MODULI AND MODULAR GROUPS OF A CLASS OF CALABI-YAU n-DIMENSIONAL MANIFOLDS, $n \geq 3$

HAO CHEN \& STEPHEN S.-T. YAU

1. Introduction

Since the discovery of mirror symmetry in string theory by physicists, there have been tremendous activities on Calabi-Yau manifolds both by physicists and mathematicians. The reason that mirror symmetry has attracted a lot of mathematicians' attention is that it predicts successfully the number n_{k} of rational curves of degree k in these manifolds. This so-called Mirror Conjecture was first solved recently by Lian, Liu and Yau in their celebrated work [3]. In this paper we shall study the geometry of distinguished class of Calabi-Yau manifolds

$$
\begin{equation*}
X_{s}=\left\{\left(x_{1}: \cdots: x_{n}\right) \in \boldsymbol{C} \boldsymbol{P}^{n-1}: x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} x_{2} \ldots x_{n}=0\right\} . \tag{1.1}
\end{equation*}
$$

For $n=5$, this class of Calabi-Yau 3-manifolds were studied in detail by Candelas, Ossn, Green and Parkers [1] by means of the period map. In particular, they observed that the modular group is not $S L(2, \boldsymbol{Z})$.

It is the purpose of this paper to find out the moduli and the modular group of this one-parameter family of Calabi-Yau manifolds in (1.1) for all $n \geq 5$. Our argument is uniform for all $n \geq 5$. We remark that $n=3$ was treated by our previous paper [2] with different motivation. The crucial contribution of our paper is the introduction of some special points in Calabi-Yau manifolds.

Let $\rho_{i}, i=1,2, \ldots, n$, be n-distinct roots of $x^{n}=-1$. It is clear that the following $N=\frac{1}{2} n^{2}(n-1)$ points Q_{1}, \ldots, Q_{N} of the form

[^0] of China and Guangdong Provincial NSF of China, and the second author by NSF.
$\left(0, \ldots, 0,1,0, \ldots, 0, \rho_{i}, 0, \ldots, 0\right)$, where $1, \rho_{i}$ run over all possible 2tuple positions of $1,2, \ldots, n$, are on each Calabi-Yau manifold X_{s}. We shall show in Proposition 2.1 that there are $(n-2)$ independent hyperplanes through Q_{i} in $T_{Q_{i}}\left(X_{s}\right)$, the tangent plane of X_{s} at Q_{i}, for which all the lines passing through Q_{i} in these $(n-2)$ independent hyperplanes have contact order n with X_{s} at Q_{i}.

Definition 1.1. A point Q in a $(n-2)$-dimensional Calabi-Yau manifold X is said to have $C-Y$ property if there are ($n-2$) independent hyperplanes through Q in $T_{Q}(X)$ for which all the lines passing through Q in these $(n-2)$ independent hyperplanes have contact order at least n with X at Q. Such point Q is called a $C-Y$ point in X.

Theorem A. For $n \geq 5, s \neq 0$ and $s^{n} \neq(-n)^{n}$, the $C-Y$ points on the Calabi-Yau manifolds

$$
X_{s}=\left\{\left(x_{1}: \ldots: x_{n}\right) \in \boldsymbol{C} \boldsymbol{P}^{n-1}: x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} \ldots x_{n}=0\right\}
$$

are precisely $Q_{1}, \ldots, Q_{N}, N=\frac{1}{2} n^{2}(n-1)$, of the form $(0, \ldots, 0,1,0, \ldots, 0$, $\left.\rho_{i}, 0, \ldots, 0\right)$, where $1, \rho_{i}, 1 \leq i \leq n$, run over all possible 2-tuple positions of $1,2, \ldots, n$ and $\rho_{i}, 1 \leq i \leq n$, are the n-distinct roots of $x^{n}=-1$.

Using Theorem A, we can prove the following theorem.
Theorem B. For $n \geq 5, t \neq s, s^{n}$ and $t^{n} \neq 0$ and $\neq(-n)^{n}$, the group G of biholomorphisms between

$$
X_{t}=\left\{\left(x_{1}: \ldots: x_{n}\right) \in \boldsymbol{C} \boldsymbol{P}^{n-1}: x_{1}^{n}+\cdots+x_{n}^{n}+t x_{1} \ldots x_{n}=0\right\}
$$

and

$$
X_{s}=\left\{\left(x_{1}: \ldots: x_{n}\right) \in \boldsymbol{C} \boldsymbol{P}^{n-1}: x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} \ldots x_{n}=0\right\}
$$

consists of all projective nonsingular linear transformation $B \in P G L(n, C)$ of the following form:

$$
B=\left(\begin{array}{cccccccccccccc}
0 & \ldots & 0 & a_{1 i_{1}} & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & a_{2 i_{2}} & 0 & \ldots & 0 & 0 & 0 & \ldots \\
. & \ldots & & \ldots \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & a_{n i_{n}} & 0 & \ldots
\end{array}\right)
$$

where $\left(i_{1}, \ldots, i_{n}\right)$ is a permutation of $(1, \ldots, n)$ and $a_{1 i_{1}}, \ldots, a_{n i_{n}}$ are n-th root of unity. Each such B induces a linear transformation on the
parameter space by sending t to $t_{1 i_{1}} \ldots a_{n i_{n}}$. The group G has order $n^{n-1}(n!)$. Let N be the group of automorphisms of X_{t}. Then N is a normal subgroup of G of order $n^{n-2}(n!)$.

Theorem C. For $n \geq 5$, the modulus function of the one parameter family of Calabi-Yau manifolds

$$
X_{s}=\left\{\left(x_{1}: \ldots: x_{n}\right) \in \boldsymbol{C} \boldsymbol{P}^{n-1}: x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} \ldots x_{n}=0\right\}
$$

is s^{n}, i.e. for any two parameters t, s, X_{t} is biholomorphically equivalent to X_{s} if and only if $t^{n}=s^{n}$.

2. Special points on Calabi-Yau manifolds

Let X_{s} be the ($n-2$)-dimension hypersurface defined by $x_{1}^{n}+\cdots+$ $x_{n}^{n}+s x_{1} x_{2} \ldots x_{n}=0$ in $\boldsymbol{C} \boldsymbol{P}^{n-1}$. It is easy to see that X_{s} is a nonsingular manifold for $s^{n} \neq(-n)^{n}$. In fact, let

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} x_{2} \ldots x_{n} . \tag{2.1}
\end{equation*}
$$

Then X_{s} is nonsingular if and only if there is no common solution to the n equations

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}=n x_{i}^{n-1}+s x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n}=0, \quad 1 \leq i \leq n \tag{2.2}
\end{equation*}
$$

in $\boldsymbol{C} \boldsymbol{P}^{n-1}$. These equations imply that

$$
\begin{equation*}
n x_{1}^{n}=n x_{2}^{n}=\cdots=n x_{n}^{n}=-s x_{1} x_{2} \ldots x_{n}, \tag{2.3}
\end{equation*}
$$

whence

$$
\begin{equation*}
(-n)^{n} \prod_{i=1}^{n} x_{i}^{n}=(s)^{n} \prod_{i=1}^{n} x_{i}^{n} . \tag{2.4}
\end{equation*}
$$

If $P=\left(p_{1}: \ldots: p_{n}\right) \in \boldsymbol{C} \boldsymbol{P}^{n-1}$ is a common solution of equations (2.2), then none of the p_{i} 's may be zero by (2.3). Hence $s^{n}=(-n)^{n}$. Conversely it is easy to see that X_{s} is singular when $s^{n}=(-n)^{n}$.

Proposition 2.1. Let $\rho_{j}, j=1,2, \ldots, n$, be n distinct roots of $x^{n}=$ -1 . For each s with $s^{n} \neq(-n)^{n}$, let Q_{i} be one of the $N=n^{2}(n-1) / 2$ points of the form $\left(0, \ldots, 0,1,0, \ldots, 0, \rho_{j}, 0, \ldots, 0\right)$ on the Calabi-Yau manifold $X_{s}=\left\{\left(x_{1}: \ldots: x_{n}\right) \in \boldsymbol{C} \boldsymbol{P}^{n-1}: x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} \ldots x_{n}=0\right\}$.

Then Q_{i} is a $C-Y$ point i.e., there are $(n-2)$ independent hyperplanes through Q_{i} in $T_{Q_{i}}\left(X_{s}\right)$ for which all the lines passing through Q_{i} in these $(n-2)$ independent hyperplanes have contact order at least n with X_{s} at Q_{i}.

Proof. Without loss of generality, we only check that $Q_{1}=$ $\left(1, \rho_{1}, 0, \ldots, 0\right)$ is a $C-Y$ point. It is clear that the tangent plane $T_{Q_{1}}\left(X_{s}\right)$ of X_{s} at Q_{1} has equation

$$
\begin{equation*}
x_{1}+\rho_{1}^{n-1} x_{2}=0 . \tag{2.5}
\end{equation*}
$$

Thus $T_{Q_{1}}\left(X_{s}\right) \cap X_{s}$ is defined by the equations

$$
\left\{\begin{array}{l}
x_{1}+\rho_{1}^{n-1} x_{2}=0 \tag{2.6}\\
x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} \ldots x_{n}=0
\end{array}\right.
$$

We can think of $\left(T_{Q_{1}}\left(X_{s}\right)\right) \cap X_{s}$ as a hypersurface in $\boldsymbol{P}\left(T_{Q_{1}}\left(X_{s}\right)\right)$ with $\left(x_{2}: x_{3}: \ldots: x_{n}\right)$ as homogeneous coordinates. Its defining equation is

$$
\begin{equation*}
x_{3}^{n}+\cdots+x_{n}^{n}-s \rho_{1}^{n-1} x_{2}^{2} x_{3} \ldots x_{n}=0 \tag{2.7}
\end{equation*}
$$

Observe that x_{2} coordinate of Q_{1} is nonzero. Let $x_{3}^{\prime}=\frac{x_{3}}{x_{2}}, \ldots, x_{n}^{\prime}=\frac{x_{n}}{x_{2}}$ be the inhomogeneous coordinates. Then the inhomogeneous form of the equation of $\left(T_{Q_{1}}\left(X_{s}\right)\right) \cap X_{s}$ at Q_{1} is

$$
\begin{equation*}
\left(x_{3}^{\prime}\right)^{n}+\cdots+\left(x_{n}^{\prime}\right)^{n}-s \rho_{1}^{n-1} x_{3}^{\prime} \ldots x_{n}^{\prime}=0 \tag{2.8}
\end{equation*}
$$

It is clear that all lines tangent to X_{s} at Q_{1} are parameterized by $\boldsymbol{P}\left(T_{Q_{1}}\left(X_{s}\right)\right)=\boldsymbol{C} \boldsymbol{P}^{n-3}$. Among all these lines we would like to find those lines with contact order to X_{s} at least n. We can write the equation of a line L as

$$
\left\{\begin{array}{l}
x_{3}^{\prime}=\alpha_{3} t \tag{2.9}\\
\vdots \\
x_{n}^{\prime}=\alpha_{n} t
\end{array}\right.
$$

where $\left(\alpha_{3}: \ldots: \alpha_{n}\right) \in \boldsymbol{P}\left(T_{Q_{1}}\left(X_{s}\right)\right)=\boldsymbol{C} \boldsymbol{P}^{n-3}$. If the line L has contact order n with X_{s} at Q_{1}, the coefficients of t^{k} for $k \leq n-1$ have to be zero when (2.9) is substituted in (2.8). It is clear that L has contact order n with X_{s} at Q_{1} if and only if one of the α_{i} has to be zero. This means that there are $(n-2)$ independent hyperplanes through Q_{i} in $T_{Q_{i}}\left(X_{s}\right)$ for which all the lines passing through Q_{i} in these $(n-2)$ independent hyperplanes have contact order at least n with X_{s} at Q_{i}. q.e.d.

We shall show that all the $C-Y$ points on X_{s} are exactly those $N=n^{2}(n-1) / 2$ points listed in Proposition 2.1. For this purpose, we need to prove the following lemma.

Lemma 2.2. Let $Q=\left(q_{1}, \ldots, q_{n}\right)$ be a $C-Y$ point in the CalabiYau manifold

$$
X_{s}=\left\{\left(x_{1}: \ldots: x_{n}\right) \in \boldsymbol{C} \boldsymbol{P}^{n-1}: x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} \ldots x_{n}=0\right\} .
$$

Let $f=x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} \ldots x_{n}$ and $\frac{\partial f}{\partial x_{1}}(Q)=b_{1}, \ldots, \frac{\partial f}{\partial x_{n}}(Q)=b_{n}$. Suppose $b_{1}=\frac{\partial f}{\partial x_{1}}\left(Q_{1}\right) \neq 0$ and $q_{2} \neq 0$. Denote $a_{2}=\frac{b_{2}}{b_{1}}, \ldots, a_{n}=\frac{b_{n}}{b_{1}}$. Then all partial derivatives of $f\left(-a_{2} x_{2}-\cdots-a_{n} x_{n}, x_{2}, \ldots, x_{n}\right)$ with respect to the variables x_{3}, \ldots, x_{n} with order at most $n-3$ are zero at Q.

Proof. We first make a general observation. Let $g\left(x_{2}, \ldots x_{n}\right)$ be a homogeneous polynomial of degree m. Let

$$
g^{\prime}\left(x_{3}^{\prime}, \ldots, x_{n}^{\prime}\right)=g\left(1, x_{3}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

be a homogeneous form of g where $x_{3}^{\prime}=\frac{x_{3}}{x_{2}}, \ldots, x_{n}^{\prime}=\frac{x_{n}}{x_{2}}$. It is easy to see that

$$
\frac{\partial^{p} g}{\partial x_{i_{1}}, \ldots, \partial x_{i_{p}}}=\left(x_{2}\right)^{n-p} \frac{\partial^{p} g^{\prime}}{\partial x_{i_{1}}^{\prime} \ldots \partial x_{i_{p}}^{\prime}}, \quad i_{1}, \ldots, i_{p} \in\{3, \ldots, n\} .
$$

Thus in order to prove the lemma, it is enough to prove the following statement: For the inhomogeneous form $w\left(x_{3}^{\prime}, \ldots, x_{n}^{\prime}\right)$ of $f\left(-a_{2} x_{2}-\cdots-a_{n} x_{n}, x_{2}, \ldots, x_{n}\right)$, where $x_{3}^{\prime}=\frac{x_{3}}{x_{2}}, \ldots, x_{n}^{\prime}=\frac{x_{n}}{x_{2}}$,

$$
\begin{align*}
\left.\frac{\partial^{p} w\left(x_{3}^{\prime}, \ldots, x_{n}^{\prime}\right)}{\partial x_{i_{1}}^{\prime} \ldots \partial x_{i_{p}}^{\prime}}\right|_{Q} & =0 \tag{2.10}\\
\quad \text { for } p & \leq n-3 \text { and } i_{1}, \ldots, i_{p} \in\{3, \ldots, n\} .
\end{align*}
$$

Consider the inhomogeneous coordinate $\left(q_{3}^{\prime}, \ldots, q_{n}^{\prime}\right)$ of Q where $q_{3}^{\prime}=$ $\frac{q_{3}}{q_{2}}, \ldots, q_{n}^{\prime}=\frac{q_{n}}{q_{2}}$. Let $x_{3}^{\prime \prime}=x_{3}^{\prime}-q_{3}^{\prime}, \ldots, x_{n}^{\prime \prime}=x_{n}^{\prime}-q_{n}^{\prime}$. It is clear that (2.10) holds if and only if the following (2.11) holds

$$
\begin{align*}
\left.\frac{\partial^{p} w\left(x_{3}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right)}{\partial x_{i_{1}}^{\prime \prime} \ldots \partial x_{i_{p}}^{\prime \prime}}\right|_{(0, \ldots, 0)}=0 \tag{2.11}\\
\quad \text { if } p \leq n-3, i_{1}, \ldots, i_{p} \in\{3, \ldots, n\} .
\end{align*}
$$

Notice that under the new coordinates $\left(x_{3}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right)$, the point Q is $(0, \ldots, 0)$. Consider the $(n-2)$ hyperplanes in $T_{Q}\left(X_{s}\right)$ with the special property in the Definition 1.1. Let L_{1}, \ldots, L_{n-2} be their defining equations. Then L_{3}, \ldots, L_{n} are linearly independent 1 -forms in $x_{3}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}$ variables. Write

$$
\begin{equation*}
w\left(x_{3}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right)=w_{\geq n}+w_{\leq n-1}, \tag{2.12}
\end{equation*}
$$

where $w_{\geq n}$ denotes the sum of monomials in $w\left(x_{3}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right)$ with degrees at least \bar{n} while $w_{\leq n-1}$ denotes the sum of monomials in $w\left(x_{3}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right)$ with degree at most $n-1$. We shall prove that $w_{\leq n-1}$ can be divided by L_{3}, \ldots, L_{n}.

Since L_{3}, \ldots, L_{n} are linearly independent, we can take L_{3}, \ldots, L_{n} as new coordinates. If $w_{\leq n-1}$ is not divisible by L_{3}, then

$$
w_{\leq n-1}=L_{3} P+R,
$$

where P is a polynomial in L_{3}, \ldots, L_{n} and R is a polynomial in L_{4}, \ldots, L_{n}. Let $\alpha_{4}, \ldots, \alpha_{n}$ be such that $R\left(\alpha_{4}, \ldots, \alpha_{n}\right) \neq 0$. Consider the line L

$$
\left\{\begin{array}{l}
L_{3}=0 \tag{2.13}\\
L_{4}=\alpha_{4} t \\
\vdots \\
L_{n}=\alpha_{n} t
\end{array}\right.
$$

Then $w_{\leq n-1}\left(0, \alpha_{4} t, \ldots, \alpha_{n} t\right)$ is a polynomial of t with degree less than or equal to $n-1$. Thus the line L cannot have contact order n with $w=0$ at Q. This is a contradiction.

From the above argument, we have proved that $w\left(x_{3}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right)$ as polynomials of L_{3}, \ldots, L_{n}, contains only monomials with degree at least $n-2$. Since L_{3}, \ldots, L_{n} are linear in $x_{3}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}$ variables, we conclude that $w\left(x_{3}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right)$ contains only monomials of $x_{3}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}$ with degree at least $n-2$. Thus (2.11) is proved. q.e.d.

The following theorem is the key theorem of this paper.
Theorem 2.3. For $n \geq 5$, the set $\left\{Q_{1}, \ldots, Q_{N}\right\}$ in Proposition 2.1 is precisely the set of all $C-Y$ points in the Calabi-Yau manifold $X_{s}=\left\{\left(x_{1}: \ldots, x_{n}\right) \in \boldsymbol{C} \boldsymbol{P}^{n-1}: x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} \ldots x_{n}=0\right\}, s \neq 0$.

Proof. Let $Q=\left(q_{1}, \ldots, q_{n}\right)$ be a $C-Y$ point on X_{s}. We need to show that $Q \in\left\{Q_{1}, \ldots, Q_{N}\right\}$. We shall consider the local form of the equation of $\left(T_{Q}\left(X_{s}\right)\right) \cap X_{s}$ at Q. Let $f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{n}+\cdots+$
$x_{n}^{n}+s x_{1} \ldots x_{n}$ and $b_{1}=\frac{\partial f}{\partial x_{1}}(Q), \ldots, b_{n}=\frac{\partial f}{\partial x_{n}}(Q)$. Without loss of generality, we shall assume $b_{1} \neq 0$. Let $a_{2}=\frac{b_{2}}{b_{1}}, \ldots, a_{n}=\frac{b_{n}}{b_{1}}$. The defining equation of $\left(T_{Q}\left(X_{s}\right)\right) \cap X_{s}$ is

$$
\begin{equation*}
f\left(-a_{2} x_{2}-\cdots-a_{n} x_{n}, x_{2}, \ldots, x_{n}\right)=0 \tag{2.14}
\end{equation*}
$$

with homogeneous coordinates $\left(x_{2}: \ldots: x_{n}\right)$ on $\boldsymbol{P}\left(T_{Q}\left(X_{s}\right)\right)$. We assume also without loss of generality that $q_{2} \neq 0$. In view of Lemma 2.2, we know that all $2^{\text {nd }}$ order partial derivatives of $f\left(-a_{2} x_{2}-\cdots-\right.$ $\left.a_{n} x_{n}, x_{2}, \ldots, x_{n}\right)$ with respect to $x_{i}, x_{j}, i, j \in\{3, \ldots, n\}$ at Q are zero because of $n \geq 5$. Hence, we have

$$
\begin{equation*}
\left.\frac{\partial^{2} f\left(-a_{2} x_{2}-\cdots-a_{n} x_{n}, x_{2}, \ldots, x_{n}\right)}{\partial x_{i} \partial x_{j}}\right|_{Q}=0, i, j \geq 3 . \tag{2.15}
\end{equation*}
$$

By chain rule, we get

$$
\begin{equation*}
a_{i} a_{j} \frac{\partial^{2} f}{\partial x_{1}^{2}}(Q)-a_{i} \frac{\partial^{2} f}{\partial x_{1} \partial x_{j}}(Q)-a_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{1}}(Q)+\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(Q)=0 . \tag{2.16}
\end{equation*}
$$

Multiplying (2.16) with $b_{1}^{2}=\left(\frac{\partial f}{\partial x_{1}}(Q)\right)^{2} \neq 0$, we get, for $i, j \geq 3$,

$$
\begin{align*}
b_{i} b_{j} \frac{\partial^{2} f}{\partial x_{1}^{2}}(Q)= & b_{1} b_{i} \frac{\partial^{2} f}{\partial x_{1} \partial x_{j}}(Q)+b_{1} b_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{1}}(Q) \\
& -b_{1}^{2} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(Q) \tag{2.17}
\end{align*}
$$

which can be rewritten as, for $i, j \geq 3$

$$
\begin{align*}
& n(n-1) q_{1}^{n-2}\left(n q_{i}^{n-1}+s q_{1} \ldots q_{i-1} q_{i+1} \ldots q_{n}\right) \\
& \quad \cdot\left(n q_{j}^{n-1}+s q_{1} \ldots q_{j-1} q_{j+1} \ldots q_{n}\right) \tag{2.18}\\
& =s q_{2} \ldots q_{i-1} q_{i+1} \ldots q_{j-1} q_{j+1} \ldots q_{n}\left(n q_{1}^{n-1}+s q_{2} \ldots q_{n}\right) \\
& \quad \cdot\left(n q_{i}^{n}+n q_{j}^{n}-n q_{1}^{n}+s q_{1} \ldots q_{n}\right)
\end{align*}
$$

Now we only need to prove that $q_{3}=\cdots=q_{n}=0$ because these will imply that $Q \in\left\{Q_{1}, \ldots, Q_{N}\right\}$. There are two cases to be considered.

Case 1. q_{3}, \ldots, q_{n} are nonzero. If $q_{1}=0$ in this case, we have

$$
\begin{equation*}
n q_{i}^{n}+n q_{j}^{n}-n q_{1}^{n}+s q_{1} \ldots q_{n}=0 \quad \forall i, j \geq 3 \tag{2.19}
\end{equation*}
$$

by (2.18). Thus $q_{i}^{n}+q_{j}^{n}=0$ for any $i, j \geq 3$. In particular, if we take $i=j \geq 3$, we get $q_{i}^{n}=0$ and hence $q_{i}=0$ for $i \geq 3$. This is a contradiction.

On the other hand if $q_{1} \neq 0$, we shall consider (2.18) for $i, j \geq 3$ and $k, j \geq 3$. By dividing these two equalities, we have

$$
\begin{equation*}
\frac{n q_{i}^{n}+s q_{1} \ldots q_{n}}{n q_{k}^{n}+s q_{1} \ldots q_{n}}=\frac{n q_{i}^{n}+s q_{1} \ldots q_{n}+n q_{j}^{n}-n q_{1}^{n}}{n q_{k}^{n}+s q_{1} \ldots q_{n}+n q_{j}^{n}-n q_{1}^{n}}, \tag{2.20}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{n q_{i}^{n}+s q_{1} \ldots q_{n}}{n q_{k}^{n}+s q_{1} \ldots q_{n}}=\frac{n\left(q_{j}^{n}-q_{1}^{n}\right)}{n\left(q_{j}^{n}-q_{1}^{n}\right)}=1 \tag{2.21}
\end{equation*}
$$

Hence we have $x_{i}^{n}=x_{k}^{n}$ for $i, k \geq 3$. Similarly by exchanging the roles of the indices 2 and 3 , (recall that $q_{3} \neq 0$ is assumed), we have $q_{2}^{n}=q_{3}^{n}=\cdots=q_{n}^{n}$. If $b_{2}=\frac{\partial f}{\partial x_{2}}(Q)=n q_{2}^{n-1}+s q_{1} q_{3} \ldots q_{n} \neq 0$, then by exchanging the roles of the indices of 1 and 2 , ($n o t e q_{1} \neq 0$), we have $q_{1}^{n}=q_{2}^{n}=\cdots=q_{n}^{n}$. Since (q_{1}, \ldots, q_{n}) satisfies the following equation

$$
\begin{equation*}
q_{1}^{n}+\cdots+q_{n}^{n}+s q_{1} \ldots q_{n}=0 \tag{2.22}
\end{equation*}
$$

we have $q_{2}\left(n q_{2}^{n-1}+s q_{1} q_{2} \ldots q_{n}\right)=0$. This contradicts our assumption that $b_{2}=n q_{2}^{n-1}+s q_{1} q_{3} \ldots q_{n} \neq 0$. If

$$
b_{2}=\frac{\partial f}{\partial x_{2}}(Q)=n q_{2}^{n-1}+s q_{1} q_{3} \ldots q_{n}=0
$$

then $n q_{2}^{n}+s q_{1} q_{2} \ldots q_{n}=0$. (2.22) implies $q_{1}^{n}+(n-1) q_{2}^{n}+s q_{1} \ldots q_{n}=0$. By adding q_{2}^{n} in both sides of this equation, we get $q_{1}^{n}=q_{2}^{n}$. Thus $q_{1}^{n}=\cdots=q_{n}^{n}$. (2.22) implies $n q_{i}^{n}+s q_{1} \ldots q_{n}=0$ for $1 \leq i \leq n$. This implies that Q is a singular point of X_{s}, a contradiction.

Case 2. At least one of q_{3}, \ldots, q_{n} is equal to zero. Without loss of generality, we shall assume $q_{3}=0$. Since

$$
b_{1}=\frac{\partial f}{\partial x_{1}}(Q)=n q_{1}^{n}-s q_{2} \ldots q_{n} \neq 0
$$

is assumed, we have $q_{1} \neq 0$. Consider (2.18) for $i=j \geq 4$. The right-hand side of (2.18) becomes zero because of our assumption that at least one of q_{3}, \ldots, q_{n} is equal to zero. It follows that $n q_{i}^{n-1}+$ $s q_{1} \ldots q_{i-1} q_{i+1} \ldots q_{n}=0,4 \leq i \leq n$. These $n-3$ equations together
with the assumption that at least one of q_{3}, \ldots, q_{n} is zero imply $q_{4}=$ $q_{5}=\cdots=q_{n}=0$. If q_{3} is nonzero, then at least one of $q_{2}, q_{4}, \ldots, q_{n}$ is zero. By considering (2.18) with $i=j=3$, we have

$$
\begin{aligned}
& n(n-1) q_{1}^{n-2}\left(n q_{3}^{n-1}+s q_{1} q_{2} q_{4} \ldots q_{n}\right)^{2} \\
& \quad=s q_{2} q_{4} \ldots q_{n}\left(n q_{1}^{n-1}+s q_{2} \ldots q_{n}\right)\left(2 n q_{3}^{n}-n q_{1}^{n}+s q_{1} \ldots q_{n}\right)=0
\end{aligned}
$$

which implies $q_{3}=0$. Thus we have shown $q_{3}=q_{4}=\cdots=q_{n}=0$ and Q has to be in $\left\{Q_{1}, Q_{2}, \ldots, Q_{n}\right\}$. q.e.d.

3. Moduli and modular group of Calabi-Yau manifolds

We shall use Theorem 2.3 to study the moduli and modular group of Calabi-Yau manifolds.

Theorem 3.1. For $n \geq 5$ and any nonzero $t \neq s$, the biholomorphism between $X_{t}=\left\{\left(x_{1}: \ldots: x_{n}\right) \in \boldsymbol{C} \boldsymbol{P}^{n-1}: x_{1}^{n}+\cdots+x_{n}^{n}+\right.$ $\left.t x_{1} \ldots x_{n}=0, t^{n} \neq(-n)^{n}\right\}$ and $X_{s}=\left\{\left(x_{1}: \ldots: x_{n}\right) \in \boldsymbol{C P}^{n-1}:\right.$ $\left.x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} \ldots x_{n}=0, s^{n} \neq(-n)^{n}\right\}$ is induced by a projective nonsingular linear transformation $B \in P G L(n, C)$ on coordinates with only one nonzero entry in each row and each column. Moreover, these entries is B are n-th roots of unity. Conversely any matrix B of the above form will send X_{t} to X_{s} where $s=t c_{1} c_{2} \ldots c_{n}$, being $c_{1}, \ldots c_{n}$ the nonzero entries of B.

Proof. It is well known that any biholomorphism between X_{t} and X_{s} is induced by a projective nonsingular linear transformation $B=\left(b_{i j}\right), 1 \leq i, j \leq n$, in $P G L(n, \boldsymbol{C})$. For any $C-Y$ point Q in X_{t}, it is clear that $B(Q)$, the image of Q under B, is also a $C-Y$ point on X_{s}. In view of Theorem 2.3, we have $\left\{B\left(Q_{1}\right), \ldots, B\left(Q_{N}\right)\right\}=\left\{Q_{1}, \ldots, Q_{N}\right\}$ where $N=\frac{1}{2} n^{2}(n-1)$.

We now consider the set of first coordinates of the points $B\left(Q_{1}\right), \ldots$, $B\left(Q_{N}\right)$. This set consists of $N=\frac{1}{2} n^{2}(n-1)$ elements of the form $a_{1 i}+\rho_{m} a_{1 j}$, with $1 \leq i<j \leq n, 1 \leq m \leq n$. We know that there are $\frac{1}{2} n(n-1)(n-2)$ of N first coordinates of those points

$$
\left\{B\left(Q_{1}\right), \ldots, B\left(Q_{N}\right)\right\}=\left\{Q_{1}, \ldots, Q_{N}\right\}
$$

equal to zero. Hence there are $\frac{1}{2} n(n-1)(n-2)$ of $a_{1 i}+\rho_{m} a_{1 j}$, with $1 \leq i<j \leq n, 1 \leq m \leq n$, equal to zero. Suppose that k of n numbers $a_{11}, \ldots, a_{1 n}$ are zero. Notice that for nonzero complex numbers c and
d, there is at most one zero among n complex numbers $c+\rho_{m} d$. We also note that if precisely only one of c, d is zero, then $c+\rho_{m} d$ can never be zero for $1 \leq m \leq n$. Thus among N complex numbers $a_{1 i}+\rho_{m} a_{i j}, 1 \leq$ $i<j \leq n, 1 \leq m \leq n$, there are at most $\frac{1}{2} n k(k-1)+\frac{1}{2}(n-k)(n-k-1)$ of them are zero. It follows that we have the following inequality

$$
\begin{equation*}
\frac{n k(k-1)}{2}+\frac{(n-k)(n-k-1)}{2} \geq \frac{n(n-1)(n-2)}{2} . \tag{3.1}
\end{equation*}
$$

(3.1) implies $k>0$. It follows that $n k \geq n-k$ because k is a positive integer. Thus, in view of (3.1) we have

$$
\begin{align*}
\frac{n k(n-2)}{2} & =\frac{n k(k-1)}{2}+\frac{n k(n-k-1)}{2} \\
& \geq \frac{n k(k-1)}{2}+\frac{(n-k)(n-k-1)}{2} \tag{3.2}\\
& \geq \frac{n(n-1)(n-2)}{2} .
\end{align*}
$$

(3.3) implies $k \geq n-1$. Since B is a nonsingular matrix, we have $k=n-1$. Therefore we have proved that there is only one nonzero entry in the first row. Similarly, we can prove that there is only one nonzero entry in each row. Since B is nonsingular, there is only one nonzero entry in each column.

Let $a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{n i_{n}}$ be the nonzero entries of the $1^{\text {st }}$ row, $2^{\text {nd }}$ row, \ldots, and $n^{\text {th }}$ row of the matrix B respectively. Consider the action of B on the point $P=\left(0, \ldots, 0, \rho_{m}, 0, \ldots, 0,1,0, \ldots, 0\right)$ where $1 \leq m \leq n, \rho_{m}$ is the i_{1}-coordinate of P while 1 is the i_{2}-coordinate of P. Clearly $B(P)=\left(a_{1 i_{1}} \rho_{m}, a_{2 i_{2}}, 0, \ldots, 0\right)$ is a $C-Y$ point. In view of Theorem 2.3, we have $\rho_{m} a_{1 i_{1}} / a_{2 i_{2}} \in\left\{\rho_{1}, \ldots, \rho_{n}\right\}$. This implies $a_{1 i_{1}} / a_{2 i_{2}}$ is a $n^{\text {th }}$ root of unity. Similarly we can show that all ratios between $a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{n i_{n}}$ are $n^{\text {th }}$ root of unity. The first part of Theorem 3.1 follows immediately.

Conversely, suppose that B is a nonsingular matrix given by

$$
B:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \longmapsto\left(a_{1 i_{1}} x_{i_{1}}, a_{2 i_{2}} x_{i_{2}}, \ldots, a_{n i_{n}} x_{i_{n}}\right),
$$

where $a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{n i_{n}}$ are $n^{\text {th }}$ roots of unity and $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ is a permutation of $(1,2, \ldots, n)$. Then clearly $X_{t}: x_{1}^{n}+\cdots+x_{n}^{n}+t x_{1} \ldots x_{n}=$ 0 is sent to $X_{s}: x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} \ldots x_{n}=0$ where $s=t a_{1 i_{1}} \ldots a_{n i_{n}}$.
q.e.d.

Corollary 3.2. For $n \geq 5, t \neq s, s^{n}$ and $t^{n} \neq 0$ and $(-n)^{n}$, the group G of biholomorphisms between $X_{t}=\left\{\left(x_{1}: \cdots: x_{n}\right) \in \boldsymbol{C P} \boldsymbol{P}^{n-1}\right.$:
$\left.x_{1}^{n}+\cdots+x_{n}^{n}+t x_{1} \ldots x_{n}=0\right\}$ and $X_{s}=\left\{\left(x_{1}: \cdots: x_{n}\right) \in \boldsymbol{C P} \boldsymbol{P}^{n-1}:\right.$ $\left.x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} \ldots x_{n}=0\right\}$ consists of all projective nonsingular linear transformation $B \in P G L(n, G)$ of the following form:

$$
B=\left(\begin{array}{cccccccccccccc}
0 & \ldots & 0 & a_{1 i_{1}} & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & a_{2 i_{2}} & 0 & \ldots & 0 & 0 & 0 & \ldots \\
. & \ldots & & \ldots \\
0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & a_{n i_{n}} & 0 & \ldots
\end{array}\right)
$$

where $\left(i_{1}, \ldots, i_{n}\right)$ is a permutation of $(1, \ldots, n)$ and $a_{1 i_{1}}, \ldots, a_{n i_{n}}$ are $n^{\text {th }}$ root of unity. Each such B induces a linear transformation on the parameter space by sending t to $t a_{1 i_{1}} \ldots a_{n i_{n}}$. The group G has order $n^{n-1}(n!)$. Let N be the group of automorphisms of X_{t}. Then N is a normal subgroup of G of order $n^{n-2}(n!)$.

Proof. To compute the order of G, consider the first row of B. We can pick any number from 1 to n as i_{1} and we can assign $a_{1 i_{1}}$ to be any number in the set of $n^{\text {th }}$ roots of unity. So we have n^{2} choices. In the second row, we can pick i_{2} to be any number from 1 to n except i_{1} and assign $a_{2 i_{2}}$ to be any number in the set of $n^{\text {th }}$ roots of unity. So we have $n(n-1)$ choices. By continuing this argument, we see that there are $(n!) n^{n}$ elements. By dividing the scalar multiplications, we conclude that the order of the group G is $(n!) n^{n-1}$.

To compute the order of the automorphism group N of X_{t}, we observe that $B \in N$ if and only if $a_{1 i_{1}} a_{2 i_{2}} \ldots a_{n i_{n}}=1$. Thus the order of N is $(n!) n^{n-2}$. q.e.d.

Theorem 3.3. For $n \geq 5$, the modulus function of the one parameter family of Calabi-Yau manifolds $X_{s}=\left\{\left(x_{1}: \cdots: x_{n}\right) \in \boldsymbol{C P} \boldsymbol{P}^{n-1}\right.$: $\left.x_{1}^{n}+\cdots+x_{n}^{n}+s x_{1} \ldots x_{n}=0\right\}$ is s^{n}, i.e., for any two parameters t, s, X_{t} is biholomorphically equivalent to X_{s} if and only if $t^{n}=s^{n}$.

Proof. It is easy to see that X_{t} is biholomorphically equivalent to $X_{t r}$ for any $n^{\text {th }}$ root of unity r. Conversely, we know that if X_{t} is biholomorphically equivalent to X_{s}, then $s=t r$ for some $n^{\text {th }}$ root of unity r in view of Corollary 3.2. Hence the modulus function of the one-parameter family of Calabi-Yau manifold X_{s} is s^{n}. q.e.d.

References

[1] P. Candelas, X. De La Ossa, P. Green \& L. Parker, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B359 (1991) 21-74.
[2] H. Chen, C. Seeley \& S. S.-T. Yau, Algebraic determination of isomorphic classes of the moduli algebras of \widetilde{E}_{6} singularities, Preprint.
[3] B. H. Lian, K. Liu \& S.-T. Yau, Mirror principle. I, Asian J. Math. 1 No. 4, (1997) 729-763.

Zhongshan University, Canton, China University of Illinois at Chicago

[^0]: Received December 21, 1998. The first author research was supported by NSF

