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MANIFOLDS WHICH ARE LIKE PROJECTIVE

PLANES

Linus Kramer & Stephan Stolz

Abstract

We give a complete diffeomorphism classification of 1-connected
closed manifolds M with integral homology H∗(M) ∼= Z ⊕ Z ⊕ Z,
provided that dim(M) 6= 4.

The integral homology of an oriented closed manifold1 M contains
at least two copies of Z (in degree 0 resp. dimM). If M is simply
connected and its homology has minimal size (i.e., H∗(M) ∼= Z ⊕ Z),
then M is a homotopy sphere (i.e., M is homotopy equivalent to a
sphere). It is well-known from the proof of the (generalized) Poincaré
conjecture that any homotopy sphere is homeomorphic to the standard
sphere Sn of dimension n. By contrast, the cardinality of the set Θn of
diffeomorphism classes of homotopy spheres of dimension n can be very
large (but finite except possibly for n = 4) [7]. In fact, the connected
sum of homotopy spheres gives Θn the structure of an abelian group
which is closely related to the stable homotopy group πn+k(S

k), k ≫ n
(currently known approximately in the range n ≤ 100).

Somewhat surprisingly, it is easier to obtain an explicit diffeomor-
phism classification of 1-connected closed manifolds whose integral ho-
mology consists of three copies of Z. Examples of such manifolds are
the 1-connected projective planes (i.e., the projective planes over the
complex numbers, the quaternions or the octonions). Eells and Kuiper
pioneered the study of these ‘projective plane like’ manifolds [4] and
obtained many important and fundamental results. For example, they
show that the integral cohomology ring of such a manifold M is iso-
morphic to the cohomology ring of a projective plane, i.e., H∗(M) ∼=
Z[x]/(x3). This in turn implies that the dimension of M must be 2m
with m = 2, 4 or 8 (cf. [4, §5]).
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We remark that a 1-connected closed manifold M of dimension n ≥ 5
with H∗(M) ∼= Z ⊕ Z ⊕ Z admits a Morse function with three criti-
cal points, which is the assumption that Eells-Kuiper work with. Any
1-connected projective plane like manifold of dimension 4 is homeomor-
phic to the complex projective plane by Freedman’s homeomorphism
classification of simply connected smooth 4-manifolds [5].

Eells and Kuiper prove that there are six (resp. sixty) homotopy types
of projective plane like manifolds of dimension 2m for m = 4 (resp. m =
8) [4, §5]. They get close to obtaining a classification of these manifolds
up to homeomorphism resp. diffeomorphism. One way to phrase their
result is the following. If M is a smooth manifold of this type, let
p2

m(M)[M ] ∈ Z be the Pontryagin number obtained by evaluating the
square of the Pontryagin class pm(M) ∈ Hm(M ; Z) (of the tangent
bundle of M) on the fundamental class [M ] ∈ H2m(M ; Z). Eells and
Kuiper show that the Pontryagin number p2

m(M)[M ] ∈ Z determines
the diffeomorphism type up to connected sum with a homotopy sphere; in
other words, if M ′ is another such manifold of the same dimension and
the same Pontryagin number, then M ′ is diffeomorphic to the connected
sum M#Σ of M with a 2m-dimensional homotopy sphere Σ (see 1.3 and
[4, §9]; we note that the Pontryagin number determines the Eells-Kuiper
integer h and vice versa via their formulas (2) resp. (5) in §9).

A complete homeomorphism classification of topological manifolds
which look like projective planes was obtained by the first author in [9].
The main result of this paper is the following.

Theorem A. Let M be a smooth simply connected manifold of di-

mension 2m 6= 4, with integral homology H∗(M) ∼= Z ⊕ Z ⊕ Z. Then

for any homotopy sphere Σ of dimension 2m the connected sum M#Σ
is diffeomorphic to M .

In view of the results of Eells-Kuiper discussed above, this implies
the following diffeomorphism classification of projective plane like man-
ifolds.

Corollary B. Let M be a smooth simply connected 2m-manifold with

integral homology H∗(M) ∼= Z ⊕ Z ⊕ Z. Then the diffeomorphism type

of M is determined by the Pontryagin number p2
m(M)[M ] ∈ Z.

Results of Eells-Kuiper combined with a result of Wall [22] allow a
characterization of those integers which occur as the Pontryagin num-
bers of such manifolds. We will give a precise statement as Theorem 1.3
in the next section; for now we remark that the above result provides
us with an infinite family of manifolds M which have a unique differen-
tiable structure in the sense that any manifold homeomorphic to M is
in fact diffeomorphic to M [10].

Another motivation for this paper came from the first author’s at-
tempt to classify the underlying spaces of topological projective planes
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in the sense of Salzmann [18]. In [9] he obtained a homeomorphism
classification for the point sets of smooth topological projective planes,
showing that only the four classical spaces FP2, F = R, C, H, O appear.
However, the diffeomorphism classification remained open. Except for
the case of CP2, the results of the present paper settle this question.
Combining our results with McKay’s diffeomorphism classification of
2-dimensional smooth topological projective planes [14], we obtain the
follwing result.

Corollary C. The point space of a smooth topological projective plane

(in the sense of [18]) is diffeomorphic to its classical counterpart, i.e.,

to RP2, CP2, HP2, or OP2.

Outline of the paper. In Section 1 we state in more detail the Eells-
Kuiper results concerning the diffeomorphism classification of projective
plane like manifolds up to connected sum with homotopy spheres. For
the convenience of the reader, we also outline the proofs. The other
sections are devoted to proving our main Theorem A.

In Section 2 we use Kreck’s modified surgery approach [11] to show
that for a closed simply connected manifold M of dimension 2m 6= 4
the connected sum M#Σ with a homotopy sphere Σ is diffeomorphic
to M provided Σ represents zero in a suitable bordism group ΩB

2m (cf.
Corollary 2.5).

The bordism groups ΩB
∗ depend on a fibration B −→ BO which in

turn depends on the manifold M . In Section 3 we determine the relevant
fibration in the case that M is a projective plane like 2m-manifold (cf.
Proposition 3.4). In Section 4 we prove that any homotopy sphere Σ
of dimension 2m = 8, 16 represents zero in ΩB

2m for B as above, thus
completing the proof of Theorem A.

1. Classification up to connected sums with homotopy

spheres

As mentioned in the introduction, the diffeomorphism classification
of projective plane like manifolds up to connected sum with homotopy
spheres was obtained by Eells-Kuiper [4] (plus one result of Wall’s [22,
Thm. 4, p. 178]) or by specializing Wall’s much more general classifi-
cation of ‘almost closed’ (m − 1)-connected 2m manifolds [22] to this
case. Still, we feel that it is worthwhile to outline in this section how
this classification follows from the classification of m-dimensional vector
bundles over Sm and the h-cobordism theorem.

We recall that a smooth manifold N is ‘almost closed’ if it is a com-
pact manifold whose boundary is a homotopy sphere. Such a manifold is
obtained for example by removing an open n-disk from a closed manifold
M of dimension n. The boundary ∂N of an almost closed n-manifold
N is homeomorphic to the standard sphere Sn−1, and we denote by
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N(α) = N ∪α Dn the closed topological manifold obtained by gluing N
and the disk Dn along their common boundary via a homeomorphism
α : ∂Dn −→ ∂N . We note that N(α) is again a smooth manifold if α is
a diffeomorphism; moreover, if β : ∂N −→ ∂Dn is a second diffeomor-
phism, then N(β) is diffeomorphic to the connected sum N(α)#Σ of N
with the homotopy sphere Σ = Dn∪α−1βDn obtained by gluing two discs

along their boundaries via the diffeomorphism α−1β : ∂Dn −→ ∂Dn.
An almost closed manifold N is called projective plane like if the

integral homology H∗(N(α)) (which is independent of the choice of the
homeomorphism α) is isomorphic to Z ⊕ Z ⊕ Z. This implies that N is
a manifold of dimension 2m with m = 2, 4, 8.

Theorem 1.1 (Eells-Kuiper). The diffeomorphism classes of simply

connected almost closed projective plane like manifolds of dimension 2m
for m = 4, 8 are in one-to-one correspondence with the non-negative

integers. The manifold Nt corresponding to t ∈ Z is the disk bundle of

the vector bundle ξt over Sm with Euler class e(ξt) = x, and Pontryagin

class pm(ξt) = 2(1 + 2t)x (for m = 4) resp. pm(ξt) = 6(1 + 2t)x (for
m = 8), where x is the generator of Hm(Sm).

Proof. It is an easy homology calculation to show that the disk bun-
dle Nt = D(ξt) is an almost closed projective space like manifold (the
condition e(ξt) = x guarantees that the that the boundary ∂D(ξt) is a
homotopy sphere). We note that pulling ξt back via a map Sm −→ Sm

of degree −1 we obtain a bundle isomorphic to ξ−t−1; it follows that
the manifolds Nt and N−t−1 are diffeomorphic and hence it suffices to
consider only t ≥ 0.

Conversely, if N is any simply connected almost closed projective
space like manifold of dimension 2m, consider the normal bundle ξ of
an embedding Sm →֒ N which represents a generator for Hm(N ; Z) ∼= Z.

Then ξ is an m-dimensional oriented vector bundle over Sm, whose
disc bundle D(ξ) can be identified with a tubular neighborhood of
Sm ⊂ N . Up to isomorphism ξ is determined by its Euler class e(ξ)
and its Pontryagin class pm(ξ). The assumption that N is projective
space like implies that the integral cohomology ring of N/∂N is isomor-
phic to Z[x]/(x3), which in turn implies e(ξ) = x. By the classification
of m-dimensional vector bundles over Sm, this implies that ξ is iso-
morphic to ξt for some t ∈ Z. Now removing the interior of the disc
bundle D(ξ) ⊂ N from N , we obtain a bordism W between ∂D(ξ) and
∂N . A homology calculation shows that this is in fact an h-cobordism
(i.e., the inclusion of either boundary component into W is a homotopy
equivalence). By Smale’s h-cobordism theorem, W is diffeomorphic to
∂D(ξ) × [0, 1]; in particular, N = D(ξ) ∪∂D(ξ) W is diffeomorphic to
D(ξ) = D(ξt), which proves the theorem. q.e.d.
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The theorem above begs the question for which t ∈ Z is the boundary
of Nt diffeomorphic to the standard sphere S2m−1. The answer is given
by the next result:

Proposition 1.2 (Eells-Kuiper, Wall). The boundary ∂Nt is diffeo-

morphic to S2m−1 if and only if t ≡ 0, 7, 48, 55 mod 56 (for m = 4)
resp. t ≡ 0, 127, 16128, 16255 mod 16256 (for m = 8).

Proof. Choose a homeomorphism α : S2m−1 −→ ∂Nt and consider the

closed topological manifold Nt(α) = Nt∪αD2m. Its Â-genus Â(Nt(α)),
a certain rational linear combination of the Pontryagin numbers
p2

m(M)[M ] and p2m(M)[M ], turns out to be independent of α, and can
be expressed in terms of t by the following formula [4, §9, Thms. on p.
216, resp. p. 218], [9, §7.2]:

Â(Nt(α)) =

{
− t(t+1)

7·8 m = 4

− t(t+1)
127·128 m = 8

If ∂Nt is diffeomorphic to S2m−1, we may choose α to be a diffeo-
morphism, and then Nt(α) is a smooth manifold. This manifold can be
equipped with a spin structure, since H i(M ; Z/2) = 0 for i = 1, 2 and
hence the Stiefel-Whitney classes wi(M) ∈ H i(M ; Z/2), i = 1, 2 (the
potential obstructions against a spin structure) vanish. This implies

that Â(Nt(α)) is an integer, namely the index of the ‘Dirac operator’
which can only be constructed for smooth spin manifolds. The formula
above then implies that t satisfies the congruence of the proposition.

Conversely, according to a result of Wall [22, Thm. 4, p. 178], the

integrality of Â(Nt(α)) implies that ∂Nt is diffeomorphic to the standard
sphere. q.e.d.

We note that the Pontryagin number p2
m(M)[M ] of the projective

plane like manifold M = Nt(α) is equal to 22(1 + 2t)2 (for m = 4
— unfortunately, the formula stated in [9] p. 2 is off by a factor 2; the
correct number given here appears in loc.cit. Thm. 7.1) resp. 62(1+2t)2

(for m = 8). Hence the theorem and the proposition above imply the
following result.

Theorem 1.3. Let M be a smooth projective plane like manifold of

dimension 2m, m = 4, 8. Then up to connected sum with a homotopy

sphere, the diffeomorphism type of M is determined by the Pontryagin

number p2
m(M)[M ] ∈ Z. Moreover, an integer k is equal to the Pon-

tryagin number p2
m(M)[M ] of such a manifold if and only if k is of the

form k = 22(1 + 2t)2 with t ≡ 0, 7, 48, 55 mod 56 (for m = 4) resp.

k = 62(1 + 2t)2 with t ≡ 0, 127, 16128, 16255 mod 16256 (for m = 8).
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2. Bordism groups and surgery

In this section we briefly describe a main result of Kreck’s ‘modified
surgery theory’ [11] (Theorem 2.2 below). A direct consequence of this
result (see Corollary 2.5) is that the connected sum M#Σ of a closed
simply connected manifold M of dimension 2m 6= 4 with a homotopy
sphere Σ is diffeomorphic to M provided Σ represents zero in a suitable
bordism group ΩB

2m.
We begin by defining the bordism groups ΩB

n .

2.1. Fix a fibration B −→ BO over the classifying space BO of
the stable orthogonal group. We recall that BO is the union of the
classifying spaces BOk of the orthogonal groups and that BOk is the
union of the Grassmann manifolds Grk(R

n+k) of k-planes in R
n+k via

natural inclusion maps Grk(R
n+k) ⊆ Grk(R

n+k+1). Let (N, ∂N) be a

compact n-manifold, and let ι : (N, ∂N) →֒ (Rn+k
+ , ∂R

n+k
+ ) be a smooth

embedding into euclidean half-space. Recall that the normal Gauss map
ν : Nn −→ Grk(R

n+k) assigns to any point x ∈ N its normal space in
R

n+k. A B-structure on N is an equivalence class of pairs (ι, ν̄), where
ν̄ is a map making the following diagram commutative

N Grk(R
n+k) ⊂ BOk ⊂ BO

B

-

?

»»»»»»»»»»»»»»»»»»:

ν̄

ν

The equivalence relation is generated by simultaneous deformations
of ι and ν̄, and by the stabilization map R

n+k →֒ R
n+k+1.

A B-manifold is a manifold equipped with a B-structure; a B-bordism

between B-manifolds M1
ν̄1−→ B and M2

ν̄2−→ B is a bordism W between
M1 and M2 equipped with a B-structure ν̄ : W −→ B which restricts
to ν̄1 resp. ν̄2 on the boundary ∂W = M1 ∪ M2.

A B-structure β : M −→ B is called a normal k-smoothing if ν̄ is a
(k + 1)-equivalence, i.e., if the induced homomorphism ν̄∗ : πi(M) −→
πi(B) is an isomorphism for i ≤ k and surjective for i = k + 1. We
remark that if there exists a k-smoothing ν̄ : M −→ BO, the fibration
B −→ BO is determined by the manifold M up to fiber homotopy
equivalence, if we assume that πiB −→ πiBO is an isomorphism for
i > k + 1 and injective for i = k + 1. In this case, Kreck refers to
B −→ BO as the normal k-type of M .

Theorem 2.2 (Kreck [11, Theorem B]). Let M1, M2 be closed man-

ifolds of dimension n ≥ 5 with the same Euler characteristic which

are equipped with B-structures that are normal k-smoothings. For k ≥
[n/2] − 1 a B-bordism W between M1 and M2 is bordant to an s-
cobordism if and only if a certain obstruction θ(W ) is elementary.
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We recall that a bordism W between M1 and M2 is an s-cobordism
if the inclusions M1 −→ W and M2 −→ W are simple homotopy equiv-
alences. The s-cobordism Theorem implies that then M1 and M2 are
diffeomorphic (assuming that dimM1 = dimM2 ≥ 5).

2.3. The obstruction θ(W ) is an element of an abelian monoid
ℓn+1(π, w) which depends on the fundamental group π = π1(B) and the
induced map w : π1(B) = π −→ π1(BO) = Z/2. Even if π is the trivial
group (this is the case we care about in this paper), the obstruction
θ(W ) is difficult to handle for k = [n/2] − 1 (see [11, §7]).

The situation greatly simplifies for k ≥ [n/2]:

• The normal k-smoothings induce isomorphisms Hi(M1) ∼= Hi(B)
∼= Hi(M2) for i ≤ [n/2]. By Poincaré duality, we also have iso-
morphisms Hi(M1) ∼= Hi(M2) for [n/2] + 1 ≤ i ≤ n and hence in
particular the Euler characteristics of M1 and M2 agree.

• By [11] p. 734 the obstruction θ(W ) is contained in an abelian
subgroup Ln+1(π, w) of the monoid ℓn+1(π, w). Moreover, this
group projects to the Whitehead group Wh(π), and the kernel

Ls
n+1(π, w) = ker (Ln+1(π, w) −→ Wh(π))

is Wall’s classical surgery group [23].

If B is simply connected, then Wh(π) = 0, and so Ls
n+1(π, w) =

Ln+1(π, w); moreover, these groups are zero if n is even [23]. As the
zero-element in Ln+1(π, w) is certainly elementary in Kreck’s sense, the
obstruction θ(W ) is elementary in this case, and we conclude:

Corollary 2.4. Let M1, M2 be closed simply connected 2m-dim-

ensional manifolds which are equipped with B-structures that are normal

m-smoothings, m ≥ 3. If M1 and M2 represent the same element in the

bordism group ΩB
2m, then M1 is diffeomorphic to M2.

Corollary 2.5. Let ν̄ : M −→ B be a normal m-smoothing of a

simply connected 2m-manifold, m ≥ 3. Let Σ be a homotopy sphere

equipped with a B-structure such that [Σ] = 0 ∈ ΩB
2m. Then M#Σ is

diffeomorphic to M .

Proof. It is well-known that the connected sum M#N of two B-man-
ifolds admits a B-structure such that it represents the same element in
ΩB
∗ as the disjoint union of M and N ; the desired B-bordism W is

constructed by taking the disjoint union of M × [0, 1] and N × [0, 1] and
attaching a 1-handle Dn × [0, 1] to it, connecting these two parts. The
boundary of the resulting n+1-manifold W consists of the disjoint union
of M , N and M#N ; obstruction theory shows that the B-structure can
be extended over the 1-handle to give a B-structure on W .

We note that the B-structure constructed on M#Σ in this way is
again an m-smoothing; hence the previous corollary implies that M#Σ
is diffeomorphic to M . q.e.d.



184 L. KRAMER & S. STOLZ

3. The normal m-type of projective space like 2m-manifolds

In order to apply this result, we need to identify for a given projective
plane like 2m-manifold M a suitable fibration B −→ BO such that M
admits a normal m-smoothing ν̄ : M −→ B (i.e., ν̄∗ : πiM −→ πiB is
an isomorphism for i ≤ M and surjective for i = m + 1). To find B, we
will need the following information about M .

Lemma 3.1. Let M be a projective plane like 2m-manifold, m = 4, 8,
such that the almost closed manifold M̊ obtained by removing an open

disk from M is diffeomorphic to Nt. Let ν : M −→ BOk ⊂ BO be

the normal Gauss map induced by an embedding M ⊂ R
2m+k. Then

the induced map ν∗ : πmM ∼= Z −→ πmBO ∼= Z is multiplication by

±(2t + 1).

Proof. Let i : Sm →֒ D(ξt) = Nt ⊂ M be the inclusion of the zero-
section.

The normal bundle of this embedding is ξt. The normal bundle of
the embedding Nt ⊂ M →֒ R

n+k is the pull back ν∗γk of the universal
bundle γk −→ BOk via the normal Gauss map ν : M −→ BOk. This
implies that the vector bundle

TSm ⊕ ξt ⊕ i∗ν∗γk ∼= i∗TM ⊕ i∗ν∗γk = i∗(TM ⊕ ν∗γk)

is the restriction of the tangent bundle of R
n+k to Sm ⊂ M ⊂ R

n+k

and hence trivial. Identifying stable vector bundles over Sm with their
classifying map [Sm −→ BO] ∈ πmBO, we conclude i∗ν∗γ = −ξt ∈
πmBO. Comparing the Pontryagin classes pm(ξt), pm(ξ1) ∈ Hm(Sm; Z),
we see that ξt = (2t + 1)ξ1 ∈ πmBO. Combining these facts, we have
i∗ν∗γ = −(2t + 1)ξ1 ∈ πmBO.

Reinterpreting this equation, it tells us that the map ν∗ : πmM −→
πmBO maps the generator [i : Sm −→ M ] ∈ πmM to −(2t + 1)ξ1 ∈
πmBO, which implies the lemma, since ξ1 is a generator of πmBO ∼= Z.

q.e.d.

3.2. We note that a projective plane like 2m-manifold M is (m −
1)-connected, i.e., πiM = 0 for i < m. This implies by standard ob-
struction theory that the normal Gauss map ν : M −→ BOk ⊂ BO of an
embedding M ⊂ R

2m+k can be factored through the (m− 1)-connected

cover q : BO〈m〉 −→ BO, a fibration determined up to fiber homotopy
equivalence by the requirement that πiBO〈m〉 = 0 for i < m and that
q∗ : πiBO〈m〉 −→ BO induces an isomorphism for i ≥ m (we note that
the 1-connected cover X〈2〉 −→ X of a space X is just the universal
covering of X). The lift ν̄ : M −→ BO〈m〉 of ν constructed this way is
not a normal m-smoothing of M , since by the above lemma, the induced
map πmM −→ πmBO〈m〉 = πmBO is not an isomorphism unless t = 0.
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In particular, BO〈m〉 −→ BO is not the normal m-type of M unless
t = 0.

3.3. Now we proceed to construct the fibration B −→ BO which
will turn out to be the normal m-type of M . Let K(Z, m) be the
Eilenberg-MacLane space characterized up to homotopy equivalence by
the requirement that the homotopy group πiK(Z, m) is zero for i 6= m
and equal to Z for i = m. The long exact homotopy sequence of the
path fibration

ΩK(Z, m) −→ PK(Z, m) −→ K(Z, m)

together with the fact that the path space PK(Z, m) is contractible
shows that the loop space ΩK(Z, m) is the Eilenberg-MacLane space
K(Z, m− 1). For m ≡ 0 mod 4, let us denote by Bd,m −→ BO〈m〉 the
pull-back of the above path fibration via a map φ : BO〈m〉 −→ K(Z, m)
such that the induced map π∗ : πmBO〈m〉 = Z −→ πmK(Z, m) = Z is
multiplication by d (this requirement determines φ up to homotopy).
We note that the long exact homotopy sequence of this fibration shows
that the induced map Z ∼= πmBd,m −→ πmBO〈m〉 ∼= Z is multiplication
by ±d.

Proposition 3.4. Let M be as in Lemma 3.1. Then the normal

m-type of M is the composite fibration B2t+1,m −→ BO〈m〉 −→ BO.

Proof. Let ν̄ ′ : M −→ BO〈m〉 be the lift of the normal Gauss map
M −→ BO associated to an embedding M →֒ R

n+k. Again obstruction
theory shows that ν̄ ′ can be lifted to a map ν̄ : M −→ B2t+1,m. Lemma
3.1 implies that the induced map ν̄∗ : πiM −→ πiBd,m is an isomorphism
for i = m. Moreover, it is surjective for i = m + 1: for m = 4 this is
obvious, since π5BO = 0; for m = 8, it follows from the fact that the
Hopf map η : S9 −→ S8 induces a surjection π8BO = Z −→ π9BO =
Z/2. q.e.d.

Applying now Corollary 2.5 to projective plane like manifolds, we
conclude:

Corollary 3.5. If M is as in Lemma 3.1, and Σ is a homotopy sphere

of dimension 2m with [Σ] = 0 ∈ Ω
B2t+1,m

2m , then M#Σ is diffeomorphic

to M .

4. The bordism class of homotopy spheres

In view of the last corollary our main result follows from the following
statement whose proof is the goal of this section.

Proposition 4.1. Let Σ be a homotopy sphere of dimension 2m =

8, 16. Then [Σ] = 0 ∈ Ω
B2t+1,m

2m for any t.



186 L. KRAMER & S. STOLZ

To prove this result we note that the map B2t+1,m −→ BO〈m〉 is a
map of fiber bundles over BO and hence it induces a homomorphism of
bordism groups

(1) Ω
B2t+1,m

∗ −→ Ω
BO〈m〉
∗ .

The groups Ω
BO〈m〉
2m are known for m = 4, 8, see Milnor [15] and Gi-

ambalvo [6]:

Ω
BO〈4〉
8 = ΩBSpin

8
∼= Z ⊕ Z and Ω

BO〈8〉
16

∼= Z ⊕ Z.

Since Θ2m
∼= Z/2 for m = 4, 8, it follows that for any homotopy

2m-sphere Σ the connected sum Σ#Σ is diffeomorphic to S2m. In par-

ticular, Σ represents an element of order at most 2 in Ω
B2t+1,m

∗ . Hence
the next result implies the proposition above.

Lemma 4.2. The homomorphism (1) is a 2-local isomorphism (i.e.,
its kernel and and cokernel belong to the class of torsion groups without

elements of order 2).

Before proving this lemma we recall some relevant facts.

4.3. The Pontryagin-Thom construction. Let fk : Bk −→ BOk

be the restriction of the fibration f : B −→ BO to BOk ⊂ BO. Let
γk −→ BOk be the universal k-dimensional vector bundle, let γ̂k −→ Bk

be its pull-back via fk, and let T (γ̂k) be the Thom space of γ̂k (the
quotient space of its total space obtained by collapsing all vectors of
length ≥ 1 to a point). Then the Pontryagin-Thom construction (see
[21, Thm., p. 18]) produces an isomorphism

(2) ΩB
n
∼= lim

k→∞
πn+kT (γ̂k).

4.4. Thom spectra. It is usual and convenient to express the right
hand side of the Pontryagin-Thom isomorphism (2) in terms of Thom
spectra. We recall that a spectrum is a sequence Ek of pointed spaces
together with pointed maps ΣEk −→ Ek+1 from the suspension of Ek

to Ek+1. For example, if B −→ BO is a fibration, there is an associated
Thom spectrum MB, whose k-th space is the Thom space T (γ̂k).

Many constructions with spaces can be generalized to spectra; e.g.,
the homotopy (resp. homology) groups of a spectrum E = {Ek} are
defined as

πnE
def
= lim

k→∞
πn+kEk Hn(E)

def
= lim

k→∞
H̃n+k(Ek).

With these definitions, the Pontryagin-Thom isomorphism takes the
pleasant form

(3) ΩB
n
∼= πnMB.

Assuming that B is 1-connected, the vector bundles γ̂k −→ Bk

are all oriented and hence we have Thom-isomorphisms Hi(Bk; Z) ∼=
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H̃i+k(T γ̂k; Z). It turns out that these isomorphisms are all compatible
and so passing to the k → ∞ limit, one obtains a Thom-isomorphism

(4) Hi(B; Z) ∼= Hi(MB; Z).

Proof of lemma. By construction, the induced homomorphism

πi(B2t+1,4k) −→ πi(BO〈4k〉)

is an isomorphism for i 6= 4k; for i = 4k, it is injective with cokernel iso-
morphic to Z/(2t+1). In particular, for all i it is a 2-local isomorphism.
Then the generalized Whitehead Theorem ([19, Thm. 22 of Chap. 9,
§6]) implies that

(5) p∗ : Hi(B2t+1,4k; Z) −→ Hi(BO〈4k〉; Z)

is also a 2-local isomorphism. Now we consider the map of Thom spectra

Mp : MB2t+1,4k −→ MBO〈4k〉

induced by p. Via the Thom isomorphism (4) the induced map in homol-

ogy may be identified with the homomorphism (5), while the induced
map on homotopy groups via the Pontryagin-Thom isomorphism (3)
corresponds to the homomorphism (1) of bordism groups. Again by
the generalized Whitehead Theorem, the latter is a 2-local isomorphism
since the former is. q.e.d.
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