J. DIFFERENTIAL GEOMETRY
53 (1999) 1-12

MODULI AND MODULAR GROUPS OF A CLASS OF CALABI-YAU n-DIMENSIONAL MANIFOLDS, $n \ge 3$

HAO CHEN & STEPHEN S.-T. YAU

1. Introduction

Since the discovery of mirror symmetry in string theory by physicists, there have been tremendous activities on Calabi-Yau manifolds both by physicists and mathematicians. The reason that mirror symmetry has attracted a lot of mathematicians' attention is that it predicts successfully the number n_k of rational curves of degree k in these manifolds. This so-called Mirror Conjecture was first solved recently by Lian, Liu and Yau in their celebrated work [3]. In this paper we shall study the geometry of distinguished class of Calabi-Yau manifolds

(1.1) $X_s = \{ (x_1 : \dots : x_n) \in \mathbf{CP}^{n-1} : x_1^n + \dots + x_n^n + sx_1x_2 \dots x_n = 0 \}.$

For n = 5, this class of Calabi-Yau 3-manifolds were studied in detail by Candelas, Ossn, Green and Parkers [1] by means of the period map. In particular, they observed that the modular group is not $SL(2, \mathbb{Z})$.

It is the purpose of this paper to find out the moduli and the modular group of this one-parameter family of Calabi-Yau manifolds in (1.1) for all $n \geq 5$. Our argument is uniform for all $n \geq 5$. We remark that n = 3 was treated by our previous paper [2] with different motivation. The crucial contribution of our paper is the introduction of some special points in Calabi-Yau manifolds.

Let ρ_i , i = 1, 2, ..., n, be *n*-distinct roots of $x^n = -1$. It is clear that the following $N = \frac{1}{2}n^2(n-1)$ points $Q_1, ..., Q_N$ of the form

Received December 21, 1998. The first author research was supported by NSF of China and Guangdong Provincial NSF of China, and the second author by NSF.

 $(0, \ldots, 0, 1, 0, \ldots, 0, \rho_i, 0, \ldots, 0)$, where 1, ρ_i run over all possible 2tuple positions of $1, 2, \ldots, n$, are on each Calabi-Yau manifold X_s . We shall show in Proposition 2.1 that there are (n-2) independent hyperplanes through Q_i in $T_{Q_i}(X_s)$, the tangent plane of X_s at Q_i , for which all the lines passing through Q_i in these (n-2) independent hyperplanes have contact order n with X_s at Q_i .

Definition 1.1. A point Q in a (n-2)-dimensional Calabi-Yau manifold X is said to have C-Y property if there are (n-2) independent hyperplanes through Q in $T_Q(X)$ for which all the lines passing through Q in these (n-2) independent hyperplanes have contact order at least n with X at Q. Such point Q is called a C-Y point in X.

Theorem A. For $n \ge 5$, $s \ne 0$ and $s^n \ne (-n)^n$, the C - Y points on the Calabi-Yau manifolds

$$X_s = \{ (x_1 : \ldots : x_n) \in CP^{n-1} : x_1^n + \cdots + x_n^n + sx_1 \ldots x_n = 0 \}$$

are precisely Q_1, \ldots, Q_N , $N = \frac{1}{2}n^2(n-1)$, of the form $(0, \ldots, 0, 1, 0, \ldots, 0, \rho_i, 0, \ldots, 0)$, where $1, \rho_i, 1 \leq i \leq n$, run over all possible 2-tuple positions of $1, 2, \ldots, n$ and $\rho_i, 1 \leq i \leq n$, are the n-distinct roots of $x^n = -1$.

Using Theorem A, we can prove the following theorem.

Theorem B. For $n \ge 5$, $t \ne s$, s^n and $t^n \ne 0$ and $\ne (-n)^n$, the group G of biholomorphisms between

$$X_t = \{ (x_1 : \ldots : x_n) \in CP^{n-1} : x_1^n + \cdots + x_n^n + tx_1 \ldots x_n = 0 \}$$

and

$$X_s = \{ (x_1 : \ldots : x_n) \in CP^{n-1} : x_1^n + \cdots + x_n^n + sx_1 \dots x_n = 0 \}$$

consists of all projective nonsingular linear transformation $B \in PGL(n, \mathbb{C})$ of the following form:

where (i_1, \ldots, i_n) is a permutation of $(1, \ldots, n)$ and $a_{1i_1}, \ldots, a_{ni_n}$ are *n*-th root of unity. Each such B induces a linear transformation on the

parameter space by sending t to $ta_{1i_1} \ldots a_{ni_n}$. The group G has order $n^{n-1}(n!)$. Let N be the group of automorphisms of X_t . Then N is a normal subgroup of G of order $n^{n-2}(n!)$.

Theorem C. For $n \geq 5$, the modulus function of the one parameter family of Calabi-Yau manifolds

$$X_{s} = \{(x_{1}:\ldots:x_{n}) \in \boldsymbol{CP}^{n-1}: x_{1}^{n}+\cdots+x_{n}^{n}+sx_{1}\ldots x_{n}=0\}$$

is s^n , i.e. for any two parameters t, s, X_t is biholomorphically equivalent to X_s if and only if $t^n = s^n$.

2. Special points on Calabi-Yau manifolds

Let X_s be the (n-2)-dimension hypersurface defined by $x_1^n + \cdots + x_n^n + sx_1x_2 \ldots x_n = 0$ in \mathbb{CP}^{n-1} . It is easy to see that X_s is a non-singular manifold for $s^n \neq (-n)^n$. In fact, let

(2.1)
$$f(x_1, \ldots, x_n) = x_1^n + \cdots + x_n^n + s x_1 x_2 \ldots x_n.$$

Then X_s is nonsingular if and only if there is no common solution to the *n* equations

(2.2)
$$\frac{\partial f}{\partial x_i} = nx_i^{n-1} + sx_1 \dots x_{i-1}x_{i+1} \dots x_n = 0, \quad 1 \le i \le n$$

in CP^{n-1} . These equations imply that

(2.3)
$$nx_1^n = nx_2^n = \dots = nx_n^n = -sx_1x_2\dots x_n,$$

whence

(2.4)
$$(-n)^n \prod_{i=1}^n x_i^n = (s)^n \prod_{i=1}^n x_i^n.$$

If $P = (p_1 : \ldots : p_n) \in \mathbb{C}\mathbb{P}^{n-1}$ is a common solution of equations (2.2), then none of the p_i 's may be zero by (2.3). Hence $s^n = (-n)^n$. Conversely it is easy to see that X_s is singular when $s^n = (-n)^n$.

Proposition 2.1. Let ρ_j , j = 1, 2, ..., n, be n distinct roots of $x^n = -1$. For each s with $s^n \neq (-n)^n$, let Q_i be one of the $N = n^2(n-1)/2$ points of the form $(0, ..., 0, 1, 0, ..., 0, \rho_j, 0, ..., 0)$ on the Calabi-Yau manifold $X_s = \{(x_1 : ... : x_n) \in \mathbb{CP}^{n-1} : x_1^n + \cdots + x_n^n + sx_1 ... x_n = 0\}$.

Then Q_i is a C-Y point i.e., there are (n-2) independent hyperplanes through Q_i in $T_{Q_i}(X_s)$ for which all the lines passing through Q_i in these (n-2) independent hyperplanes have contact order at least n with X_s at Q_i .

Proof. Without loss of generality, we only check that $Q_1 = (1, \rho_1, 0, \ldots, 0)$ is a C - Y point. It is clear that the tangent plane $T_{Q_1}(X_s)$ of X_s at Q_1 has equation

(2.5)
$$x_1 + \rho_1^{n-1} x_2 = 0.$$

Thus $T_{Q_1}(X_s) \cap X_s$ is defined by the equations

(2.6)
$$\begin{cases} x_1 + \rho_1^{n-1} x_2 = 0\\ x_1^n + \dots + x_n^n + s x_1 \dots x_n = 0 \end{cases}$$

We can think of $(T_{Q_1}(X_s)) \cap X_s$ as a hypersurface in $P(T_{Q_1}(X_s))$ with $(x_2:x_3:\ldots:x_n)$ as homogeneous coordinates. Its defining equation is

(2.7)
$$x_3^n + \dots + x_n^n - s\rho_1^{n-1} x_2^2 x_3 \dots x_n = 0$$

Observe that x_2 coordinate of Q_1 is nonzero. Let $x'_3 = \frac{x_3}{x_2}, \ldots, x'_n = \frac{x_n}{x_2}$ be the inhomogeneous coordinates. Then the inhomogeneous form of the equation of $(T_{Q_1}(X_s)) \cap X_s$ at Q_1 is

(2.8)
$$(x'_3)^n + \dots + (x'_n)^n - s\rho_1^{n-1}x'_3\dots x'_n = 0$$

It is clear that all lines tangent to X_s at Q_1 are parameterized by $P(T_{Q_1}(X_s)) = CP^{n-3}$. Among all these lines we would like to find those lines with contact order to X_s at least n. We can write the equation of a line L as

(2.9)
$$\begin{cases} x'_3 = \alpha_3 t \\ \vdots \\ x'_n = \alpha_n t \end{cases}$$

where $(\alpha_3 : \ldots : \alpha_n) \in \mathbf{P}(T_{Q_1}(X_s)) = \mathbf{C}\mathbf{P}^{n-3}$. If the line *L* has contact order *n* with X_s at Q_1 , the coefficients of t^k for $k \leq n-1$ have to be zero when (2.9) is substituted in (2.8). It is clear that *L* has contact order *n* with X_s at Q_1 if and only if one of the α_i has to be zero. This means that there are (n-2) independent hyperplanes through Q_i in $T_{Q_i}(X_s)$ for which all the lines passing through Q_i in these (n-2) independent hyperplanes have contact order at least *n* with X_s at Q_i . q.e.d. We shall show that all the C - Y points on X_s are exactly those $N = n^2(n-1)/2$ points listed in Proposition 2.1. For this purpose, we need to prove the following lemma.

Lemma 2.2. Let $Q = (q_1, \ldots, q_n)$ be a C - Y point in the Calabi-Yau manifold

$$X_s = \{ (x_1 : \ldots : x_n) \in CP^{n-1} : x_1^n + \cdots + x_n^n + sx_1 \dots x_n = 0 \}$$

Let $f = x_1^n + \dots + x_n^n + sx_1 \dots x_n$ and $\frac{\partial f}{\partial x_1}(Q) = b_1, \dots, \frac{\partial f}{\partial x_n}(Q) = b_n$. Suppose $b_1 = \frac{\partial f}{\partial x_1}(Q_1) \neq 0$ and $q_2 \neq 0$. Denote $a_2 = \frac{b_2}{b_1}, \dots, a_n = \frac{b_n}{b_1}$. Then all partial derivatives of $f(-a_2x_2 - \dots - a_nx_n, x_2, \dots, x_n)$ with respect to the variables x_3, \dots, x_n with order at most n-3 are zero at Q.

Proof. We first make a general observation. Let $g(x_2, \ldots x_n)$ be a homogeneous polynomial of degree m. Let

$$g'(x'_3, \ldots, x'_n) = g(1, x'_3, \ldots, x'_n)$$

be a homogeneous form of g where $x'_3 = \frac{x_3}{x_2}, \ldots, x'_n = \frac{x_n}{x_2}$. It is easy to see that

$$\frac{\partial^p g}{\partial x_{i_1}, \dots, \partial x_{i_p}} = (x_2)^{n-p} \frac{\partial^p g'}{\partial x'_{i_1} \dots \partial x'_{i_p}}, \quad i_1, \dots, i_p \in \{3, \dots, n\}.$$

Thus in order to prove the lemma, it is enough to prove the following statement: For the inhomogeneous form $w(x'_3, \ldots, x'_n)$ of $f(-a_2x_2 - \cdots - a_nx_n, x_2, \ldots, x_n)$, where $x'_3 = \frac{x_3}{x_2}, \ldots, x'_n = \frac{x_n}{x_2}$,

(2.10)
$$\frac{\partial^p w(x'_3, \dots, x'_n)}{\partial x'_{i_1} \dots \partial x'_{i_p}} \bigg|_Q = 0$$
for $p \le n-3$ and $i_1, \dots, i_p \in \{3, \dots, n\}.$

Consider the inhomogeneous coordinate (q'_3, \ldots, q'_n) of Q where $q'_3 = \frac{q_3}{q_2}, \ldots, q'_n = \frac{q_n}{q_2}$. Let $x''_3 = x'_3 - q'_3, \ldots, x''_n = x'_n - q'_n$. It is clear that (2.10) holds if and only if the following (2.11) holds

(2.11)
$$\frac{\frac{\partial^p w(x_3'', \dots, x_n'')}{\partial x_{i_1}'' \dots \partial x_{i_p}''}\Big|_{(0, \dots, 0)} = 0$$

if $p \le n-3, i_1, \dots, i_p \in \{3, \dots, n\}.$

Notice that under the new coordinates (x''_3, \ldots, x''_n) , the point Q is $(0, \ldots, 0)$. Consider the (n-2) hyperplanes in $T_Q(X_s)$ with the special property in the Definition 1.1. Let L_1, \ldots, L_{n-2} be their defining equations. Then L_3, \ldots, L_n are linearly independent 1-forms in x''_3, \ldots, x''_n variables. Write

(2.12)
$$w(x''_3, \dots, x''_n) = w_{\geq n} + w_{\leq n-1},$$

where $w_{\geq n}$ denotes the sum of monomials in $w(x''_3, \ldots, x''_n)$ with degrees at least n while $w_{\leq n-1}$ denotes the sum of monomials in $w(x''_3, \ldots, x''_n)$ with degree at most n-1. We shall prove that $w_{\leq n-1}$ can be divided by L_3, \ldots, L_n .

Since L_3, \ldots, L_n are linearly independent, we can take L_3, \ldots, L_n as new coordinates. If $w_{\leq n-1}$ is not divisible by L_3 , then

$$w_{< n-1} = L_3 P + R,$$

where P is a polynomial in L_3, \ldots, L_n and R is a polynomial in L_4, \ldots, L_n . Let $\alpha_4, \ldots, \alpha_n$ be such that $R(\alpha_4, \ldots, \alpha_n) \neq 0$. Consider the line L

(2.13)
$$\begin{cases} L_3 = 0\\ L_4 = \alpha_4 t\\ \vdots\\ L_n = \alpha_n t. \end{cases}$$

Then $w_{\leq n-1}(0, \alpha_4 t, \ldots, \alpha_n t)$ is a polynomial of t with degree less than or equal to n-1. Thus the line L cannot have contact order n with w = 0 at Q. This is a contradiction.

From the above argument, we have proved that $w(x''_3, \ldots, x''_n)$ as polynomials of L_3, \ldots, L_n , contains only monomials with degree at least n-2. Since L_3, \ldots, L_n are linear in x''_3, \ldots, x''_n variables, we conclude that $w(x''_3, \ldots, x''_n)$ contains only monomials of x''_3, \ldots, x''_n with degree at least n-2. Thus (2.11) is proved. q.e.d.

The following theorem is the key theorem of this paper.

Theorem 2.3. For $n \geq 5$, the set $\{Q_1, \ldots, Q_N\}$ in Proposition 2.1 is precisely the set of all C - Y points in the Calabi-Yau manifold $X_s = \{(x_1 : \ldots, x_n) \in \mathbb{CP}^{n-1} : x_1^n + \cdots + x_n^n + sx_1 \ldots x_n = 0\}, s \neq 0.$

Proof. Let $Q = (q_1, \ldots, q_n)$ be a C - Y point on X_s . We need to show that $Q \in \{Q_1, \ldots, Q_N\}$. We shall consider the local form of the equation of $(T_Q(X_s)) \cap X_s$ at Q. Let $f(x_1, \ldots, x_n) = x_1^n + \cdots +$

 $x_n^n + sx_1 \dots x_n$ and $b_1 = \frac{\partial f}{\partial x_1}(Q), \dots, b_n = \frac{\partial f}{\partial x_n}(Q)$. Without loss of generality, we shall assume $b_1 \neq 0$. Let $a_2 = \frac{b_2}{b_1}, \dots, a_n = \frac{b_n}{b_1}$. The defining equation of $(T_Q(X_s)) \cap X_s$ is

(2.14)
$$f(-a_2x_2 - \dots - a_nx_n, x_2, \dots, x_n) = 0$$

with homogeneous coordinates $(x_2 : \ldots : x_n)$ on $P(T_Q(X_s))$. We assume also without loss of generality that $q_2 \neq 0$. In view of Lemma 2.2, we know that all 2nd order partial derivatives of $f(-a_2x_2 - \cdots - a_nx_n, x_2, \ldots, x_n)$ with respect to $x_i, x_j, i, j \in \{3, \ldots, n\}$ at Q are zero because of $n \geq 5$. Hence, we have

(2.15)
$$\frac{\partial^2 f(-a_2 x_2 - \dots - a_n x_n, x_2, \dots, x_n)}{\partial x_i \partial x_j} \bigg|_Q = 0, \ i, j \ge 3.$$

By chain rule, we get

(2.16)
$$a_i a_j \frac{\partial^2 f}{\partial x_1^2}(Q) - a_i \frac{\partial^2 f}{\partial x_1 \partial x_j}(Q) - a_j \frac{\partial^2 f}{\partial x_i \partial x_1}(Q) + \frac{\partial^2 f}{\partial x_i \partial x_j}(Q) = 0.$$

Multiplying (2.16) with $b_1^2 = \left(\frac{\partial f}{\partial x_1}(Q)\right)^2 \neq 0$, we get, for $i, j \ge 3$,

(2.17)
$$b_i b_j \frac{\partial^2 f}{\partial x_1^2}(Q) = b_1 b_i \frac{\partial^2 f}{\partial x_1 \partial x_j}(Q) + b_1 b_j \frac{\partial^2 f}{\partial x_i \partial x_1}(Q) - b_1^2 \frac{\partial^2 f}{\partial x_i \partial x_j}(Q),$$

which can be rewritten as, for $i, j \ge 3$

(2.18)
$$n(n-1)q_1^{n-2}(nq_i^{n-1} + sq_1 \dots q_{i-1}q_{i+1} \dots q_n) \\ \cdot (nq_j^{n-1} + sq_1 \dots q_{j-1}q_{j+1} \dots q_n) \\ = sq_2 \dots q_{i-1}q_{i+1} \dots q_{j-1}q_{j+1} \dots q_n(nq_1^{n-1} + sq_2 \dots q_n) \\ \cdot (nq_i^n + nq_j^n - nq_1^n + sq_1 \dots q_n).$$

Now we only need to prove that $q_3 = \cdots = q_n = 0$ because these will imply that $Q \in \{Q_1, \ldots, Q_N\}$. There are two cases to be considered.

Case 1. q_3, \ldots, q_n are nonzero. If $q_1 = 0$ in this case, we have

(2.19)
$$nq_i^n + nq_j^n - nq_1^n + sq_1 \dots q_n = 0 \quad \forall i, j \ge 3$$

by (2.18). Thus $q_i^n + q_j^n = 0$ for any $i, j \ge 3$. In particular, if we take $i = j \ge 3$, we get $q_i^n = 0$ and hence $q_i = 0$ for $i \ge 3$. This is a contradiction.

On the other hand if $q_1 \neq 0$, we shall consider (2.18) for $i, j \geq 3$ and $k, j \geq 3$. By dividing these two equalities, we have

(2.20)
$$\frac{nq_i^n + sq_1 \dots q_n}{nq_k^n + sq_1 \dots q_n} = \frac{nq_i^n + sq_1 \dots q_n + nq_j^n - nq_1^n}{nq_k^n + sq_1 \dots q_n + nq_j^n - nq_1^n}$$

which implies

(2.21)
$$\frac{nq_i^n + sq_1 \dots q_n}{nq_k^n + sq_1 \dots q_n} = \frac{n(q_j^n - q_1^n)}{n(q_j^n - q_1^n)} = 1.$$

Hence we have $x_i^n = x_k^n$ for $i, k \ge 3$. Similarly by exchanging the roles of the indices 2 and 3, (recall that $q_3 \ne 0$ is assumed), we have $q_2^n = q_3^n = \cdots = q_n^n$. If $b_2 = \frac{\partial f}{\partial x_2}(Q) = nq_2^{n-1} + sq_1q_3 \dots q_n \ne 0$, then by exchanging the roles of the indices of 1 and 2, (note $q_1 \ne 0$), we have $q_1^n = q_2^n = \cdots = q_n^n$. Since (q_1, \dots, q_n) satisfies the following equation

$$(2.22) q_1^n + \dots + q_n^n + sq_1 \dots q_n = 0$$

we have $q_2(nq_2^{n-1} + sq_1q_2...q_n) = 0$. This contradicts our assumption that $b_2 = nq_2^{n-1} + sq_1q_3...q_n \neq 0$. If

$$b_2 = \frac{\partial f}{\partial x_2}(Q) = nq_2^{n-1} + sq_1q_3\dots q_n = 0,$$

then $nq_2^n + sq_1q_2 \dots q_n = 0$. (2.22) implies $q_1^n + (n-1)q_2^n + sq_1 \dots q_n = 0$. By adding q_2^n in both sides of this equation, we get $q_1^n = q_2^n$. Thus $q_1^n = \dots = q_n^n$. (2.22) implies $nq_i^n + sq_1 \dots q_n = 0$ for $1 \le i \le n$. This implies that Q is a singular point of X_s , a contradiction.

Case 2. At least one of q_3, \ldots, q_n is equal to zero. Without loss of generality, we shall assume $q_3 = 0$. Since

$$b_1 = \frac{\partial f}{\partial x_1}(Q) = nq_1^n - sq_2 \dots q_n \neq 0$$

is assumed, we have $q_1 \neq 0$. Consider (2.18) for $i = j \geq 4$. The right-hand side of (2.18) becomes zero because of our assumption that at least one of q_3, \ldots, q_n is equal to zero. It follows that $nq_i^{n-1} + sq_1 \ldots q_{i-1}q_{i+1} \ldots q_n = 0, 4 \leq i \leq n$. These n-3 equations together

with the assumption that at least one of q_3, \ldots, q_n is zero imply $q_4 = q_5 = \cdots = q_n = 0$. If q_3 is nonzero, then at least one of q_2, q_4, \ldots, q_n is zero. By considering (2.18) with i = j = 3, we have

$$n(n-1)q_1^{n-2}(nq_3^{n-1} + sq_1q_2q_4 \dots q_n)^2$$

= $sq_2q_4 \dots q_n(nq_1^{n-1} + sq_2 \dots q_n)(2nq_3^n - nq_1^n + sq_1 \dots q_n) = 0,$

which implies $q_3 = 0$. Thus we have shown $q_3 = q_4 = \cdots = q_n = 0$ and Q has to be in $\{Q_1, Q_2, \ldots, Q_n\}$. q.e.d.

3. Moduli and modular group of Calabi-Yau manifolds

We shall use Theorem 2.3 to study the moduli and modular group of Calabi-Yau manifolds.

Theorem 3.1. For $n \geq 5$ and any nonzero $t \neq s$, the biholomorphism between $X_t = \{(x_1 : \ldots : x_n) \in \mathbb{CP}^{n-1} : x_1^n + \cdots + x_n^n + tx_1 \ldots x_n = 0, t^n \neq (-n)^n\}$ and $X_s = \{(x_1 : \ldots : x_n) \in \mathbb{CP}^{n-1} : x_1^n + \cdots + x_n^n + sx_1 \ldots x_n = 0, s^n \neq (-n)^n\}$ is induced by a projective nonsingular linear transformation $B \in PGL(n, \mathbb{C})$ on coordinates with only one nonzero entry in each row and each column. Moreover, these entries is B are n-th roots of unity. Conversely any matrix B of the above form will send X_t to X_s where $s = tc_1c_2 \ldots c_n$, being $c_1, \ldots c_n$ the nonzero entries of B.

Proof. It is well known that any biholomorphism between X_t and X_s is induced by a projective nonsingular linear transformation $B = (b_{ij}), 1 \le i, j \le n$, in $PGL(n, \mathbb{C})$. For any C - Y point Q in X_t , it is clear that B(Q), the image of Q under B, is also a C - Y point on X_s . In view of Theorem 2.3, we have $\{B(Q_1), \ldots, B(Q_N)\} = \{Q_1, \ldots, Q_N\}$ where $N = \frac{1}{2}n^2(n-1)$.

We now consider the set of first coordinates of the points $B(Q_1), \ldots, B(Q_N)$. This set consists of $N = \frac{1}{2}n^2(n-1)$ elements of the form $a_{1i} + \rho_m a_{1j}$, with $1 \le i < j \le n, 1 \le m \le n$. We know that there are $\frac{1}{2}n(n-1)(n-2)$ of N first coordinates of those points

$$\{B(Q_1), \ldots, B(Q_N)\} = \{Q_1, \ldots, Q_N\}$$

equal to zero. Hence there are $\frac{1}{2}n(n-1)(n-2)$ of $a_{1i} + \rho_m a_{1j}$, with $1 \le i < j \le n, 1 \le m \le n$, equal to zero. Suppose that k of n numbers a_{11}, \ldots, a_{1n} are zero. Notice that for nonzero complex numbers c and

d, there is at most one zero among n complex numbers $c + \rho_m d$. We also note that if precisely only one of c, d is zero, then $c + \rho_m d$ can never be zero for $1 \le m \le n$. Thus among N complex numbers $a_{1i} + \rho_m a_{ij}$, $1 \le i < j \le n$, $1 \le m \le n$, there are at most $\frac{1}{2}nk(k-1) + \frac{1}{2}(n-k)(n-k-1)$ of them are zero. It follows that we have the following inequality

(3.1)
$$\frac{nk(k-1)}{2} + \frac{(n-k)(n-k-1)}{2} \ge \frac{n(n-1)(n-2)}{2}.$$

(3.1) implies k > 0. It follows that $nk \ge n - k$ because k is a positive integer. Thus, in view of (3.1) we have

(3.2)
$$\frac{nk(n-2)}{2} = \frac{nk(k-1)}{2} + \frac{nk(n-k-1)}{2} \\ \geq \frac{nk(k-1)}{2} + \frac{(n-k)(n-k-1)}{2} \\ \geq \frac{n(n-1)(n-2)}{2}.$$

(3.3) implies $k \ge n-1$. Since B is a nonsingular matrix, we have k = n-1. Therefore we have proved that there is only one nonzero entry in the first row. Similarly, we can prove that there is only one nonzero entry in each row. Since B is nonsingular, there is only one nonzero entry in each column.

Let $a_{1i_1}, a_{2i_2}, \ldots, a_{ni_n}$ be the nonzero entries of the 1st row, 2nd row, ..., and n^{th} row of the matrix B respectively. Consider the action of B on the point $P = (0, \ldots, 0, \rho_m, 0, \ldots, 0, 1, 0, \ldots, 0)$ where $1 \leq m \leq n, \rho_m$ is the i_1 -coordinate of P while 1 is the i_2 -coordinate of P. Clearly $B(P) = (a_{1i_1}\rho_m, a_{2i_2}, 0, \ldots, 0)$ is a C - Y point. In view of Theorem 2.3, we have $\rho_m a_{1i_1}/a_{2i_2} \in \{\rho_1, \ldots, \rho_n\}$. This implies a_{1i_1}/a_{2i_2} is a n^{th} root of unity. Similarly we can show that all ratios between $a_{1i_1}, a_{2i_2}, \ldots, a_{ni_n}$ are n^{th} root of unity. The first part of Theorem 3.1 follows immediately.

Conversely, suppose that B is a nonsingular matrix given by

$$B: (x_1, x_2, \ldots, x_n) \longmapsto (a_{1i_1} x_{i_1}, a_{2i_2} x_{i_2}, \ldots, a_{ni_n} x_{i_n}),$$

where $a_{1i_1}, a_{2i_2}, \ldots, a_{ni_n}$ are n^{th} roots of unity and (i_1, i_2, \ldots, i_n) is a permutation of $(1, 2, \ldots, n)$. Then clearly $X_t : x_1^n + \cdots + x_n^n + tx_1 \ldots x_n = 0$ is sent to $X_s : x_1^n + \cdots + x_n^n + sx_1 \ldots x_n = 0$ where $s = ta_{1i_1} \ldots a_{ni_n}$. q.e.d.

Corollary 3.2. For $n \ge 5$, $t \ne s$, s^n and $t^n \ne 0$ and $(-n)^n$, the group G of biholomorphisms between $X_t = \{(x_1 : \cdots : x_n) \in CP^{n-1} :$

 $x_1^n + \dots + x_n^n + tx_1 \dots x_n = 0$ and $X_s = \{(x_1 : \dots : x_n) \in CP^{n-1} : x_1^n + \dots + x_n^n + sx_1 \dots x_n = 0\}$ consists of all projective nonsingular linear transformation $B \in PGL(n, G)$ of the following form:

where (i_1, \ldots, i_n) is a permutation of $(1, \ldots, n)$ and $a_{1i_1}, \ldots, a_{ni_n}$ are n^{th} root of unity. Each such B induces a linear transformation on the parameter space by sending t to $ta_{1i_1} \ldots a_{ni_n}$. The group G has order $n^{n-1}(n!)$. Let N be the group of automorphisms of X_t . Then N is a normal subgroup of G of order $n^{n-2}(n!)$.

Proof. To compute the order of G, consider the first row of B. We can pick any number from 1 to n as i_1 and we can assign a_{1i_1} to be any number in the set of n^{th} roots of unity. So we have n^2 choices. In the second row, we can pick i_2 to be any number from 1 to n except i_1 and assign a_{2i_2} to be any number in the set of n^{th} roots of unity. So we have n(n-1) choices. By continuing this argument, we see that there are $(n!)n^n$ elements. By dividing the scalar multiplications, we conclude that the order of the group G is $(n!)n^{n-1}$.

To compute the order of the automorphism group N of X_t , we observe that $B \in N$ if and only if $a_{1i_1}a_{2i_2}\ldots a_{ni_n} = 1$. Thus the order of N is $(n!)n^{n-2}$. q.e.d.

Theorem 3.3. For $n \geq 5$, the modulus function of the one parameter family of Calabi-Yau manifolds $X_s = \{(x_1 : \cdots : x_n) \in \mathbb{CP}^{n-1} : x_1^n + \cdots + x_n^n + sx_1 \dots x_n = 0\}$ is s^n , i.e., for any two parameters t, s, X_t is biholomorphically equivalent to X_s if and only if $t^n = s^n$.

Proof. It is easy to see that X_t is biholomorphically equivalent to X_{tr} for any n^{th} root of unity r. Conversely, we know that if X_t is biholomorphically equivalent to X_s , then s = tr for some n^{th} root of unity r in view of Corollary 3.2. Hence the modulus function of the one-parameter family of Calabi-Yau manifold X_s is s^n . q.e.d.

References

 P. Candelas, X. De La Ossa, P. Green & L. Parker, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B359 (1991) 21-74.

- [2] H. Chen, C. Seeley & S. S.-T. Yau, Algebraic determination of isomorphic classes of the moduli algebras of \widetilde{E}_6 singularities, Preprint.
- [3] B. H. Lian, K. Liu & S.-T. Yau, Mirror principle. I, Asian J. Math. 1 No. 4, (1997) 729-763.

ZHONGSHAN UNIVERSITY, CANTON, CHINA UNIVERSITY OF ILLINOIS AT CHICAGO