) = —e(A + v).

Proof. 1t is obvious that (i) implies (ii). Conversely, we always have
N(x,, x,) = N(x,,y) = N3,,) =0 and N(y,,5,) = —e(De(v)N(x,, x,) for
A,ve A — Ay with 2 # 4. Hence (ii) implies (i). )

Proposition 9.11 gives us the following expression for N(x,, x,):

. n,,,[e(») — @) + (0) + o) — 260 + ) (L= IR,

1%240 ]

(9.182) _%_ nl__p[e(v) + &) + () — e(2)

s 20— (BE=1xE)], )

1%:-, 012

Similarly, Proposition 9.11 gives us the following expression for N(x,,y,):
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{% nx,,[—e(v) + ) + (—e0) — e

+ 262 4 v)) (________]{x,uz — ||x,||2>]ym

(9.18b) %4, 112

+ %n;.-,[s(u) + e + () — )

2 (EL=LmE], |

I%a-.0*

We first prove that (ii) implies (iii). Let 2,v € 4 — A4 be such that 2 + ve 4
— Ax and () = ¢(v). Since (M, ds*) e 22¢°, we have that £(2) = e(v) = (1 + v)
implies |Ix,,,|%=|x,|® + | x,]%. Suppose (1) = &(v) = —e(2 + v). Then by (ii),
N(x,,x,) = 0 and so from (9.18a) we obtain

0 = et) — e@) + [e0) + e@) — 26 + V)] ("i"—‘i"—')

1%, 0%

2 2

— 45(2)("-7‘1" - ||~2xu|| ) )
Hxl-ﬂ-v"

Hence |x,|* = |x,|*. Furthermore e(1 + v) = e(—v) = —e&(2). Therefore thc
same argument with 2 replaced by 1 + v, v replaced by —v, and 2 + v re-
placed by 1 shows that |x,,,|* =|x,|> Thus (ii) implies (iii).

Conversely, let 2,ve 4 — Ax be such that 2 # +v. Without loss of gen-
erality we may assume that (2) = «(v) = 1. Then (9.18a) and (9.18b) reducc
to

NG, %) = {mfet) = oG + ) (l’i'%x—*-;"i"—) View
(9.192) + n:.-y[e(”) + e — v) (“_xl_-“x_"’) ]y} N

lei—v“? M

NG, 3) = {md—e0) + 62 + ) (“"‘,'l—x‘l‘l'f‘—"—)y
o e i+ (=LY,

“xl-v“z

fA+ve¢d—Adg,orif 2+ ved— Ay and (A + v) = 1, it is easily checked
that first terms on the right hand sides of (9.192) and (9.19b) vanish. If
A+ved— Ay and ¢ + v) = —1, then by (iii) we have |x,|*= |x,|*.
Hence the first terms on the right hand sides of (9.18a) and (9.18b) always
vanish. Similarly the second terms vanish. Thus N(x,, x,) = N(x,,y,) = 0,
and we have proved that (iii) implies (ii). q.e.d.
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To illustrate the A4"2¢" criterion of Theorem 9.17,let M=G/K where Gis a
compact connected centerless simple Lie group and K is a connected subgroup
of maximal rank with center of order 3. Thus G/K is one of G,/ A4,, F,/ A,A,,
E;/ A;A,A,, E;| A;45, Eg| A; and Eg/ A,E,. Let ds® be an invariant almost her-
mitian metric on M. Now & = ® + I as usual, and MC = M+ + M- (eigen-
space decomposition under J) with ady(K) irreducible on each of IM=. The
brackets are

[, | ] =WM-, [M-,M-]1=|*, [M+, M-] =K.

Let ¢,,®, cIM* such that 1+ v is a Toot. Now e(Q) =) = +1 =
—e&(2 4+ v). Thus the 22¢ criterion is vacuous, and the A4 criterion is
x4 =1x,1* = %:4,]% which again is automatic. Thus, just as asserted
earlier in Theorem 8.15, we have (M, ds*) e /A C 24 .

To other spaces M = G/K, where G is a compact connected centerless
simple Lie group, where K is a connected subgroup of maximal rank but is
not the centralizer of a torus, and where M has N > 0 invariant almost com-
plex structures, are (Theorem 4.11):

G/K E;/A34:4,T! Eg/A44, Eg/A:AsT!
N 16 4 32

G/K Eg/A3A4:4:4, Eg/A2A3A:4,T! EgA;4,4.T*
N 16 256 8192

We apply the 4" and 22 criteria to a few of them.

E,/A,A,. Here K has center of order 5. Let z generate the center of K, and
let M, denote the e* =1/ eigenspace of ad(z) on &C. Then the decomposi-
tion of INC into irreducible representation spaces of ads(K) is given by I¢
=M, + M_;, + M, + WM_,, and we have [M;, M,] < M, ; taking subscripts
modulo 5. If 2 is a root with &, C IR;, then ¢(M,) denotes ¢(A) and |x;|
denotes |x,|, relative to an invariant ds®.

First consider the two invariant almost complex structures J with ¢(IR,)
= &(IM,). Complete such a J to an invariant ds*, and compute:

E bracket 9 condition A condition
T mmlem, =205 ImpP=2lml
; [Mg, Mp]=MM_, none [ x1 2= xz |2

[0y, s]=2. none ix =l xal?

Thus (M, ds®) ¢ /"4, and (M, ds*) e 22¢ if and only if ||x,|% = 2| x,||?; in the
latter case there is one real positive free parameter |x,|? for ds®.
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Now consider the other two invariant almost complex structures J. They
are given by (IM,) = —e(M,). Complete such a J to an invariant ds* and
compute :

’ bracket 22 condition Ao condition
. EXEa none Ixf=]zal?
‘ Dz, M_g]=T, ExuP=2 ]| xa? I xa2=2 xa 2

[, Mool=M-, none i x1 [P=( x2 |2

Thus (M, ds*) ¢ 4", and (M, ds®) € 22¢ if and only if | x,|* = 2|x,|?; in the
latter case again |x,|?® is the free positive real parameter for ds®. Now :

9.20. Proposition. Let M = E;/A,A,. Then (M, ds*) ¢ /"X for every in-
variant almost hermitian metric on M. Let J be one of the four invariant
almost complex structures on M. Then ] is subordinate to an invariant almost
hermitian metric ds* on M such that (M, ds*) € 22, and any two such ds* are
proportional.

. 0—0—0—0—0—-0
E;| A,4,4,T". Label the simple roots ¢ #2 #394%%5 95 50 RC = TC + 3 @,

¢
where the summation runs over all 4 = J a,¢, suZ:h that a, = a; = 0 modulo
3. Now ¢ = 3 IM,;, where M;; is the sum of all @, with 2 = ¥ a,¢; and
(a;, a;) = (i, j) = (0, 0) modulo (3, 3); the nonzero IN;; are

Sml.o = m-x.-s s 2mo.l = Sm-s.-z s EIR].I = m—z. ~2 imu = m-:.—z?
MW _yo=MWy3, Wo.o: =Wy, MWy = Woo; MW, =M, ,.

The bracket relations are: [I; ;, M, ,J = M,,, ;.. if the latter is nonzero,
taking subscripts modulo (3, 3).

Given an invariant ds?, suppose that its almost complex structure is
specified by

M, ;) = My, ;) = ey, ;) = Wy, ;) = £1.

Note [P, ,, T, ] = [Py, My 1] = [M,,, M, ;)] =0 and their conjugates;
R,y J=M]_,_,, and [M_, _,,M_, ;] =MW, ,. Thus the brackets
[, ;,, M, ;,] result in neither an A" nor a 2% condition. Now, looking
for /X and 2X conditions, we need only check that 6 brackets
[Smi,,j,, Smi,,j,], 1<r<s<4.

Let ¢, o) = (W) = (WM, ;) = (M, ). Then we see (M, ds?) ¢ N X,
and (M, ds*) € 22 if and only if [x,|* = |x[* + [*ul* and [x,|* = 2] xy|*
+ [Xa |

Let (M, o) = e(My) = (M, ) = e(M_, _;). Then we see (M, ds?) ¢ &/,
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and (M, ds*) e 2 if and only if |x,|* = |xy|® + [*u|® and jx,|* =|x,]*
+ 2] xq |2

Let &(M, ) = e(My 1) = e(D_; ;) = e(M,,). Then we see (M, ds*)¢ N,
and (M, ds*) e 2 if and only if |x,]* =[xu]* 4+ [Xx]* and |xy,[? =[x, |*
+ 2| x|

Lete(IN,,) = (W) = e(M_;, ;) = (M _, _,). Then we see (M, ds>) ¢ /' X",
and (M, ds®) ¢ 2 i and only if [,1? = [Xul* + 1%a)® and [xa]? = |5,
+ 2] x|

Let (I, o) = (IR, ;) = (M, ;) = &(IN, ;). Then we see (M, ds>)¢ N K
and (M, ds®> ¢ 20,

Let (IR, ,) = (W, _,) = (M) = (D, _,). Then we see (M, ds*) ¢ /' X,
and (M, ds?) € 2o if and only if [, |? = [xul® + |%u]? and |x]? = 2|xn?
(8

Let e(M, o) = (D, _y) = (PR _; _,) = (M, ;). Then we see (M, ds*) ¢ N
and (M, ds®) ¢ 24,

Let (MM, ) = ey, _) = (M _,, _,) =e(M_, _,). Then we see (M, ds?)¢.N ",
and (M, ds’) e 22 if and only if |xy|* = [Xy|* + [*a)® and [xy [* =2]x|?
+ ],

In summary, we have

9.21. Proposition. Let M = E.| A,4,4,T*. Then (M, ds*) ¢ /"X for every
invariant almost hermitian metric on M. Of the 16 invariant almost complex
structures on M,

(i) 4 have the property: if J is subordinate to an invariant almost hermitian
metric ds® on M, then (M, ds*) ¢ 22 ; and

(ii) 12 have the property: the invariant almost hermitian metrics ds* to
which I is subordinate, such that (M, ds?) € 24", form a two-real-parameter
family.

E;/A,A,4,4,. Here K has center Z, X Z,. Let {2, 2,} generate that center.
Then MC = 3 M,,,. where ad(z;) is multiplication by exp (2zJ—1s,/3) on
M,,;.. The nonzero M, ,, are

Mo, Mo z1, Wy 2y and M, oy,

and they are the irreducible representation spaces of ad;(K) on J¢. Obvious-
ly [DMy,., M, ] T WMy ossrans,, viewing &C as M, , and taking subscripts
modulo (3, 3); if the bracket is nonzero and not in §¢, then the inclusion is
equality by irreducibility of K.

Let L be the identity component of the centralizer of z, in G. Then
K c L c G forces L to be of type 4,E,. {¢ = &¢ + M, , + M, _, is generat-
ed by & + M, , and acts irreducibly on M, , + M, , + W, _, and on W!_, ,
+ M, + M_,,_,. Thus [W|,,, M, ;] =M, ;,,for () = (0, —1). Similarly,
using z,, 2,2, and z,2;*, respectively, in place of z,, we see that M, ,, M, _,
and I, , bracket surjectively. Now
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(i, j) $ (_r, —'S) mOd (37 3) lmplies [mijf m27‘3] = mi-ﬁT,j"-S .

Let ds® be an invariant almost hermitian metric. We may alter our original
choice of z;, and z, so that the almost complex structure of ds® is given by
eMy ) = e(My) = (M, ) = (M, _,)) = 1. The 2 condition for three of
the brackets is

® [ﬂnmy Emo,l.] = wel,l: "%,1"2 = "-’ﬁ,o"2 + "-"o,x"2 s

(ii) [mo,la ml,l] = ml,-l 2= leo,1|I’ +x..0%,

(i) [P, Py 2] = D,y o2 |2y 0% = X0, [* + 122, 12 .

That gives |x, o > |x, | (by Gi)) > |x,.,J* (by (D)) > |x, | (by (1)), which
is absurd. Thus (M, ds*) ¢ 2. In summary, we have

9.22. Proposition. Let M = E;/ A,A,A,A,, and ds® be an invariant almost
hermitian metric on M. Then (M, ds*) ¢ 224", In particular (M, ds?) ¢ /A .

. 0-0—-0—-0—0—0—0
E;/ A,A;T*. Label the simple roots #1 #245%#4 5 96 97550 RC=FC + 3| @,

where the the summation runs over all 1 = Zﬁigbi with (a4, a,) = (0,0) modulo
(3,6). Then k¢ = 33 M,; is the decomposition into irreducible representation
spaces, where I;; is the sum of all ®,, 2 = 3 a.¢,, such that (ay, a;) = (i, j)
% (0, 0) modulo (3, 6). The I, ; are

Emm s Emo,l = m—s,-ﬁ s §IRu = wz-z,-s » Sml,z = Sm-z,-.t s imx,a = Em—z,-s s
Em-m s imo,—x = ms,s 5 m-l.-l = mzz.s B m~1.-2 = Emz_4 s §m-1,-3 = 9322,:5

this is seen from a list of roots of &,. A calculation, which is straightforward
but too long to reproduce here, now shows

9.23. Proposition. Let M = E;/ A,A,T*, and ds* be an invariant almost
hermitian metric on M. Then (M, ds*) ¢ /" X. -

We leave it to the reader to decide whether any of the 256 invariant almost
complex structures on E;/A,4,4.4,T*, or any of the 8192 invariant almost
complex structures on E,/ 4,4,4,T?, is subordinate to an invariant ds* which
is nearly kaehlerian.

The existence question for quasi-kachlerian metrics is easier; there we
will prove

9.24. Theorem. Let M = G/K, where G is a compact connected Lie group
acting effectively, K is a subgroup of maximal rank, and M admits G-invariant
almost complex structures. Decompose

G=G, X - xG,, K=K, X - xXK,, M=M,; X --- xM,,

where the G; are the simple normal subgroups of G, K; = K N G; and M,
= G,,/ Ki.

1. The following conditions are equivalent :

(1a) There is a G-invariant almost hermitian metric ds* on M such that
(M, ds*) e 24 .
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(1Ib) & = &° for some automorphism 6 of odd order on &.

(1c) G./K; # E,/ A,A, A A, for some index i, 1 <i<r.

2. Assume the conditions of (1). Then M carries a G-invariant almost
hermitian metric ds® such that (M, ds*) € 224 and (M, ds®) ¢ 2, if and only if
M = G/K is not a hermitian symmetric coset space.

3. Assume the conditions of (1). Then M carries a G-invariant almost
hermitian metric ds® such that (M, ds*) e 24" and (M, ds®) ¢ /"2, if and only
if there is an index i, 1 < i < r, such that

(i) M, =G,/K, is not a hermitian symmetric space, and

(ii) the center of K, does not have order 3, i.e. G,/ K, is not one of G,| A,
F,[A;4,, Es| A,454,, E;[ A;4s, Eg| As, Eg| AE,.

Proof. The theorem is valid for G/K if and only if it is valid for each of
the G,/K;. Now we may assume G simple.

If K is the centralizer of a toral subgroup of G, then both (1b) and (1c)
are immediate. If K is not the centralizer of a torus, then equivalence of (1b)
and (lc) is contained in the statement of Theorem 4.10. Proposition 9.22
shows that (1a) implies (1c). The proof of statement 1 is now reduced to the
proof that (1b) implies (1a).

Let & = & where 6 has odd order Kk = 2u + 1, u > 1. Then at least one
of the eigenvalues of 4 is a primitive k-th root 5 of 1. Let I, denote 3"-
eigenspace of § on &¢. Then

(9.252) ® =8 + M where M = WM, + M_,).

s=1
It may happen that some of the M., are 0, but at least M., # 0. Now we
define an invariant almost complex structure J on M by
(9.25b) e =1ifandonlyif & c M + --- + M, .

In other words, M, + --- + M, is the (J=T)-eigenspace of J and M _, +
o+ 4+ M_, is the (—{—1)-eigenspace. Finally we define a G-invariant rie-
mannian metric (, ) on M by

(9.25c) |l =yl =sfor G, c M + M, 1 <s<u.

ds* denotes the G-invariant almost hermitian metric on M defined by the data
(9.25).

Suppose that we have roots 2,v, 2 + v e 4 — Ax with e(2) = e(v) = (2 + v).
If these signs are +1 then @, c M., G, c M, and &,,, c M,,, where
1<s<u,1<t<uand1<s+t<u. Now

1%l =8 + 2 =]x)° +x)*.

If the signs are — 1 we replace 2,v,2 + v by their negatives and get the same
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result. Now (M, ds*) e 22 by Theorem 9.15. This completes the proof of
statement 1.

(M, ds*) e /A if and only if e(2) = () = —e(d + v) implies | x,|? = x,|*
= | x,.,]I*, for we already have (M, ds*) e 2¢". It suffices to check the case &(2)
=1 and |x,|* <|x,|? ie. the case where &, c M, and G, c M, with
1<s<Lt<u Ifs+t>u, 06, , cM,_,_,, (9.25c) shows that the /"
condition is § = t = k — 5 — ¢. In summary, we have

9.26. Proposition. Let ds* be defined by (9.25). Then (M, ds*) € 24", and
M,ds)e /X ifandonly if 1 <5 <t < u and [IM,, M,] + 0 implies that
either s + t < u or 3s = k = 3t. In particular, if k is not divisible by 3 then
(M, ds*) e /" if and only if (M, ds*) e X.

We prove statements 2 and 3 for the case where K is not the centralizer of
a torus. By Propositions 9.20, 9.21, 9.22 and 9.23, it suffices to consider the
cases (i) G/K = E;/ A,4,4,4,T* and (ii) G/K = E;/ A,4,4,T*; in those cases
we must prove that there exists an invariant quasi-kaehlerian ds* which is not
nearly kaehlerian. So we assume that every quasi-kaehlerian ds® is nearly
kaehlerian and find a contradiction.

To do this, note that Theorem 4.10 allows us to assume & = 9 in case (i)
(set n,=ny;= 1) and k = 27 in case (ii) (set n, =1, ny=2, n,=5). Then
k = 31 with [ divisible by 3. Define ¢ = 6* and & = @¢. Then ¢ has order 3
and G = E;; so the analytic subgroup L is 4,E; or 4,, and G/L has no in-
variant complex structures. Let 2 be the complement to £ in &;

R =N+ N, N = N W, N-= 3y M,.
3;0=(13) 3;3(13)

Then Proposition 9.26 says that t* are algebras, for M, + M_, C L. As
G/L has no invariant complex structure it follows that adg(L) cannot
normalize N+, i.e. that [, N*] ¢ N*. As =K + Y WM, + M_,, this

s=0(3)
says that there exist indices s and 7, 1 <t <s < u, s divisible by 3 and ¢
prime to 3, such that [IR_,, M,] # 0. Our contradiction will consist of show-
ing [M,, M.] = O for s divisible by 3 and ¢ prime to 3. Replacing 6 by a power
6°, v prime to k, it suffices to show [, M,] = O for s divisible by 3.

In case (i), k =9, I =3 and u = 4. We apply Proposition 9.26 to the ds*
defined by 6 to see [M,, M,] = 0, to the ds® defined by ¢ to see [M_;, IM,]
= 0. That gives us our contradiction.

In case (ii), k = 27, ] = 9 and u = 13. We apply Proposition 9.26 to the
ds* defined by 6 to see [IM;, M) = [P, Myl = [P, M5l = [My,, Ml = O,
to the ds® defined by 6* to see [T _;, M,;] = O, to the ds® defined by 6™ to see
[M_,, Ms] = 0, to the ds® defined by 6 to see [M_,,, My;] = 0, and to the
ds? defined by 6% to see [IR_,, M,,] = 0. That gives the contradiction.

Finally we prove statements 2 and 3 for the case where K is the centralizer
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of a torus. We take a simple root system ¥ = ¥ U {¢,, - - -, ¢} of G where
¥y is a simple root system of K. y=mg¢, + --- +myp, + x, « a linear
combination of elements of ¥, is the maximal root. If 1€ 4 — Ax then IM,
denotes the ad;(K)-irreducible subspace of 9i¢ which contains &,. We define
an invariant riemannian metric on M by

%02 =la] + --- +|a,] for A=ah + -« + @by + k€4 — A
We define in invariant almost complex structure on M by
e(p) = —1, and () = +1 for 2¢ 4* — A with I, = M, .

Let ds® denote the resulting invariant almost hermitian metric.

Let 4,v,2+ ve A — Ag with £2) = ¢(v) = 1. First suppose I, = M_,
#=IN,, i.e. ,ve A*; then A + ve A%, If (A + v) = 1 then the 254" and A"
conditions are | x,,,]|* = ||%:])* + ||x,||?, which is automatic. If e + v) = —1,
ie. if M,,, = I, then there is no 2" condition, and the A" condition is
| x| = | x,|? =|x,]|*, which is impossible. Next suppose It, = I:M_, = M,.
Then 2+ ve A~ and M,,, # M_,, so A + v) = —1 and there is no 2
condition. Finally note that we cannot have I,=IM_, =M, because
M_,,M_]=0. Thus (M,ds> e 2", and (M, ds*) e /" if and only if
A,ve A* — Ag with 2 + v = g is impossible, i.e. if and only if v = 1 = m,,
i.e. if and only if M = G/K is hermitian symmetric. g.e.d.

Finally we come to the problem of deciding which M = G/K admit invari-
ant almost hermitian metrics ds? such that (M, ds*) e /"¢ but (M, ds*) ¢ ¢,
Here we are assuming G compact, connected and effective, and rank G =
rank K, so the problem comes down to the case where G is simple. If K is
not the centralizer of a torus then (M, ds®) ¢ £ is automatic; the problem is
open for E;/ A,A.A:A,T* and E,/A,4,A,T?, and in the other cases we know
that the following conditions are equivalent:

(i) M admits a G-invariant almost hermitian metric ds* such that
(M, ds*) e /.

(i) Every G-invariant almost hermitian metric ds* on M satisfies
M,ds e /A .

(iii) The center of K has order 3.

(iv) & = @& for an automorphism ¢ of order 3.

(V)  G/K is Gy/ Ay, E,[ A:A;s, Es| Ay4:4,, E;| A4, Egf As O Eg| ASE.

Now suppose that K is the centralizer of a torus. Choose a simple root
system ¥ =¥x U {¢,, - - -, ¢,} of G where ¥ is a simple root system for K.
We are looking for an invariant almost hermitian metric ds* on M = G/K
such that (M,ds*) e /' but (M,ds*)¢ A" As before, p=mg, + --- +
m.¢, + «, £ a linear combination of elements of ¥, is the maximal root.
Note r = dim H*(M; R) from the homotopy sequence 7,(G) — m,(M) — 7,(K)
— 7 (G) and the Hurewicz isomorphism #,(M) = H,(M; Z).
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Letr = 1. Given an integer s, 0 < |s| < m,, I, denotes the ad;(K)-irreduci-
ble subspace of M which is the sum of all @, with 2 of the form s¢, + &,
Jlx;]I* denotes |x,||?, and &(s¢,) denotes £(2) for 2 of that form.

m; = 1 is the hermitian symmetric case.

m; = 2. There |x|*=|x.|? e(¢) = — «(2¢,), defines two 1-parameter
families of invariant ds? such that (M, ds?) € /"¢ but (M, ds*) ¢ X".

m, > 3. Suppose (M, ds*) e /"¢ and let 1 < s < m,. Our induction hypo-
thesis is e(¢,) = e(t¢y) for 1 <t < s; so the A condition implies |x,|?
=t|x]* for 1 <7< s. Suppose e(s¢) = —e(¢). If 1 <, <1, and ¢, + 1,
= s, then the /"¢ condition says |x,,||* =||x.|* =||x..|*. In particular, we
may take £, = 1 and ¢, = s — 1 and conclude s = 2. Now we are reduced to
considering the case e(¢)) = —e(2¢,) where the 4/ %" condition says ||x,||* =
%21, If e(3¢hy) = e(g) we get || x,])* = [ %,[* + [|xs]%; if e(3¢) = —e(¢y) we get
lx,]2 = ||x,|1* + || *5)|*>; both are inconsistent with |x,|?= |x,|®. Thus
(M,ds*) e /' implies e(g) = €(2¢) = - - - = e(mygy) and |x,]* = t]x,|?
for 1 <t < m,, which in turn says (M, ds*) e X".

Phrasing in terms of automorphisms we summarize as follows :

9.27. Proposition. Suppose r = 1. Then M has an invariant ds* such that
M,ds)ye ¥/ but (M, ds®)¢ A", if and only if (i) M = G/K is not a her-
mitian symmetric coset space and (ii) & = &’ for some automorphism 6 of
order 3.

The case r = 2 is considerably more difficult, and we have not been able
to settle it except in the case where K is a maximal torus of G. There one
has only the possibilities (i) 4,/ T2, (i) B,/T* and (iii) G,/T* for G/K, and
(i) is the only one for which & = &’ where ¢ is an automorphism of order 3.
All this “evidence” adds up to

9.28. Conjecture. Let M = G /K, where G is a compact connected Lie
group acting effectively, K is a subgroup of maximal rank, and M carries a G-
invariant almost complex structure. Suppose that M = G /K is not a hermitian
symmetric coset space. Then there is an invariant almost hermitian metric ds*
such that (M, ds*) e /A and (M, ds*) ¢ A if and only if & = &° for some
automorphism @ of order 3 on ®.
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