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H O L D E R R E G U L A R I T Y O F H O R O C Y C L E 
F O L I A T I O N S 

MARLIES GERBER & AMIE WILKINSON 

1. In troduct ion 

Let M be a C°°, nonpositively curved manifold. A horosphere in 
M is the projection to M of a limit of metric spheres in the universal 
cover M (see §2). A horospherical foliation % is a foliation of the unit 
tangent bundle TlM whose leaves consist of unit normal vector fields 
to horospheres.1 

While regularity of horospherical foliations has been studied exten­
sively for negatively curved manifolds M , considerably less is known 
in the nonpositively curved case. The most general result is due to P. 
Eberlein: if M is complete and nonpositively curved, then horospheres 
are C 2 , which implies that the individual leaves of H are C 1 . Further, 
the tangent distribution T7-L is continuous on TlM (see [9]). 

Beyond Eberlein's theorem, smoothness results have consisted mainly 
of counterexamples ([2], [5]); in particular, the best one could hope for 
in the case of a general compact, nonpositively curved M is for TV. to 
be Holder-continuous. In this paper we prove 

T h e o r e m I'. Let S be a compact, real-analytic, nonpositively 
curved surface. Then TV is Holder. 

Theorem I' is actually a corollary of a more general result, Theorem 
I below. 

The problem of finding the regularity of horospherical foliations has 
a long history, which we briefly summarize here. 

Received August 14, 1998. 
1As we explain in §2, there are two such foliations, "H~ and H+, called stable and 

unstable horospherical foliations, respectively. In this discussion, we use "H to denote 
either of these. 
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E. Hopf showed in [7] that if M is a compact, negatively curved 
surface, then TV is C1. Under the assumption that the sectional curva­
tures of M are 1/4-pinched, Hopfs result was generalized by M. Hirsch 
and C. Pugh [10] to any dimension. D.V. Anosov [1] showed that the 
stable and unstable foliations are always Holder for what are now called 
Anosov flows. In particular, this implies that TV is Holder, when M is 
compact and negatively curved. 

In Anosov's theorem, the conclusion "Holder" cannot be improved to 
"C1" [1]. In fact, B. Hasselblatt showed that C1 fails even for geodesic 
flows. He found open sets of metrics, with negative curvature arbitrarily 
close to 1/4-pinched, for which the horospherical foliations fail to be C1 

[8]. Related bounds on the smoothness of TV. beyond C1, in the context 
of 3-dimensional Anosov flows, were found by S. Hurder and A. Katok 
[11]. An example of W. Ballmann, M. Brin and K. Burns shows that 
compactness is necessary in Anosov's result; they construct in [2] a 
complete, finite volume surface whose curvature is arbitrarily close to 
— 1 but for which TV is not Holder. 

Returning to the compact, nonpositive curvature case, Gerber and 
V. Nimica [5] have examples of real-analytic surfaces showing that TV in 
Theorem I' can fail to have a Holder exponent greater than 1/2. In par­
ticular, TV can be non-Lipschitz. (See also Lemma 3.3 in the present 
paper.) A related issue is that of the regularity of TV along the leaves 
of V; that is, how smooth are the leaves of VI For M compact and 
negatively curved, Anosov [1] showed that the leaves of V are C°°. In 
the case of nonpositive curvature, Eberlein's "C1" conclusion cannot be 
improved to "C2"; Ballman, Brin and Burns construct in [2] a com­
pact, real-analytic surface of nonpositive curvature for which the leaves 
of V fail to be C2. However, the non-C2 leaves in their example are 
C1+Lipscllltz, (i.e., TV is Lipschitz along leaves) and this suggested to us 
the question of whether this is always the case for compact, real-analytic 
surfaces of nonpositive curvature. As a corollary of our Theorem II be­
low, we have 

Theorem II'. Let S be a compact, real-analytic, nonpositively 
curved surface. Then the leaves of V are uniformly c1+L'p'ch'tz. 

Our interest in these questions arose while studying the ergodic prop­
erties of the geodesic flow for analytic, nonpositively curved surfaces. 
We asked whether the time-one map of such a flow remains ergodic un­
der suitable perturbations. Related results for negatively curved man­
ifolds use Holder continuity of the horospherical foliations in a central 
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way ([6], [13], [12]). We hope that Theorems I and II can be used to 
establish similar results for certain nonpositively curved surfaces. 

1.1. S t a t e m e n t of results 

Throughout this paper we always assume that manifolds are bound-
aryless. We follow the usual convention of referring to horospheres as 
"horocycles" when M has dimension 2. 

T h e o r e m I. Let S be a compact surface with a C°° metric of 
nonpositive curvature K satisfying the following conditions: 

1) If 7 is a geodesic that is not closed, then there is no infinite time 
interval I for which K(-y(t)) = 0, for all t £ I. 

2) If7 is a closed geodesic, then there exists a t such that K does not 

vanish to infinite order at 7(f). 

Then the tangent distributions T'H+ andTT-L~ of the horocycle foliations 
are Holder-continuous. 

T h e o r e m II. Let S be a compact surface with a C°° metric of 
nonpositive curvature satisfying the conditions of Theorem I. Then the 
leaves ofH+ and 7-L~ are uniformly clJrL'FSch't". 

Proof of Theorems I and II from I and II. If S is real-analytic, then 
the set of points in S where K vanishes is a real-analytic subvariety in 
S. In particular, K cannot vanish on an infinite time interval on a 
non-closed geodesic nor can K vanish to all orders at a point, unless 
it vanishes identically on the surface. In this case, S is a flat torus or 
Klein bottle and the horocycle foliations are analytic. q.e.d. 

R e m a r k s . It is an open question whether Theorems I and II hold 
without hypotheses 1) and 2). It is also not known whether there exist 
C°° surfaces that fail to satisfy hypothesis 1), except if the curvature 
vanishes identically. There are Lipschitz metrics with this property [3]. 
At the end of §3 we give an example to show that the estimates on the 
curvatures of the horocycles that are used in our proofs do not hold 
without hypothesis 2). The C°° assumption in Theorems I and II can 
be replaced by C r , where r > 4 and K vanishes to order at most r — 3 
along any closed geodesic. 

We also have an easier version of Theorem I, with a weaker conclu­
sion, but which holds without the assumptions 1) and 2). 
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Propos i t i on III . Let S be a compact surface with a C 3 metric of 
nonpositive curvature. Then the leaves of the horocylic foliations T-L+ 

and T-L~ are uniformly C1+1'2; that is, TT-L^ is uniformly l/2-Hölder 
along leaves. 

As a corollary to Theorem II and Proposition III, we obtain an 
improvement to previously known regularity results for the Busemann 
functions (see §2). 

Corollary IV. Under the hypotheses of Proposition III, the Buse­
mann functions are uniformly C2+l'2, and under the hypotheses of The­
orem II, the Busemann functions are uniformly c2JrL'psch't". 

1.2. Out l ine of t h e proofs 

To prove these results, we study the dependence o n » G TlS of 
solutions to the scalar Riccati equation 

u'(t)+u(t)2 + K(av(t)) = 0, 

where av(t) is the unit-speed geodesic determined by v, and K : S —> R 
is the curvature. In §2 we explain how Holder regularity of TT-L amounts 
to Holder dependence on v of the "unstable" solutions to the Riccati 
equations. 

In §3 we turn to a study of these Riccati equations. The analysis 
begins by taking the difference of two Riccati solutions uo and u\ along 
geodesies determined by VQ and vi, to obtain 

(1.1) (ui-uoY = -(ui + u 0 ) ( u i -u0) + (K0 - Ki), 

where KQ and K\ are the curvatures of S along these geodesies. To 
obtain our regularity results, we need \(ui — uo)(0)\ to be small relative 
to the distance between Do and v\. It is apparent from (1.1) that \ui— uo\ 
decreases rapidly if u\ +uo is large relative to \KQ — K\\. The remainder 
of the proofs is devoted to estimating the sizes of these terms. 

The proof of Proposition III depends only on Lemma 3.1. For the 
proofs of Theorems I and II, we need the additional Lemmas 3.2 - 3.7. 
The proof of the lower bound in Lemma 3.3 is presented in §4. 

1.3. A c k n o w l e d g e m e n t s 

We thank Keith Burns for many helpful conversations and for allow­
ing us to include his lemma (Lemma 4.2). The first author also thanks 
Northwestern University for its hospitality and the Indiana University 
sabbatical leave program for financial support during the time that this 
paper was written. 



HOLDER REGULARITY OF HOROCYCLE FOLIATIONS 45 

2. Preliminaries 

Let M be a complete n-dimensional manifold of nonpositive sec­
tional curvatures and let M be its universal cover. We now define the 
horospherical foliations discussed in the introduction. For a unit vector 
v let av denote the geodesic in M (or M) with a'v(0) = v. Vectors 
«,œ G TlM are asymptotic if there exists a constant C > 0 such that 
for all t > 0, dist(av(t), ow(t)) < C. Nonpositive curvature and simple 
connectivity imply that for every v G TlM and p G M, there is a unique 
vector Zv(p) G T^M such that Zv(p) is asymptotic to v. Fixing v, this 
defines a radial vector field Zv on M. The vector u also determines a 
Busemann function Fv : M —> R by: 

i^(p) = lim (distO?, av(t)) - t). 
t—>oo 

It is well-known (see, e.g. [9]) that Fv is C1, Z„ is the gradient of 
—Fv, and each level set F~l(c) is the limit of geodesic spheres of radius 
t + c centered at uv(t). Moreover, as was shown by Eberlein, Busemann 
functions are C2, and consequently their level sets are C2 [9]. 

For v G TlM, define the stable and unstable horospheres h~(v) and 
h+(v) determined by v to be the level sets i7!„_1(0) and FZV (0), respec­
tively. The leaves of the stable and unstable horospherical foliations 1-L~ 
and ~H+ of TlM are defined by: 

U-(v) = {Zv(p) :p£h-(v)} 

and 
n+(v) = {-Z_v(p) : p G h+(v)}. 

Since Busemann functions are C2, the leaves of H^ are C1, and the 
tangent distributions TT-L^ are defined. 

We project the horospheres from M into M to obtain horospheres 
for vectors in TlM. Similarly, we obtain the horospherical foliation of 
TlM. 

We are interested in the regularity of TT-L^, which reduces to the 
regularity of the sectional curvature of the horospheres. These sectional 
curvatures are determined by solutions to certain Riccati and Jacobi 
equations. We now restrict to the case where M is a surface, S, and 
these equations can be reduced to scalar ones. 

Let v G TpS and w G TpS, and let J_ [J+] be the stable [unstable] 
Jacobi field along ov with J_(0) = w [J+(0) = w]. (The stable Jacobi 
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field is defined by J_ = lim^^oo Jn, where Jn is the Jacobi field along ov 

with Jn(0) = w and Jn(n) = 0. The unstable Jacobi field J+ is defined 
by the same formula, except replacing limn^oo by lirm^-oo.) If Zv is the 
radial vector field defined above, then VWZV = J'_(0), by Proposition 
3.1 in [9]. Now assume w is a unit vector perpendicular to v and let E be 
the continuous, unit-length vector field along ov that is perpendicular 
to ov and satisfies E(0) = w. Then J-(t) = j-(t)E(t), where j - is a 
real-valued function that satisfies the scalar Jacobi equation: 

jl(t) = -K(av(t))Ut). 

Let U- = j'_/j-. Then u- satisfies the scalar Riccati equation 

u'_(t)+u-(t)2 + K(av(t)) = 0. 

Since j-(0) = 1, 

(2.1) «_(0) = j'_(0) = (VwZv,w) = -k-(v), 

where k-(v) is the geodesic curvature of h~(v) at v. The function u_ is 
called the stable solution to the Riccati equation along av; since J_ was 
constructed as lim„_s.00 Jn, it follows that u-(t) = lim„^.00Mn(t), where, 
for n > 0, un is the solution to the Riccati equation along av with 
«nfn) = — oo. The unstable Riccati solution u+ along av is similarly 
defined in terms of J + and satisfies u+(t) = linin^-oo un, where, for n < 
0, un is the solution to the Riccati equation along ov with un{n) = +oo. 
A similar argument to the one summarized in equation (2.1) shows that 
w_l_(0) = k+(v), where k+(v) is the geodesic curvature of h+(v) at v. 
Since K < 0, it follows that u-(t) < 0 for all t, and u+(t) > 0 for all t. 
Moreover, if K(av(to)) < 0 for some to, then u-(t) < 0, for all t < to, 
and u+(t) > 0, for all t > to- (These inequalities are easy consequences 
of Lemma 3.1 below.) 

A function / from a metric space (Xi,di) to a metric space (X2, cfe) 
is Holder-continuous of exponent a G (0,1] if there exists a constant 
C > 0 such that for all p, q G Xi, 

(2-2) d2(f(p),f(q)) < C(rfi(p,g))a. 

The function / is Lipschitz if it is Holder with exponent 1. We say 
that / is Holder (or Lipschitz) at a point p G X\ if there is a constant 
C = C(p) > 0 such that inequality (2.2) holds for all q G X\. A family 
of functions T from X\ to X2 is uniformly Holder (or Lipschitz) if there 
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is a single constant C such that (2.2) holds for all p,q £ X\ and for all 

Throughout this paper all geodesies have unit speed. We will use 
Fermi coordinates (s,x) along a geodesic 7 in S, where s is the time 
parameter along 7, and x is the signed distance to 7. Then the curves 
s = constant are unit-speed geodesies perpendicular to 7. We will 
frequently use <f) to denote the angle between a vector v and the curve 
x = constant; unless stated otherwise, such angles will be signed angles 
in [—7r/2,7r/2] chosen so that <(d/dx,x = a) = 7r/2. 

3. Proofs of Theorems I and II 

This section contains the proofs of Theorems I and II, with the 
exception of the proof of the lower bound on the curvatures of horocycles 
in Lemma 3.3. This lower bound is proved in §4. 

The following lemma contains facts which are routinely used in the 
study of Riccati and Jacobi equations. For example, part (iv) is the 
Comparison Lemma in [2] and it is also a special case of a well-known 
differential inequality ([7], Chapter III, Corollary 4.2). Part (vi) is a 
special case of the Sturm Comparison Theorem. 

Lemma 3.1. Let K,KQ,KI : [A,B] —> R be continuous functions, 
and suppose U,UQ,U\ are solutions to the Riccati equations u' = —v? — 
K, u\ = —uf — Ki, i = 0,1, respectively, that are finite on the interval 
[A,B]. Let y = u\ — UQ. Let jo, j \ satisfy the Jacobi equations j " = 
—Kiji, i = 0,1. Then the following hold: 

(i) y' = -(u0 + ui)y + K0- Kt. 

(n) If Ji(t) = exp - ft Ui{r)dT , for i = 0,1, then 

y(B)= [ [ür0(*))-^i(t)]io(t)ii(*)d* + J/(^)io(A)ii(A). 
A 

(iii) If ji(t) is as defined in (ii), then ji(B) = 1 and ji satisfies the 
Jacobi equation j " = —Kiji for which u;b = j'i/ji- Moreover, if u-i 
is nonnegative throughout [A, B] , then 0 < ji < 1 for A < t < B 
andj'^A) < 1/(B - A). 

(iv) Ifu0{A) < «! (A) andKi{t) < K0(t) forA<t<B, then u0(B) < 
ui(B). 
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(v) If K(t) < 0 for A<t<B, and u(A) > 0, then 

u{A) 
u{B) > 

(B - A)u{A) + 1 

and this inequality can be replaced by equality if K(t) = 0 for 
A<t<B. 

(vi) 7/0 < j0(A) < JM), 0 < j'0(A) < j[(A) and Kt(t) < K0(t) < 0 
for A<t<B, thenjo(B)<jl(B). 

Proof. Property (i) is obtained by subtracting the Riccati equation 
for uo from the Riccati equation for u\. By the formula for the solution 
of first order linear differential equations, we have 

B y(B) = f»(K0(t))-K1(t)) exp - / / > O ( T ) + « I ( T ) ) dr B dt 

B +y(A)exp - fA (u0(r) + UI(T)) dr , 

and (ii) follows. The first statement in (iii) is an immediate consequence 
of the definition of j , . Now if Uj is nonnegative throughout [̂ 4, B], then 
ji will be convex, nondecreasing and positive on [̂ 4, B], and the second 
statement in (iii) follows. It is clear from (ii) and (iii) that if y{A) > 0 
and K0(t) - Ki{t) > 0 for t G [A,B], then y(B) > 0. This proves (iv). 
The inequality in (v) is a special case of (iv), because if KQ = 0 and 
u0(A) = u(A), then u0(t) = u(A)/((t - A)u(A) + I). For the proof of 
(vi), see Chapter 10 of [4]. q.e.d. 

Proof of Proposition III. Let S be a compact surface with a C3 metric 
of nonpositive curvature. Then K is C1 and there exists a constant 
L > 0 such that \K{p) - K{q)\ < L dists(p,ç). 

Let 7o and 71 be two geodesies on S such that 7o(t) and j[(t) are 
on the same unstable horocycle; i.e., 

lim dists(7o(£),7iW)=0. 
t—s>—00 

To prove that the leaves of the unstable horocycle foliation of T 1^ (or 
r 1 ^ ) are uniformly C 1 + 1 ' 2 , it suffices to show that there exists a con­
stant C > 0 (depending only on S) such that 

(3.1) | M 7 l ( 0 ) ) - M 7 Ó ( 0 ) ) | < C V i , 

where e = dist^(70(0),7i(0)). Since K < 0, dist^(7o(t),7i(t)) < e, 
for t < 0. Let Ui be unstable Riccati solutions along 7j,i = 0,1. Let 
y = m - u0. Then y(0) = fc+(7Ì(0)) - MYo(0)). 
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Now apply Lemma 3.1 (ii) with A = —1/y/ë and B = 0. We obtain 

(3.2) |y(0)|< [ \K0(t)-K1(t)\h(t)j1(t)dt +MANAMA), 
A 

where jo and j i are as in Lemma 3.1(h). Since uo and u\ are both 
nonnegative throughout [A, B], we have 0 < j , ( t ) < 1 for A < t < B, 
and j'i(A) < 1/(B — A), for i = 1,2, by Lemma 3.1(iii). The first term 
on the right-hand side of (3.2) is bounded from above by (l /y /e)(el /) = 
^ftL. The estimate on the second term of the right-hand side of (3.2) is 
given by 

(3.3) \y(A)\j0(A)j1(A) < Ui(A)ji(A) = j't(A) < j^=~fi = yß, 

where % is chosen so that Ui{A) is the larger of UQ{A) and u\(A). This 
proves that the leaves of T-L+ are uniformly C 1 + 1 ' 2 . q.e.d. 

The following lemma will be applied to the curvature function / = 
K. In this lemma the complete surface S could easily be replaced by a 
complete Riemannian manifold. 

L e m m a 3.2 . If f is a nonpositive function on a complete surface S 
such that \(d2/dt2)(f (a(t)))\ exists and is uniformly bounded from above 
along all geodesies a, then there exist constants L\,L2 > 0 such that for 
all p,q G S, 

(3-4) \f{p) - f{q)\ < Lxe^f{p) + Ue\ 

where e = dist(p, q). 

Proof. Let L = sup{\(d2/dt2)\t=o(f(<j(t)))\ : a is a geodesic on S}. 
We only need to consider the case L > 0. Let p G S, and let a be 
a geodesic on S such that CT(0) = p and <T'(0) is in a direction of the 
greatest increase of / at p; i.e., (d/dt)\t=o{f{(r(t))) = | |D / P | | . Let g : 
R - • R satisfy g(0) = f(a(0)),g'(0) = (d/dt)\t=0(f(a(t))) and g"(t) = 
—L for all t. 

Then for t > 0, 

0>f(t)>g(t)=f(p) + \\Dfp\\t-ht2. 

Setting t = \\Dfp\\/L, we obtain | |D / p | | < y/-2Lf(p). Let Lx = 
v 2 L , Lrz = L/2. Then the lemma follows from Taylor's Theorem. 

q.e.d. 

In the following lemmas, we begin invoking our hypotheses 1) and 
2) on the surface S. 
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Lemma 3.3. Suppose S is a complete surface of nonpositive cur­
vature K and 7(0) is a closed geodesie on S such that K vanishes to 
order m — 1 on 7, where m G {2,4, 6 , . . . }; i.e., if (s, x) are the Fermi 
coordinates along the lift 7 of 7 to S, then 

dk 

ITk K(s,x) = 0 
OXK x=0 

for k = 0 , 1 , . . . , m — 1 and all s. Also assume that there is at least one 
point, say 7(0), such that K does not vanish to order m at 7(0); i.e., 
(dm/dxm)K(0,x) 7̂  0. Then there exist a neighborhood U of T1;y in 
TlS and a positive constant C such that for any v G U with footpoint 
having second Fermi coordinate x = a the curvatures k-(v) and k+(v) 
of the stable and unstable horocycles satisfy 

Cmax(ja|m/2,|</>|m/(m+2)) < k-(v) < C~l max (|a|m/2, |0|m/(«»+2)\ 

Cmax(jan/ 2 , | ( />n/(m + 2)) < k+(v) < C~l max (|a|m/2, |0|m/(m+2)^ 

where <fi = <(v,x = a). 

The upper bounds on k-(v) and k+(v) are proved in [5], Theorem 
3.1. The assumption that there is a point on 7 where the curvature does 
not vanish to order m is not needed to obtain these upper bounds. The 
lower bounds are proved in §4. 

Note that the hypothesis of Lemma 3.3 could not hold for odd ra, 
because K does not change sign. 

Lemma 3.4. If S is a surface satisfying the hypotheses of Theorems 
I and II, then there is a constant C > 0 such that for all v £TlS, 

(3.5) k-{v) > Cy/-K(p) 

and 

(3.6) k+(v) > Cy/=K(p), 

where p is the footpoint of v. 

Proof. If 7 is a closed geodesic on S along which K vanishes to order 
m — 1, for m G {2,4, 6 , . . . }, then there is a constant C\ > 0 such that 
—K(p) < C\\a\m for p in a neighborhood of 7 with Fermi coordinates 
(s,a). If, in addition, there is a point on 7 at which K does not vanish 
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to order m, then the lower bounds on k-(v) and k+(v) in Lemma 3.3 
imply that (3.5) and (3.6) are satisfied for v in some neighborhood of 
TX7, for some constant C > 0. 

By hypotheses 1) and 2) of Theorems I and II, there are at most 
finitely many closed geodesies along which K vanishes. Therefore (3.5) 
and (3.6) hold for « i n a neighborhood U of the union of the unit tangent 
bundles of such geodesies. 

Now for v G TlS, k-(v) vanishes only if K(av(t)) = 0 for all t > 0, 
and k+(v) vanishes only iîK(av(t)) = 0 for all t < 0. Thus by hypothesis 
1), k-(v) and k+(v) each vanish only for v in the unit tangent bundle of 
a closed geodesic along which K vanishes. Then (3.5) and (3.6) extend 
to the complement of W in T 1 ^ for some C > 0 by the continuity of 
k-,k+, and K. q.e.d. 

L e m m a 3.5 . Let S be a surface satisfying the hypotheses of Theo­
rems I and II. Let 70 and 71 be geodesies on S or S, let K,i(t) = K(^j\t)), 
for i = 0,1 and A < t < B. Let Ui be a solution to the Riccati equation 
u'ri = — uj — Ki,i = 0 ,1 , where UQ is greater than or equal to the unstable 
solution, u+, and u\(A) > 0. Let y = u\ — uo- Then there exist positive 
constants C\ and C2, which depend only on S, such that 

\y(B)\ < de + C2(B - A)e2 + \y(A)\j0(A)j1(A)i 

where e = max{efoi(7o(i),7i(i)) : A < t < B} and jo o,nd j \ are defined 
as in Lemma 3.1(H). 

Proof. By parts (ii) and (iii) of Lemma 3.1, we have 

(3.7) \y(B)\< [ \KQ(t) - K1{t)\Ut)h(t)dt+\y(A)\UA)3M)i A 

where 0 < ji(t) < 1 for i = 0,1. Moreover, if we apply Lemma 3.2 to 
/ = K, we obtain constants L\,L2 > 0 such that 

\K^{t)-Kx{t)\ <L1eV-K0(t)+L2e
2, 

where e is as in the statement of the present lemma. Thus 

/ | ü r 0 (* ) -^ i (* ) l io ( t ) i i ( t )d* 
A 

(3-8) < / (L1e^-K0(t) + L2e
2)j0(t)dt 

A 

< L2(B - A)e2 + L1 / ey/-K0(t)jo(t)dt. 
A 
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Also, by Lemma 3.4, there is a constant C3 > 0 such that for A < t < B, 

V-Ko(t) < C3M7ÓW) = C3u+(t) < C3uQ(t). 

Then 

(3.9) 
Li / €^-K0(t)jo(t)dt < C3Lte / u0(t)j0(t)dt 

A A 
çB 

= C3Lie / fQ(t)dt = C3JLie[l - j(A)} < C3Lxe . 
A 

The lemma follows by combining (3.7),(3.8) and (3.9). q.e.d. 

Proof of Theorem II. Let 70, 71, uo, wijo J i ? V and e be as in 
the proof of Proposition III. The beginning of the proof of the present 
theorem is the same as the second paragraph of the proof of Proposition 
III, except that in order to obtain uniform C'i+L'p^hitz i e a v e S ) ^J~f must 
be replaced by e in the desired inequality (3.1). Now apply Lemma 3.5 
with A = — 1/e and B = 0. We obtain 

\y(0)\<Cie + C2e+\y(A)\j0(A).h(A). 

By the same estimate as in (3.3), we have 

\y(A)\jo(A)j1(A)<^-J = e. 

This completes the proof, q.e.d. 

Remark. In the proofs of Proposition III and Theorem II, it is 
not necessary to assume that 7g(0) and 7i(0) are on the same unstable 
horocycle. It suffices to assume that 7Q(0) and 7^(0) are negatively 
asymptotic; i.e, they belong to the gradient field of the same Busemann 
function. This is enough to give us the property that dist^(7o(t) ,7i( t)) 
is nondecreasing, which is all that our proofs use. 

Proof of Corollary IV. Assume that the hypotheses of Theorem II 
hold. Let v £ TlS and let F = Fv be the Busemann function corre­
sponding to v, as defined in §2. Then the level sets of F are stable 
horocycles and the integral curves to — V-F are geodesies asymptotic to 
av. The derivative of V-P in the direction of these geodesies is identically 
0. Let (VF)fi denote the derivative of V-P in the direction of the stable 
horocycles. Then (VP)% consists of vectors tangent to these horocycles 
whose lengths are equal to the curvatures of the horocycles. Thus, by 
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Theorem II, V-F% is Lipschitz in the direction of the horocycles. Along 
each asymptotic geodesic, (V-F)-# consists of vectors perpendicular to 
that geodesic whose lengths are equal to the absolute value of the stable 
solution to the Riccati equation. Thus (V-F)-# is smooth in the direction 
of the asymptotic geodesies. Therefore (VF)-n is uniformly Lipschitz on 
S, and F is uniformly C2+Lipsch,u. (The Lipschitz constant does not de­
pend on v.) A similar argument shows that the Busemann functions are 
uniformly C 2 + 1 ' 2 under the assumptions of Proposition III. 

We now turn to the proof of Theorem I. We need two additional 
lemmas. 

L e m m a 3.6. If S is a surface satisfying the hypotheses of Theorems 
I and II, then there is a constant C > 0 such that for all v G TlS, 

Ck+{v) <k-(v) < C-lk+{v). 

Proof. This lemma follows from Lemma 3.3 in the same way that 
Lemma 3.4 follows from Lemma 3.3. q.e.d. 

L e m m a 3.7. Suppose K(t) < 0 for A < t < B. Let uo and u\ 
be solutions of the Riccati equation u' = —u2 — K that satisfy u\(t) > 

uo(t) > 0 for A < t < B. Then 

exp 

exp 

JA v,\ (t) dt 

fA u0(t)dt 

Proof. Let ji(t) = exp[JAMj(r) dr], for i = 1,2. Then ji(A) = 1 
and j[{A) = Ui{A). Let J = {Ul{A)/u0{A))j0. Then j(A) > ji{A) and 
j'(A) = j[(A). It now follows from Lemma 3.1(vi) that j(B) > ji(B). 
This inequality can be rewritten as (ui(A)/uo(A)) > ji(B)/jo(B), which 
proves the lemma, q.e.d. 

Proof of Theorem I. We must show that there are constants a, C 
with C > 0 and 0 < a < 1 such that 

(3.10) \k+(vi) - k+(v0)\ < C(dist(v0,vi))a, for all v0,vt G T 1 ^ . 

S t e p 1. We first show that it suffices to prove (3.10) in the case vo 
and v\ have the same footpoint; i.e., we will show that (3.10) will follow 
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for some C > 0 if there is a constant C > 0 such that for all p G S and 
wo, ui G T^S, 

(3.11) | M « i ) - M « o ) | < C9a, where Ö = <(«o,«i) . 

Suppose i>o,i>i G T 1 ^ with dist(i>o,ui) < 1? and let po,pi be the 
footpoints of i>o,fi- Let W = WVo = —Z_Vo, where Z_Vo is the radial 
vector field consisting of vectors asymptotic to — VQ (see §2). Then W is 
Lipschitz, with Lipschitz constant independent of Do- (This follows from 
Busemann functions being uniformly C 2 , and does not use Corollary 
IV.) Let v[ = W(p\). By the remark following the proof of Theorem II, 
there exists a constant C\ > 0 such that 

(3 12) lÄ+(wi) ~ M « o ) | < Cidist(po,Pi) 
< Ci d i s t r o , vi) < Ci (d i s t ro , vx))

a. 

Moreover, since W is Lipschitz, there is a constant Ci > 0 such that 

(3.13) < (« i ,« i ) <C2dist(i>0 ,i>i). 

The constants Ci , C2 depend only on 51. Now suppose (3.11) holds (with 
i>o replaced by i^) . Then by (3.11),(3.12) and (3.13), we have 

\k+(v0) - Ä+(«i)| < \k+(v[) - k+(v0)\ + |fc+(«i) - Ä+(«i)| 

< Ci (d i s t ro , « i ) ) a + C ( < ( « i , « ì ) ) a 

< ( C i + CC2
a) (d i s t ro , Vl))

a. 

This completes the reduction of (3.10) to (3.11), and we proceed with 
the proof of (3.11). 

Step 2. Appl ica t ion of L e m m a s 3.5 and 3.6. 
Let p € S, let v0,vi G T^S and let 6 = <(i>0,i>i). For 0 < r < 1, let 

vr be a continuous curve in T^S such that <{VQ,VT) = r6, and let 7 r be 
the smooth variation of geodesies with 7 r(0) = 70 (0) = 71 (0) = p and 
7r(0) = — vr Let 

T = max{Tn : length of curve r —> 7 r ( t ) , 0 < r < 1, 
(3.14) l ' " " 

is less than or equal to v9 , for 0 < t < TQ}. 

Let Kr(t) = K(-yr(t)) and let Jr be the perpendicular Jacobi field along 
7 r defined by Jr(t) = {d/dr)(^r(t)). Let J r ( t ) = jr(t)Er(t), where Er

7s 
are unit normal fields along 7,,'s oriented so that jr(t) > 0 for t > 0. 
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Then jr(0) = 0 and j'r(0) = 6. By comparing with the K = 0 case and 
applying Lemma 3.1 (vi), we have jr(T) > 6T. From the definition of 
T it follows that 

(3.15) Ve jr(T)dr > 6T. 

Therefore T < 1/Vö. (See Figure 3 .1.) Similarly, by comparing with the 
K = Km\n case, where Km\n < 0 is the minimum value of the curvature 
function on S, we obtain jr(T) < (éYv1^mm|)sinh(y / | i ;fm in |T). Thus 
there exists 0o > 0 such that if 9 < #o, then T > 1. Since it is clear 
that there is a C such that (3.11) holds for 0 > 9o, we will henceforth 
assume that T > 1. (This will be used in (3.17).) We will also assume 
that 6 < 1. 

Let Ui,i = 0 ,1 , be the unstable solution of the Riccati equation 
along aVi. Let y = u\ — uo and apply Lemma 3.5 with A = —T, B = 0 
and e = y6. Then |A;+(t>i) — k+(vo)\ = |y(0)| and we obtain constants 
C3, C4, C5 > 0 such that 

(3.16) 

\k+{vi) - k+(vQ)\ 

= <C3Vë+CAT9 

+ | y ( -T ) | exp 

<(C3 + C4)Vö 

+ C 5 ( exp 

(uo(t) + ui(t)) dt 
T 

UQ (t) dt 
T 

exp u\(t) dt 
T 

Let u~,i = 0,1 be the stable solution of the Riccati equation along 
7, = o-vi- Then Ui(—t) = —u~(t). Moreover, by Lemma 3.6, there is a 
positive constant ß (which is C in Lemma 3.6) such that 

v,-{t) >ßUi(t). 
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Thus we can rewrite (3.16) as 

(3.17) 

|A;+(ui) -k+(v0)\ 

<(C3 + C4)Vtf 

+ C5(exp 

<(C3 + C4)Vö 

+ C 5 e x p 

T 

UQ (t) dt 

T 
UQ (t) dt 

exp 

exp 

T 

ui(t) dt 

T 
ui(t) dt 

T Therefore we must estimate exp —ft uo(t) dt 

from above. We first estimate a related integral. 

and exp fx u\(t) dt 

Step 3. Let wr = j'r/jr- Then w'r = —w% — Kr, wr(0) = oo, and 
wr(t) > 0 for t > 0. In this step, we will show that there is a constant 
CQ > 0 such that 

(3.18) 

We have 

Thus 

(3.19) 

Jr(T) 

JriX) 

exp r T 

— WQ (i) rfi 
<c6Ve. 

= exp 
l Jr 

= exp \ fT 1 
wr dt 

Jr(T ) = jr (l)exp WT dt 

Since j r (0 ) = 0 and j'r(0) = 6, we see that j r ( l ) < C7Ö, for some C7 > 0 
(by comparing with the case K = Km\n and applying Lemma 3.1 (vi)). 
Combining this fact with (3.15) and (3.19), we obtain 

(3.20) e~1/2 < e 7 exp 
0 

T 

W dt dr. 

T If the average of the quantities exp fx wrdt for 0 < r < 1 in (3.20) 

T could be replaced by exp ft WQ dt , the desired inequality (3.18) would 
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follow. To make this type of replacement we now show that there is a 
constant Cs > 0 such that 

(3.21) 
T 

\W WQ\ dt < Cs, for all r, 0 < r < 1. 

Fix r, 0 < r < 1. Let y = wr — too, and let t satisfy 1 < t < T. Since wr 

and wo are greater than the unstable Riccati solutions, it follows from 
Lemma 3.5 that there are positive constants Cg and C\Q such that 

(3.22) \y(t)\ < C9Vê + Cl0te + \y(l)\ < (C9 + C 1 0)Vö + |y( l ) | . 

Now consider the function from vectors v inTlS to the values at t = 1 
of the Riccati solutions along ov which have value oo at t = 0. This 
function is smooth, and wr(l) and wo(l) are the values of this function 
for v = 7^.(0) = —vr and v = 7Q(0) = — i>o, respectively. Thus there 
is a constant C\\ > 0 (depending only on S) such that |y( l ) | < C\\Q. 
By combining this inequality with (3.22), we obtain \wr(t) — Wo(t)\ < 
(C9 + Cio)y/6 + Cii6. Since T < 1/VÖ, (3.21) follows. Rewriting (3.20) 
and applying (3.21) yields 

0 " 1 / 2 < C 7 exp 
o 

T 
WQ dt exp 

T 
Wr — WQ dt dr 

< C7exp(Cg)exp 
T 

WQ dt 

This proves (3.18). 

S t e p 4. C o m p a r i s o n of UQ and WQ. Let Y C TlS be the set 
of unit vectors which are tangent to closed geodesies along which K 
vanishes. Suppose that &+(t>o) 7̂  0 (i.e., i>o ^ T). Since w$(l) > uo(l), 
Lemma 3.7 applies, and we have 

(3.23) 

By Lemma 3.1(v) 

(3.24) 

exp 

exp 

j t wo (t) dt 

Jj UQ (t) dt 

wp(l) 

u0(l) 

«o(l) > 
no(0) 

«o(o) + r 
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Also, since K is bounded from below, both wo(0) and WQ{1) are bounded 
from above by a constant. Therefore, from (3.23) and (3.24) it follows 
that 

(3.25) exp 

T 

UQ (t) dt 
- k+(v0) 

WQ (t) dt 

for some C > 0. 

Step 5. C o m p l e t i o n of the proof. Combining the results of 
steps 3 and 4, we obtain 

exp 

T 

UQ (t) dt 
y<(c*cuLy ß/2 

- U ( « W 
The same argument shows that this inequality also holds with uo and 

i>o replaced by u\ and vi, respectively, if k+(v\) ^ 0. These inequalities, 
together with (3.17), imply that 

\k+(Vl) - k+(v0)\ <(c3 + c4)Vd 

+ C 5 C 6 C7 1 2 mm((k+(v0))-P, (k+(Vl))-^
2. 

If &+(i>o) and k+(vi) are both less than or equal to 91'4, then 

|M«i ) -M«o) | <2ö1/4-

If at least one of k+(vo) and k+(v\) is greater than 91'4, then 

\k+(v!) - k+(v0)\ < (C3 + C4)VÖ + C5(CeCl2Ye^4. 

In both cases, (3.11) holds for a = min ( l /4 , ß/4) and some positive 
constant C. q.e.d. 

Although we do not have counterexamples to Theorems I and II 
if hypothesis 2) is omitted, we now give an example to show that the 
crucial Lemmas 3.4 and 3.6 fail to hold without hypothesis 2). This 
example satisfies hypothesis 1). 

E x a m p l e . Let S be a compact surface containing a closed right 
circular cylinder C with negative curvature on S \ C. Let 7 be a closed 
geodesic along the boundary of C and let S be constructed so that for 
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some e > 0, the e neighborhood of 7 in S is a surface of revolution, and 
in Fermi coordinates (s, x) along 7, we have 

T _ , \—e~1^x, for 0 < x < e, - 0 0 < s < 00, 
K(s,x) = < 

10, for — e < x < 0, —00 < s < 00. 

It follows from a minor modification of Theorem 2.3 in [5] that there 
is a constant Ci > 0 such that if v^ is a vector with footpoint on 7, 
which makes an angle <j> with 7 and has a positive component in the 
d/dx direction, then 

(3.26) M*ty) > Ci0|ln0|. 

Let a = cr„, and let Ti = Ti(<fi) be chosen so that {<r(i) : — Ti < t < 0} 
is a component of the intersection of a and C. Then there is a constant 
C2 > 0 such that T\ > C2/4>- Let u+ be the unstable Riccati solution 
along a. Since i f (CT(Ì)) = 0 for -Tx < t < 0, 

(3.27) k+(V(P) = u+(0) = M + /"T l ,V 1 < ^ < C ^ 
Tiu+(-Ti) + l Ti 

where C3 = I /C2. By (3.26) and (3.27) we see that the second inequality 
in the conclusion of Lemma 3.6 does not hold for any constant C. 

We now show that the same example also fails to satisfy the conclu­
sion of Lemma 3.4. Let 0 < xo < e, let 0 < <f) < n/2, and let v^ and 
a = av, be as above. Let T% = sup{T > 0 : dist(<r(i),7)) < xo for 0 < 
t < T}. By comparison with the case of curvature 0 (see Lemma 2.1 in 
[5]), we have T^ < xo/ sincj) < 2XQ/<J>. Since u'+ = —u2^ — K, it follows 
that 

u+(T2) < u+(0) + / 2 -K(a(t))dt 
o 

<u+(0)+T2e-^Xo 

2 ^ o e ^ 
< C3(f>^ . 

Let (j> = -yJxQe-1 '(2x°\ let w = a'(T2), and let p be the footpoint of w. 
Then 

(3.28) k+(w)=u+(T2)<y/^(C3 + 2)e~^, 

while y/K(p) = e " 1 / ^ 0 ) . Since the coeÆcient ^(C3 + 2) in (3.28) 
can be made arbitrarily small, the second inequality in the conclusion 
of Lemma 3.4 does not hold for any constant C > 0. 
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4. Lower b o u n d s on curvatures of horocycles 

In this section we establish the lower bound given in Lemma 3.3 
on the curvatures, k+(v), of the unstable horocycles. We consider the 
curvatures of these horocycles at vectors v that are close to TX7, where 
7 is a closed geodesic along which the curvature K of S vanishes iden­
tically. As in hypothesis 2) of Theorems I and II, we will assume that 
there is a point ç o n 7 such that K does not vanish to infinite order 
at q. Assume that q is chosen so that the order to which K vanishes 
is minimized (over points of 7) at q. The geodesic ov determined by v 
wraps around S many times very close to 7. (See Figure 4.1.) In those 
time intervals when av passes close to q, K is bounded from above by 
a negative function of the distance from ov to 7. On the complements 
of these intervals we only assume that K is nonpositive. The following 
lemma gives an upper bound for solutions to the Riccati equation which 
will apply in this situation. 

L e m m a 4 .1 . (Estimate for intervals of alternating curvatures.) Let 
A, B be positive constants and let K\ be a negative constant. Let n 
be a positive integer and let IQ, 7Q, II,I[, • • • ,Ln,L'n be closed intervals 
(arranged in the natural order from left to right) that partition [—T, 0], 
where T = X^=od-^l + \^i\)- Assume the following: 

1) All intervals L,b are of positive length, except possibly LQ, which may 
be empty. 

2) Ifn> I, then \h\ > A for i = 1,... , n - 1. 

3) If\L'n\ > 0, then \In\ > A. 

4) In the case n = 1, at least one of the inequalities \IQ\ > A, |7i| > A 
holds. 

5) \I'i\ <B for i = 0,... ,n. 

Let KQ be a constant such that K\ < KQ < 0 and let u be a solution 
to the Riccati equation v! = — u2 — K, where K < KQ on I;b, and K < 0 
on I[, for i = 0 , . . . , n . 

Then for every n > 0, there exists a positive constant C which de­
pends only on 77, A, B and K\ such that: 

i) IfT> TI(-KO)-1/2 and u(-T) > 0, then u(0) > C^ÏQ. 
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ii) Ifu(-T) > y ^ ï f ô , then u(0) > Cy/^K^. 

(The assertion ii) is still true if we delete the assumption 4)-) 

Proof. Let a, b > 0 and consider a piecewise smooth solution U(t) to 
the Riccati equation U' = — U2 — K, where K{t) = KQ for —a < t < 0 
and K(t) = 0 for 0 < t < b. Suppose 0 < [7(0) < yf^cK^, where 
0 < c < 1, and U(—a) > 0. Since £7(0) < ^—KQ, U(t) is nondecreasing 
for -a < t < 0. Therefore 0 < U(t) < V^cKo~, for -a < t < 0. Also, 
U(t) < ^—CKQ for 0 < t < ò, because U is decreasing on [0, b\. We then 
see from the Riccati equation that U'(t) > CKQ — KQ = (1 — c)(—KQ) 
for -a < t < 0 and U'{t) > cK0 for 0 < t < b. Hence U{t) > U{-a) for 
—a < t < b and 

17(6) - U(-a) >a{\ - c)(-K0) + bcK0 

(4.1) = - K0[a - c(a + b)] 

>D(-K0)(a + b), 

provided D + c < a/(a + b). Note that A/(A + B) < a/(a + b) whenever 
a > A and b < B. Now fix c > 0 and D > 0 with c+D < A/(A+B). The 
inequality (4.1) remains true if we assume K(t) < KQ for —a < t < 0 
and K(t) < 0 for 0 < t < b. 

Proof of i). Assume T > r / ( - K 0 ) - 1 / 2 and u{-T) > 0. 

Case 1. Suppose that u < ^—CKQ at all the right endpoints of the 
Ii intervals. Then we repeatedly compare u with U and apply (4.1) on 
pairs of intervals Tj,/^, starting with the first i (i = 0 or 1) such that 
\h\ > A. Thus we obtain u(0) > D(-K0)TA/(2A + £ ) , which gives 
the desired estimate, since T > ^(—KQ)-1'2. The reason for replacing 
T by TA/(2A + B) is that this is a lower bound for the length of the 
intervals that come after IQ and IQ, in case |/o| < A. 

Case 2. Suppose u > ^—CKQ at the right endpoint of some Ij 
interval. Let j be the largest index i for which this happens. By Lemma 
3.1(iv), at the right endpoint of /'• we have 

V-cK0 V-CKQ r— 
U > . > . > TJ\/—KQ, 

for some positive constant E. By applying inequality (4.1) on any re­
maining pairs of intervals / , , 7], where i > j , we see that u(0) is greater 
than or equal to the value of u at the right endpoint of I ' . (If i = n and 
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\I'n\ = 0, then we just use the fact that u is increasing on In.) Therefore 
«(0) > E^K~z-

Proof of ii). Assume u{-T) > ^T^K^. Then u > ^T^K^ > V^cK^ 
at the right endpoint of IQ, and by the same argument as in Case 2 of 
the proof of i), u(0) > E^—KQ. q.e.d. 

The next lemma is due to Keith Burns. This lemma will enable us 
to estimate the lengths of time intervals that geodesies ov in S (or in 
S) spend in certain regions near geodesies along which the curvature 
vanishes. 

Lemma 4.2. Let S be a complete surface with curvature K. Let 
-y(s) be a unit-speed geodesic in S, and let (s, x) be Fermi coordinates 
along 7. Let I and J be open intervals in R ; with 0 G J, such that the 
map 

P ^ {s{p),x{p)) 

is a diffeomorphism from a neighborhood J\f of 7(1) onto I x J. 
Assume that for some constant C > 0 and some positive integer m, 

the following condition holds: 

For all p £ j V , 0 < -K(p) < C\x(p)\m. 

Let a : [0, T] —> Af be a unit-speed geodesic segment. For t G [0, T], let 
4>(t) be the signed angle between a(t) and the curve x = x(a(t)), chosen 
to lie in the interval [—7T/2,7T/2]; and consistent with <(d/dx,d/ds) = 
7r/2. Let d(t) = x(a(t)) be the signed distance from a(t) to 7. Then 

i) d'(t) = sin </>(£) and 

ii) \</>'(t)\<C\x(<T(t))\m+1, 

for all te [0,T]. 

Proof. Conclusion (i) follows immediately from the definitions of 
4>(t) and d(t), and we proceed with the proof of (ii). We may assume 
that d(t) > 0 for all t e [0,T]. 

Let S and X be the unit-speed vector fields in the directions of d/ds 
and d/dx, respectively. For p G N with x(p) > 0, let A(p) be the 
geodesic curvature at the point p of the curve x = x(p) in TV, so that 

VSX = AS. 
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Observe that if ß : J —> Af is a geodesic segment tangent to d/dx with 
x(ß(0)) = 0, then for x > 0, the function w(x) = A(ß(x)) is the solution 
to the Riccati equation 

w'(x) = -w(x)2 - K(ß(x)), 

with initial condition w(0) = 0. Then, for x > 0, we obtain 

W'(T) (IT w(x) 
o 

X 

-(W(T))2 -K(ß(T))dT 
0 

x 
< r-K(ß(T)),dT 

o 
< Cxm+\ 

for all nonnegative x G J. Therefore 

(4.2) A{p) < C{x{p))m+1. 

If(/)(to) = ±7r/2 for some to £ [0 ,^] , then a is contained in a geodesic 
segment perpendicular to 7, and <f)(t) is constant. In this case (ii) is 
clearly satisfied. Thus we may assume that <p(t) G (—7T/2,7T/2) for 
t G [0,T]. Then (a'(t),S) is never zero for t G [0,T], and we may 
assume that (a'(t),S) > 0, for t G [0,T]. 

We now calculate (fi'(t), for t G [0,T]. Notice that 

a '(t) = cos (j)(t)S((j(t)) + s in^( t )^(cr( t ) ) , 

and so 

b' cos ó = — sm 
di 

( V ^ ( a ) , a ' ) 

cos(P(Vs{a)X(a),a') + s i n ^ V ^ A V ) , a1) 

cos(f){Vs{a)X(a),a') 

cos4>(A{a)S(a),a') 

A(a) cos (j> 
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on [0,T]. Since cos^(£) + 0 for t G [0,T], we obtain 

(4.3) (/>'(£) = A(a(t)) cos cf>{t). 

Conclusion (ii) then follows from (4.2) and (4.3). q.e.d. 

The following lemma, together with its analog for stable horocycles, 
provides the last step in the proof of Lemma 3.3, thereby completing 
the proofs of Theorems I and II. 

L e m m a 4 .3 . Under the hypothesis of Lemma 3.3, there exists a 
neighborhood U of Tl;y in TlS such that for any v G U with footpoint 
having second Fermi coordinate x = a, the curvature k+(v) of the un­
stable horocycle satisfies 

k+(v) > C m a x ( | a r / 2 , | ^ 0 r / ( m + 2 ) ) , 

where <j>$ = <(v,x = a). 

Proof. Let so be the length of 7, and let P : R —> [0, so] be the 
covering map with P(0) = 0. For a set A Ç [0, so], let A denote P~1(A). 
Since K vanishes to order m — 1 on 7, but does not vanish to order m 
at 7(0), there exist positive constants C\, C<2 and e and an interval 
L = [0, si] for some si G (0, so) such that 

—C\xm < K(s,x), for \x\ < e, for all s, 

and 

-ClX
m < K(s,x) < -C2x

m, for \x\ < e, for s G L. 

Let L' be the closure of [0, so] \ L. 
In this proof we modify our previous convention and let ov denote 

the maximal geodesic segment (possibly of infinite length) in S with 
initial tangent vector v (with footpoint in the region where \x\ < e) 
which remains in the region where \x\ < e. 

The first part of our proof is concerned with the choice of a neighbor­
hood U such that for v £W, av will assume all s values in one component 
of L, while taking x values in the interval [ö, 28} (or [—26, —6]), for some 
suitably chosen ö > 0. 

Let ô and a be such that 0 < ö < e/2 and 0 < a < 6/2, and suppose 
a is a geodesic segment in the region of S where a < x < 26 such that 
<T(0) lies on x = a and o(—T) lies o n i = 28. Let <p(t) = <(a'(t),x = 
const), for t G [ -T,0] , and let (pi = <f>(-T) and (p0 = <f>(0). If we let 
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x = x(a(t)) and we consider <j> to be a function of a;, as well as a function 
oft, then (dx I dt)(d<p I dx) = d<f)/dt. By Lemma 4.2, dx/dt = sin </>(£) and 

\d</)/dt\ <C1(2Æ)m+\ 

whence 

|</>/2||#/(fe| < \ sincf>(t)\\dcf>/dx\ = \d<f>/dt\ < Cx{2Æ)m+l. 

Thus d(<f>)2/dx < 4Ci(2Æ)m + 1 and 

</>?<</>o + 4C 1 (2Æp+ 2 . 

Hence there are positive constants ß and C3, where ß depends on Æ, but 

C3 can be chosen independently of Æ, such that if —ß < 4>o < 0, then 

l^iI < C3Æ(m+2)/2. Let 

£ = max{ | | (9 /9s)p | | : \x(p)\ < e}, 

and choose Æ > 0 such that 

C3Æ(m+2)/2 < m i n ( Æ / ( 4 ^ 0 ) 5 7 r / 4 ) . 

Then 

(4.4) |^( t ) | < m i n ( V ( U s 0 ) , T T / 4 ) 

for —T < t < 0. Thus a assumes all s values in some interval of length 
at least 2so during the time when it is in the region Æ < x < 2Æ. Reason: 
If we let 

v(c) = \<(a',x = c)|, 

then 0 < v{c) < n/A and 

\{ds/dx)x=c\ =(cot v{c))/\\d/ds\\ > (2 | |5/3s | | s in v(c))-1 

> ( 2 ^ ( c ) ) " 1 > 2s0/Æ. 

In particular, the interval of s values so obtained would include at least 
one component of L. 

It follows from the argument in the preceding paragraph that there 
exist a neighborhood U of T 1 ^ and a Æ G (0, e/2) such that if v G U 

then any geodesic segment contained in av, which goes from x = 2Æ to 
x = Æ (or from x = —2Æ to x = —Æ), satisfies (4.4). 
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For the rest of the proof fix a choice of v G U, let x = a be the 
second Fermi coordinate of the footpoint off, and let <j>$ = <(v,x = a). 
We may assume that a > 0. 

Case 1. Suppose \(p0\ < C0a
(-m+2^2 for some C0 > 0. (In Case 1, 

Co may be any positive constant.) If a = 0, then </>o = 0 and k+(v) = 
0; so assume a > 0. Let T > 0 be such that uv(t) is in the region 
(a/2) < x < a for t G [—^0] and o\,(—T) is on x = a/2 or x = 2a. 
(Three possible ways this can happen are indicated in Figures 4.2 - 4.4.) 
We will show that T > C^a~m'2 for some positive constant C4 (to be 
specified below). We argue by contradiction and assume T < Câca~m'2. 
For t G [-T, 0], let 0(i) = <(a'(t),x = const). By Lemma 4.2, we have 

\4>(t)\ <C0a(m + 2)/2 + d ( 2 a ) m + 1 T 

<(C0 + 2m + 1CiC4)a(m + 2)/2 . 

Thus 

a/2 a~m/2 

- sup{sin(|</,(i)|) : t G [-T,0]} " 2(C0 + 2™+1CiC4) ' 

If 

(4.6) 2"1(C0 + 2m+1C1C4)~
1 > C4, 

then we have a contradiction to the assumption that T < Câca~m'2. 
Choose C4 > 0 such that (4.6) holds. Then T > CAa~ml2. 

Let 7Q, IO, IJ, l i , . . . , I'n, In he & partition of [—T, 0] such that for t G 
li [t G Ij'] the s coordinate of ov is in L [L']. Then for t G 7j, ^ ( ^ ( t ) ) < 
—C2(a/2)m. Since |•<(cr^,a; = constant)) < 7r/4 for v G W, there exist 
positive constants ^4, B such that the hypothesis of Lemma 4.1 holds 
with K0 = -C2(a/2)m and 77 = C2

1/2C42-m/2. From part i) of this 
lemma we conclude that there is a constant C5 > 0 such that k+(v) > 
C5a

m/2. Since cf>0 < C0 |a|(m+2)/2 , it follows that there exists C > 0 such 
that 

k+(v) > Cmax(|ap/2 , |</>or / ( m + 2 ))-

Case 2. |0O| > C0a(m+2)/2 . (Here C0 is a sufficiently large positive 
constant, as described in Case 2b. This constant depends only on C\.) 
For starters require that Co > 1. Since <j>$ cannot be 0 except in the 
trivial case, when a is also 0, we will assume ^0 7^ 0. 
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C a s e 2a . Suppose (fio < 0. Let To > 0 be such that av crosses 
x = Æ at time —To. By the choice of U, there exist Ti, T2 > 0 such 
that TQ <Ti < T<2 and during the time interval [—T2, — T j the s values 
taken by av lie in a component of L and cover this component. (See 
Figure 4.5.) Assume that T\ and T2 are chosen as small as possible, 
while satisfying these requirements. The interval of s values assumed 
by av in the time interval [—Ti, —To] has length less than so. Since 
\<(av,x = c)\ < 7r/4 for Æ < c < 2Æ, this implies that | T i - T 0 | <£s0V2. 
Also, we have |T2 — T\\ > \L\. (This inequality depends on the fact that 
| | 9 /9 s | | > 1, which follows from the nonpositive curvature assumption.) 
If t G [ - T 2 , - T i ] , then K{av{t)) < -C2Æ

m. It follows that there is 
a positive constant CQ (depending on Æ, but not on (fio) such that the 
unstable Riccati solution along ov is at least CQ at t = —TQ. By reducing 
the size of the neighborhood U, if necessary, we may assume that (fio 
satisfies ^/C2\(fio\m^m+2', < CQ. Then the hypothesis of part (ii) of 
Lemma 4.1 holds for the time that ov is in the region |(/>o|2' ' m + 2 ) < x < Æ 
with K0 = -C2\(fio\2m/(m+2)- From this lemma we conclude that the 
value of the unstable Riccati solution along ov is at least Cj\(fio\m'^m+2\ 
for some C-j > 0, at the time ov crosses x = \(fio\2'(m+2). Since ov makes 
angle of absolute value at least |(/>o| with x = c for a < c < \(fio\2' m K 
the length of time av is in the region where a < x < \(fio\2'^m+2> is less 
than or equal to 

l ^0 | 2 / ( m + 2 ) < l ^0 | 2 / ( m + 2 ) _ 9U , - m / ( m + 2 ) 
s in i c i - I0OI/2 " ' ^ 0 l 

Then, by Lemma 3.1(v), k+(v), the value of the unstable Riccati solution 
along ov at time 0, satisfies 

n \A \m/(m+2) 
h („,\ ^ W|<N A ' . r I , ,m/(m+2) 

for some C% > 0. 

C a s e 2 b . Suppose <fo > 0. Let C9 = ( 2 C i ) _ 1 . We will show that 

av(t) cannot be in the region 0 < x < a for all t G [—T, 0], where 

T = Cg(f)0
 m/{-m . Suppose this were the case. By Lemma 4.2, we have 

</>'(*) < C ^ 1 < Cl$
m+l),{m+2) 

for t G [—T, 0], and consequently, 

m >fo- TC1(g
{m+1)l{m+2) = (1 - CiC9)0o = ^o/2 > 0 
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for t G [—T, 0]. But then the x coordinate of a(—T) is less than or equal 

to 

a - T s i n ^ o / 2 ) < C~2l{m+2)<j>fm+2) - ( 8 C i ) - V S / ( m + 2 ) 

= [ C 0 - 2 / ( m + 2 ) - ( 8 C 1 ) - 1 ] ^ / ( m + 2 ) . 

This contradicts the assumptions on av andTifC-^^+^-lSd)-^ 

0. Thus we choose C0 such that C0 > 1 and c-2/(™+2) < (8C1)-1 . 

Then av{-T) lies on 7 for some 0 < f < C 9<^~m / ( m + 2 ) . (By the above 

argument <p(t) > 0 as long as av(t) remains in the region 0 < x < a in 

negative time. Thus av leaves this region in negative time at x = 0.) 

Moreover, <(a'v(—T),'j) > (j>o/2. Then the hypothesis of Case 2a holds 

for a'v(—T), and by the conclusion of Case 2a, the value of the unstable 

Riccati solution along av at time — T is at least Cg((f)o/2)~m'(m+2>. 

Hence by the same calculation as in the last step of Case 2a, k+(v) > 

Cio^o f ° r s o m e C10 > 0. q.e.d. 
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FIGURE 3.1 

FIGURE 4.1 
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x=a x=2a 

FIGURE 4.2. Case la. 

J x=2 x=a 

FIGURE 4.3. Case lb. 
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y x=2_ x=2a 

FIGURE 4.4. Case le. 

0 a I^Jm_ 2_ +_ _2_ 8 2δ 

FIGURE 4.5. Case 2a. 


